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ABSTRACT
ISS
BACKGROUND Detection of heart failure with preserved ejection fraction (HFpEF) involves integration of multiple

imaging and clinical features which are often discordant or indeterminate.

OBJECTIVES The authors applied artificial intelligence (AI) to analyze a single apical 4-chamber transthoracic echo-

cardiogram video clip to detect HFpEF.

METHODS A 3-dimensional convolutional neural network was developed and trained on apical 4-chamber video clips to

classify patients with HFpEF (diagnosis of heart failure, ejection fraction $50%, and echocardiographic evidence of

increased filling pressure; cases) vs without HFpEF (ejection fraction $50%, no diagnosis of heart failure, normal filling

pressure; controls). Model outputs were classified as HFpEF, no HFpEF, or nondiagnostic (high uncertainty). Performance

was assessed in an independent multisite data set and compared to previously validated clinical scores.

RESULTS Training and validation included 2,971 cases and 3,785 controls (validation holdout, 16.8% patients), and

demonstrated excellent discrimination (area under receiver-operating characteristic curve: 0.97 [95% CI: 0.96-0.97] and

0.95 [95% CI: 0.93-0.96] in training and validation, respectively). In independent testing (646 cases, 638 controls), 94

(7.3%) were nondiagnostic; sensitivity (87.8%; 95% CI: 84.5%-90.9%) and specificity (81.9%; 95% CI: 78.2%-85.6%)

were maintained in clinically relevant subgroups, with high repeatability and reproducibility. Of 701 and 776 indeter-

minate outputs from the Heart Failure Association-Pretest Assessment, Echocardiographic and Natriuretic Peptide Score,

Functional Testing (HFA-PEFF), and Final Etiology and Heavy, Hypertensive, Atrial Fibrillation, Pulmonary Hypertension,

Elder, and Filling Pressure (H2FPEF) scores, the AI HFpEF model correctly reclassified 73.5% and 73.6%, respectively.

During follow-up (median: 2.3 [IQR: 0.5-5.6] years), 444 (34.6%) patients died; mortality was higher in patients clas-

sified as HFpEF by AI (HR: 1.9 [95% CI: 1.5-2.4]).

CONCLUSIONS An AI HFpEF model based on a single, routinely acquired echocardiographic video demonstrated

excellent discrimination of patients with vs without HFpEF, more often than clinical scores, and identified patients with

higher mortality. (JACC Adv 2023;2:100452) © 2023 The Authors. Published by Elsevier on behalf of the American

College of Cardiology Foundation. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

3D = 3-dimensional

A4C = apical 4 chamber

AI = artificial intelligence

AUROC = area under receiver-

operating characteristic curve

CNN = convolutional neural

network

EF = ejection fraction

Grad-CAM = gradient-

weighted class activation

mapping

H2FPEF = Heavy,

Hypertensive, Atrial

Fibrillation, Pulmonary

Hypertension, Elder, and Filling

Pressure

HF = heart failure

HFA-PEFF = Heart Failure

Association-Pretest

Assessment, Echocardiographic

and Natriuretic Peptide Score,

Functional Testing, and Final

Etiology

HFpEF = heart failure with

preserved ejection fraction

TTE = transthoracic

echocardiogram
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H eart Failure (HF) is a clinical syn-
drome affecting over 64 million
people worldwide and has an

increasing prevalence.1,2 Measurement of
ejection fraction (EF) is used to categorize
HF; while HF with reduced EF is relatively
simple to identify, heart failure with pre-
served ejection fraction (HFpEF) is more
complex, leading to differences in diagnostic
criteria,3 and likely contributing to “failed”
clinical trials.4 However, with mounting evi-
dence indicating a beneficial impact of
sodium-glucose cotransporter-2 inhibitors
across the spectrum of HF,5 a key focus
must now be improving diagnostic capacity6

in a patient population with poor 5-year sur-
vival rates, high hospital readmission rates,
and substantial morbidity.7,8

HFpEF is a heterogenous syndrome asso-
ciated with various comorbidities, wherein
cardiac and noncardiac factors contribute to
elevated intracardiac filling pressure, result-
ing in signs and symptoms of HF.3,9 Although
transthoracic echocardiography (TTE) is
routinely used to estimate intracardiac filling
pressure,9,10 there is considerable variability
in its performance and interpretation, and a
high burden on skills, time, and expertise for
acquiring diagnostic quality information which may
not be feasible beyond expert clinical sites. Clinical
algorithms, utilizing multiple sources of patient
data,11,12 may be limited by discordant or incomplete
data.13,14 These factors collectively contribute to
variable diagnostic capacity, increasing the require-
ment for invasive confirmatory tests (eg, right heart
catheterization9,12), adding further burden to the pa-
tient and health care system, and potentially missing
individuals who might benefit from treatment.

Recent work in artificial intelligence (AI) computer
vision techniques offer great promise that computa-
tional methods can better interpret the vast amount
of information that exists within medical data
including images. Whereas recent AI studies have
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combined clinical parameters and manual echocar-
diographic measurements to classify diastolic
dysfunction and HFpEF,15-17 fewer have used echo-
cardiographic images.18,19 Development of an
approach using this simple input might obviate the
need for complex Doppler assessment, provide sup-
porting information when traditional measures are
nondiagnostic, or limit data requirements when such
data collection is not feasible.

The objective of this study was to develop an AI
model to automatically detect HFpEF by only using
the apical 4-chamber (A4C) TTE video clip. This view
was selected because it includes much information
(chamber sizes, wall thicknesses, annulus motion,
etc) and is routinely acquired in imaging protocols. In
an independent data set, we tested the hypothesis
that the developed AI HFpEF model would demon-
strate acceptable classification accuracy, and feasi-
bility superior to current clinical scores for detection
of HFpEF.

METHODS

DATA SOURCES AND STUDY POPULATION. This
retrospective, multisite, and multinational cohort
study was approved by Institutional Review Boards of
Mayo Clinic, United States and St. George’s University
Hospitals, National Health Service Foundation Trust,
United Kingdom. Patients provided written informed
consent for inclusion in research; consent for use of
TTE analysis and relevant clinical patient information
was exempted by the participating Institutional Re-
view Boards due to the use of deidentified data. Data
from the United States and United Kingdom were
used in the training and validation of the AI model,
whereas independent multisite data from the United
States were used for testing.

Model tra in ing and va l idat ion . The Mayo Clinic
echocardiography database, which comprises all
clinical images and TTE reports since 2002, and
matched electronic medical records were screened for
patients meeting the ground truth determination for
cases and controls. Data were included for patients
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FIGURE 1 Flow Diagram Illustrating Identification and Selection of Patients in AI HFpEF Model Development and Testing

AI ¼ artificial intelligence; HFpEF ¼ heart failure with preserved ejection fraction; LVEF ¼ left ventricular ejection fraction.
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who had undergone a comprehensive TTE at Mayo
Clinic in Rochester, Minnesota between January 2009
and December 2020. Echocardiograms at Mayo Clinic
are performed by certified cardiac sonographers and
interpreted by experienced level 3 trained physicians
prior to the patient’s dismissal from the laboratory. A
continuous random sampling of the data pool was
taken and cross-referenced for preserved EF, and
evidence of increased intracardiac filling pressure,
until the desired number of cases was compiled
(Figure 1). Controls were then randomly sampled to
achieve a distribution of age, sex, and year of echo-
cardiogram amongst patients. St. George’s Hospital
cardiac database was screened in an identical manner
to the Mayo Clinic echocardiography database to
enrich the data set and facilitate generalizability via
multinational data.

Independent testing of the AI HFpEF model. Multicenter
independent retrospective data were collected within
Mayo Clinic Health System to test the AI HFpEF
model. Patients were selected from geographically
distinct areas from the data used in model develop-
ment to ensure generalizability. Data were selected
from clinical sites spanning 4 states, and outreach
services across 5 states (Supplemental Table 1). Cases
and controls were matched for sex and year of
echocardiogram and attempts were made to match for
age. To better assess generalizability, up-sampling of
non-White and Hispanic populations was used.

IDENTIFICATION OF STUDY GROUPS. The ground
truth determination used in model training, valida-
tion and independent testing was based on data
collected from patient medical records and compre-
hensive TTE reports. The definition of cases was
consistent with the current national guidelines for
detection and diagnosis of HF,9 based on the clinical
diagnosis provided by the treating physician, and
matching the clinical patient pathway for this patient
cohort. Patients with HFpEF (cases) and patients
without HFpEF (controls) were therefore identified
via the mechanisms described below and illustrated
in Figure 1.
Cl in ica l d iagnos is of hear t fa i lure . Documented
clinical diagnosis of HF, based on an International
Classification of Diseases 9 or 10 code, within 1 year of
the associated echocardiogram (case) or lack of this
diagnosis (control) was collected from the patient
medical records (Supplemental Table 2).
Preserved systo l i c funct ion . Documented evi-
dence of preserved systolic function according to TTE
(cases and controls) was obtained from the patient
TTE reports. This was evidenced by a left ventricular
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EF of at least 50%20 (Supplemental Appendix), ob-
tained using standard echocardiographic procedures
at the relevant site, and interpreted by qualified
clinicians.
Evidence of elevated intracardiac filling pressure.
Documented evidence of increased intra-cardiac
filling pressure (cases) or lack thereof (controls), was
obtained from comprehensive clinical TTE reports,
measured in accordance with relevant guidelines9,10

(Supplemental Appendix, Figure 1).

OVERVIEW OF THE AI HFpEF MODEL. Model training
and validation were completed using Python (version
3.7.7) with TensorFlow (version 2.2) on a rack-
mounted server with a set of 3 Nvidia Tesla V100
graphic processing units, each with 32 GB of video
RAM. Model inputs consisted of only A4C TTE video
clips. For training and validation of the AI HFpEF
model, all A4C video clips for a given patient
were used.

A convolutional neural network (CNN)21 model was
applied to the A4C video clips. The model was
comprised of 3 series of 3-dimensional (3D) convolu-
tional layers. Each of these 3 series was a sequence of
2 convolutions with a 3 � 3 � 3 kernel, followed by
batch normalization and rectified linear unit activa-
tion, and then 1 max-pooling operation with kernel
size and stride of 3 in every direction. This architec-
ture was chosen since it is well suited to operate on 3-
dimensional data (2 in plane spatial dimensions for
each frame plus time). The input of the model was
comprised of all overlapping sequences of 30 frames,
with a stride of 10 frames, from the entire A4C video
clip which was usually comprised of 3 cardiac cycles.
The fully connected layer used a dropout with a 0.5
probability (Central Illustration).

All A4C video clips were subjected to automated
image preprocessing prior to being fed into the neural
network, which included extraction of the Digital
Imaging and Communications in Medicine ultrasound
region, resizing each frame to 256 � 256 pixels, and
frame-wise normalization. The CNN input data were
stored as Python NumPy arrays and fed into the
model 30 consecutive frames at a time. The final
prediction score was computed as the mean of the
prediction probabilities obtained when evaluating all
consecutive sequences of 30 frames in a video clip
that overlapped with a stride of 1 frame.

Data augmentation was applied randomly
throughout training to improve the generalizability of
the model; augmentations included horizontal flip-
ping, central cropping, random rotations, and random
brightness. The 3D CNN model was trained using a
cross-entropy loss function and Adam optimizer with
an initial learning rate of 3 � 10�4 and a batch size of
64. The learning rate was reduced by a factor of 0.9
when the validation loss stopped improving for 20
optimization steps. Total training time was approxi-
mately 8 hours using a single Tesla V100 graphic
processing unit.
AI HFpEF model outputs . The AI HFpEF model
used a softmax activation function in its final layer to
calculate a value between 0 and 1, which was mapped
to a binary negative and positive diagnostic predic-
tion of HFpEF, respectively. The classification
threshold for the output predictions on the validation
data set was set to 0.5, computed on all points on the
receiver operator characteristic curve.

Finally, a nondiagnostic output was generated
based on model uncertainty, using the expected en-
tropy on all predictions across the consecutive se-
quences of 30 frames. The threshold for expected
entropy (0.59) was determined according to the
threshold at which classification performance was
improved significantly without omitting more than
10% of the data during model training (Supplemental
Figure 1).

COMPARISON OF AI MODEL WITH CURRENT CLINICAL

PRACTICE. To test the hypothesis that the classifica-
tion accuracy of the developed AI HFpEF model,
based on analysis of a single A4C video clip, was
acceptable, we compared observed sensitivity and
specificity in the independent testing data set to
average reported data in the literature (sensitivity,
74%; specificity, 65%) (Supplemental Appendix). To
demonstrate a 5% increase from these benchmarks,
and allowing for 21.9% of nondiagnostic outcomes,
w1,048 patients were required in the independent
testing data set (Supplemental Appendix). Classifica-
tion performance was assessed in a priori determined
subgroups of interest related to patient de-
mographics, clinical, and echocardiographic criteria
(Supplemental Appendix). The previously validated
clinical Heart Failure Association-Pretest Assessment,
Echocardiographic and Natriuretic Peptide Score,
Functional Testing, and Final Etiology (HFA-PEFF)12

and Heavy, Hypertensive, Atrial Fibrillation, Pulmo-
nary Hypertension, Elder, and Filling Pressure
(H2FPEF) scores11 were calculated retrospectively (ie,
they were not required for the original clinical diag-
nosis) and categorized as unlikely (0 or 1), indeter-
minate (2-4), or probable (5-6) likelihood of HFpEF for
the HFA-PEFF score, and low probability (0 or 1),
indeterminate (2-5), or high probability (6-9) of
HFpEF for the H2FPEF score. The impact of
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CENTRAL ILLUSTRATION Development and Testing of a Novel AI Model to Detect HFpEF From Single
Echocardiographic Video Clips

Akerman AP, et al. JACC Adv. 2023;2(6):100452.

A 3-dimensional convolutional neural network was developed (middle) to detect heart failure with preserved ejection fraction using only apical 4-chamber video clips.

Discrimination performance was excellent (area under receiver-operating characteristic curve; bottom left), and age-adjusted risk of mortality was higher when

patients received from the model a diagnostic output suggestive of heart failure with preserved ejection fraction compared to a diagnostic output not suggestive of

heart failure with preserved ejection fraction (bottom right). AI ¼ artificial intelligence; AUROC ¼ area under receiver-operating characteristic curve; HFpEF ¼ heart

failure with preserved ejection fraction.
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incorporating the AI HFpEF model into current
clinical practice was assessed using decision curve
analysis (Supplemental Appendix).
STATISTICAL ANALYSIS. Statistical optimization of
the CNN was completed as described above. Measures
of model calibration (Hosmer-Lemeshow goodness-
of-fit test) (Supplemental Appendix) and classifica-
tion performance (area under receiver-operating
characteristic curve [AUROC], sensitivity, and speci-
ficity) were assessed during development and for the
final model. Gradient-weighted class activation
mapping (Grad-CAM22) method was employed for

https://doi.org/10.1016/j.jacadv.2023.100452
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visualizing the most important regions in the input
images for the model to discriminate between case
and control.

Mortality was evaluated using the Kaplan-Meier
method, censoring subjects at last known follow-up.
The survival curve was adjusted for age using a
direct adjustment method based on averaging the Cox
model derived survival curves of each patient. Cox
proportional hazards regression was also used to es-
timate the HR of mortality between groups based on
model outputs with adjustments for age. Repeat-
ability and reproducibility were assessed on classifi-
cation predictions on all amenable images collected
for the primary objective, including images which
were nondiagnostic due to high uncertainty. For
repeatability, the same image clip was read twice by
the device. For reproducibility, patients from the
main testing data set with 2 image clips were extrac-
ted and used for analysis.

Data are reported as mean � SD [sample size], and
where appropriate, the t-test, analysis of variance,
Chi-squared test, or Wilcoxon rank sum test were
used to examine differences between groups. 95% CIs
for AUROC were calculated using the DeLong method.
All other inferential statistics are reported as point
estimates and associated 95% CIs (lower bound-upper
bound), calculated using bootstrap methods. Unless
otherwise stated, statistical tests were 2-sided, with
alpha <0.05 considered statistically significant. Ana-
lyses were performed using R (version 4.1) and Py-
thon (version 3.7.7).

RESULTS

AI HFpEF MODEL DEVELOPMENT. From an available
6,823 patients (3,004 cases, 3,819 controls), and 7,321
video clips (3,217 cases, 4,104 controls), 7 video clips
could not be read, and 65 contained <30 frames
required for the analysis. St George’s (United
Kingdom) data contributed w3% to the total training
and validation data set with cases (n ¼ 140) and
controls (n ¼ 92). Thus, the final model training and
validation data set comprised 6,756 patients (2,971
cases, 3,785 controls) with 7249 A4C video clips (3,185
cases, and 4,064 controls; 16.8% of patients retained
for validation holdout) (Figure 1, Table 1).

Classification performance in the training and
validation data sets was high (AUROC: 0.97 [95% CI:
0.96-0.97] and 0.95 [95% CI: 0.93-0.96, respectively)
(Central Illustration). At a threshold of 0.50, this cor-
responded to a sensitivity and specificity of 88.7%
and 85.4%, respectively, in the validation data set.
Figure 2 demonstrates representative Grad-CAM
images for a correctly classified case, and an incor-
rectly classified control. The highlighted areas in the
Grad-CAM identify “important” regions in the image
to differentiate between cases and controls
(Supplemental Appendix). In the correct example, the
highlighted regions correspond to clearly defined
cardiac structures with clinical importance, which
suggesting that the model is “looking” at appropriate
features. In the incorrect example, the strongest (red)
signal appears in a less clearly defined structure/
regions.

INDEPENDENT AI HFpEF MODEL TESTING. In the
independent testing data set, from an available 1,292
patients (650 cases and 642 controls), and 1,426 video
clips (722 cases, 704 controls), 3 video clips could not
be read, and 29 contained fewer than 30 frames
required for the analysis. The final sample size for the
independent testing data set was therefore 1,284 pa-
tients (646 cases, 638 controls) (Table 1).

Class ificat ion accuracy . The AI HFpEF model clas-
sified 94 out of 1,284 studies (7.3%) as non-diagnostic
due to high model uncertainty. In the remaining data,
sensitivity (87.8%; 95% CI: 84.5%-90.9%) and speci-
ficity (81.9%; 95% CI: 78.2%-85.6%) both exceeded
the a priori benchmarks consistent with average
clinical practice (both P < 0.001 for 1-sided Binomial
Exact test), with corresponding positive and negative
predictive values of 83.6% (95% CI: 80.2%-87.0%)
and 86.5% (95% CI: 83.0%-90.0%), respectively.
Compared to their correctly classified counterparts,
misclassified controls were older with more evidence
of structural heart disease and diastolic dysfunction,
whereas the opposite was true for misclassified cases
(Table 2).

Sensitivity analyses were performed to identify
whether bias in age, sex, or year of echocardiogram
meaningfully influenced the classification accuracy.
In all instances, sensitivity and specificity were
higher than the a priori benchmarks (range: 83.7%-
87.6% and range: 78.4%-82.4%, respectively)
(Supplemental Appendix). Likewise, no a priori
identified patient or technical factors meaningfully
impacted the classification accuracy, with sensitivity
and specificity maintained across subgroups
(Supplemental Appendix).
Repeatab i l i ty and reproduc ib i l i ty of A I HFpEF
model . The model demonstrated perfect agreement
for repeatability of all model outputs (Table 3). From
the main testing data set, 2 separate video clips per
patient were available for 34 controls and 48 cases to

https://doi.org/10.1016/j.jacadv.2023.100452
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TABLE 1 Characteristics for Patients With and Without HFpEF Used in Model Training, Validation, and Independent Testing

Controls
(Training)

Controls
(Validation)

Controls
(Testing)

Cases
(Training)

Cases
(Validation)

Cases
(Testing)

Patient demographics

Age, y 55.8 � 15.7 [3,047] 57.5 � 15.8 [644] 64.6 � 17.4 [638] 73.2 � 11.5 [2,420] 73.7 � 11.5 [411] 72.4 � 13.3 [646]

Women 1,632 (52.2) 344 (52.4) 326 (51.1) 1,277 (50.5) 237 (53.7) 337 (52.2)

BMI, kg/m2 28.1 � 6.4 [3,043] 28.4 � 6.4 [643] 28.7 � 6.8 [637] 30.8 � 7.3 [2,416] 30.7 � 7.0 [411] 30.6 � 7.0 [646]

SBP, mm Hg 122 � 18 [3,025] 123 � 17 [644] 129 � 20 [617] 132 � 21 [2,402] 133 � 21 [407] 139 � 24 [635]

African American 93 (3.0) 21 (3.2) 127 (19.9) 48 (1.9) 6 (1.4) 124 (19.2)

White, non-Hispanic 2,817 (90.0) 602 (91.8) 383 (60.0) 2,253 (89.1) 385 (87.3) 399 (61.8)

Other 54 (1.7) 5 (0.8) 128 (20.1) 44 (1.7) 8 (1.8) 123 (19.0)

Comorbidities and risk factors

Obesity 1,943 (62.1) 427 (65.1) 451 (70.7) 1,924 (76.1) 332 (75.3) 504 (78.0)

Hypertension 1,120 (35.8) 272 (41.5) 301 (47.2) 1,994 (78.8) 349 (79.1) 559 (86.5)

Hyperlipidemia 1,303 (41.6) 327 (49.9) 331 (51.9) 1,787 (70.6) 304 (68.9) 467 (72.3)

Structural heart disease 1,058 (33.8) 231 (35.2) 375 (58.8) 1,913 (75.6) 341 (77.3) 567 (87.8)

Atrial fibrillation 390 (12.5) 102 (15.6) 90 (14.1) 885 (35.0) 156 (35.37) 227 (35.1)

Coronary artery disease 248 (7.9) 48 (7.3) 65 (10.2) 849 (33.6) 137 (31.1) 204 (31.6)

Chronic kidney disease 97 (3.1) 27 (4.1) 75 (11.8) 624 (24.7) 109 (24.7) 302 (46.8)

Diabetes mellitus 364 (11.6) 92 (14.0) 107 (16.8) 1,003 (39.6) 171 (38.8) 326 (50.5)

Pulmonary disease 508 (16.2) 118 (18.0) 109 (17.1) 898 (35.5) 149 (33.8) 255 (39.5)

Previous cardiovascular or
cerebrovascular event

282 (9.0) 70 (10.7) 116 (18.2) 933 (36.9) 161 (36.5) 264 (40.9)

Cardiovascular measurements

LV mass index,a g/m2 84 � 17 [2,940] 83 � 17 [618] 85 � 21 [626] 112 � 32 [2,255] 111 � 29 [381] 121 � 36 [630]

Relative wall thickness (ratio) 0.39 � 0.06 [2,945] 0.39 � 0.06 [619] 0.44 � 0.08 [626] 0.44 � 0.10 [2,260] 0.44 � 0.09 [381] 0.5 � 0.12 [631]

LA volume index,a mL/m2 28.0 � 7.5 [1844] 27.5 � 7.2 [397] 28.8 � 35.4 [237] 43.5 � 12.0 [1,596] 43.9 � 12.1 [283] 44.8 � 15.2 [220]

Ejection fraction, % 63 � 5 [3,047] 63 � 5 [644] 63 � 6 [638] 62 � 6 [2,419] 62 � 6 [411] 61 � 6 [646]

Global longitudinal strain, % �20 � 3 [309] �21 � 2 [64] �20 � 2 [40] �14 � 4 [193] �16 � 3 [28] �14 � 4 [61]

Early diastolic mitral filling velocity
(E-wave; cm/s)

73 � 16 [3,029] 73 � 16 [641] 73 � 17.0 [634] 97 � 23 [2,416] 99 � 24 [410] 102 � 26 [643]

E: A ratio 1.24 � 0.46 [2,956] 1.22 � 0.47 [627] 1.08 � 0.4 [629] 1.45 � 0.84 [2,399] 1.46 � 0.75 [405] 1.52 � 0.87 [635]

E-wave deceleration time, ms 198 � 38 [2,871] 200 � 39 [611] 212 � 49 [612] 201 � 50 [2,345] 195 � 51 [386] 207 � 62 [629]

Septal mitral annular early diastolic
tissue velocity (e’; cm/s)

9.2 � 3.3 [3,025] 8.9 � 2.3 [642] 7.8 � 2.3 [625] 5.2 � 1.4 [2,389] 5.3 � 1.5 [405] 5.0 � 1.6 [626]

Septal E/e’ ratio 8.3 � 2.0 [3,014] 8.5 � 2.2 [640] 9.9 � 2.9 [625] 19.9 � 7.1 [2,388] 20.0 � 7.0 [405] 21.5 � 7.6 [626]

Lateral mitral annular early diastolic
tissue velocity (e’; cm/s)

11.3 � 3.8 [2,949] 11.1 � 3.2 [616] 10.3 � 3.8 [359] 7.1 � 2.4 [2,159] 7.1 � 2.1 [358] 6.7 � 2.3 [403]

Lateral E/e’ ratio 6.9 � 2.1 [2,939] 7.0 � 2.1 [614] 7.8 � 2.7 [359] 15.0 � 6.4 [2,158] 15.1 � 5.9 [358] 16.4 � 6.3 [403]

Average E/e’ ratio 7.6 � 1.9 [3,023] 7.8 � 2.1 [641] 9.4 � 2.7 [627] 17.7 � 6.3 [2,400] 18.0 � 6.3 [407] 19.9 � 6.8 [632]

Pulmonary artery systolic pressure,
mm Hg

29 � 7 [2,470] 29 � 8 [529] 30 � 7 [431] 42 � 14 [2,208] 42 � 13 [378] 45 � 14 [527]

Tricuspid regurgitation velocity, m/s 2.4 � 0.3 [2,473] 2.4 � 0.3 [530] 2.4 � 0.3 [434] 2.9 � 0.5 [2,213] 2.9 � 0.5 [378] 3.0 � 0.5 [531]

Biomarkers

BNP, pg/mL 105 � 143 [11] 74 � 67 [3] 110 � 132 [43] 604 � 663 [128] 1,285 � 3,269 [29] 668 � 1,517 [104]

NT-proBNP, pg/mL 756 � 3,822 [239] 291 � 572 [54] 362 � 538 [70] 3,257 � 6,030 [1,462] 3,399 � 6,215 [242] 6,152 � 1,052 [267]

Clinical algorithms

H2FPEF score (continuous) 33 � 27 [3,129] 37 � 28 [656] 42 � 28 [638] 79 � 26 [2,530] 77 � 29 [441] 80 � 23 [646]

H2FPEF: low 1,382 (44.2) 244 (37.2) 168 (26.3) 141 (5.6) 37 (8.4) 5 (0.8)

H2FPEF: high 165 (5.3) 45 (6.9) 59 (9.4) 1,134 (44.8) 202 (45.8) 276 (42.7)

H2FPEF: indeterminate 1,582 (50.6) 367 (56.0) 411 (64.4) 1,255 (49.6) 202 (45.8) 365 (56.5)

HFA-PEFF: unlikely 1787 (57.1) 358 (54.6) 333 (52.2) 143 (5.7) 34 (7.7) 12 (1.9)

HFA-PEFF: probable 10 (0.3) 0 (0) 10 (1.6) 971 (38.4) 180 (40.8) 228 (35.3)

HFA-PEFF: indeterminate 1,332 (42.6) 298 (45.4) 295 (46.2) 1,416 (56.0) 227 (51.5) 406 (62.9)

Values are mean � SD [N] or n (%) [N]. aIndexing was performed to body surface area. Average filling refers to the calculated mean of the septal and lateral mitral annular early diastolic tissue velocity when
both metrics are available, or the available metric when only 1 is available. Categories within the “Comorbidities and risk factors” section only refer to individuals with the given condition present. Obesity
refers to a BMI>25.0 kg/m2. Structural heart disease refers to the presence of an enlarged LA volume index ($34 mL/m2) or LV mass index ($116/96 g/m2 for males and females, respectively), a relative wall
thickening >0.42, or a posterior wall thickness $12 mm. Pulmonary disease refers to the presence of lung disease or chronic obstructive pulmonary disorder. Previous cardio- or cerebrovascular event refers
to the presence of a previous stroke, transient ischemic attack, coronary artery revascularization, or myocardial infarction. Pulmonary artery systolic pressure calculated as: 4 $ (tricuspid regurgitation
velocity)2 þ estimated right atrial pressure (5 mm Hg). HFA-PEFF probability categories calculated according to Pieske et al12 Patients with a score of 0 or 1, between 2 and 4, and 5 or more, were denoted as
unlikely, indeterminate, and probable likelihood of HFpEF, respectively. H2FPEF continuous and categorical scores were calculated according to Reddy et al.11 For the categorical score, patients with a score
of 0 or 1, 2 to 5, or 6 to 9, were denoted as low, indeterminate, and high probability of HFpEF, respectively.

BMI ¼ body mass index; BNP ¼ brain natriuretic peptide; H2FPEF ¼ Heavy, Hypertensive, Atrial Fibrillation, Pulmonary Hypertension, Elder, and Filling Pressure; HFA-PEFF ¼ Heart Failure Association-
Pretest Assessment, Echocardiographic and Natriuretic Peptide Score, Functional Testing, and Final Etiology; HFpEF ¼ heart failure with preserved ejection fraction; LA ¼ left atrial; LAVi ¼ left atrial volume
index; LV ¼ left ventricle; LVMi ¼ left ventricular mass index; NT-proBNP ¼ N-terminal pro brain natriuretic peptide; SBP ¼ systolic blood pressure.
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FIGURE 2 Grad-CAM

Grad-CAM for correctly (A) and incorrectly classified (B) patient. Grad-CAM ¼ gradient-weighted class activation mapping.
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assess reproducibility. The model demonstrated
acceptable agreement for negative diagnostic out-
puts (76.9%; 95% CI: 60.0%-90.3%), positive diag-
nostic outputs (86.7%; 95% CI: 76.9%-94.3%), and
nondiagnostic outputs (45.5%; 95% CI: 13.3%-72%)
(Table 3).

UTILITY OF AI HFpEF MODEL AND CLINICAL

SCORES. To assess whether the AI HFpEF model was
identifying markers of diastolic dysfunction in the
echocardiogram, we assessed the classification per-
formance of guideline derived cut-points for indi-
vidual echocardiographic parameters in the
independent testing data set. Sensitivity (range:
52.2%-100%) and specificity (range: 47.1%-96.8%)
were variable and data were often missing (range:
158-1,259 patients) (Table 4).

The HFA-PEFF score had high sensitivity (95.0%;
95% CI: 92.0%-97.8%) and specificity (97.1%; 95% CI:
94.7%-98.9%) but was nondiagnostic in 701 (54.6%)
patients; the AI HFpEF model successfully reclassi-
fied 515 (73.5%) of these patients (Figure 3). This
resulted in a sensitivity and specificity of 87.3% (95%
CI: 83.0%-90.8%) and 71.3% (95% CI: 65.0%-77.2%),
respectively, of the AI HFpEF model in the reclassi-
fied patients with HFA-PEFF.

The H2FPEF score also demonstrated high sensi-
tivity (98.2%; 95% CI: 96.3%-99.8%) and specificity
(74.0%; 95% CI: 66.9%-79.0%), but similarly had high
proportions of nondiagnostic outcomes (n ¼ 776;
60.4%). Of these nondiagnostic outcomes, the AI
HFpEF model successfully reclassified 571 patients
(73.6%) (Figure 3), representing a sensitivity and
specificity of 84.0% (95% CI: 80.2%-87.9%) and 78.3%
(95% CI: 74.2%-82.9%), respectively, for the AI HFpEF
model in reclassified patients with H2FPEF.

The implications of patient management decisions
were compared between current clinical practice
(HFA-PEFF and H2FPEF scores), or utilizing infor-
mation gleaned from the AI HFpEF model. Consistent
with the proposed use case of the model, using the
combined information from the AI HFpEF model and
existing clinical scores in patient management de-
cisions resulted in up to 6/20 more patients being
managed correctly than based on existing scores
alone (Figure 4, Supplemental Appendix).

AI HFpEF MODEL AND CLINICAL ENDPOINTS. In the
testing data set, 22 patients were referred for right
heart catheterization within 1 year of the TTE (me-
dian: 45 [IQR: 7-161] days; 19 cases, 3 controls). For
cases, 16 were confirmed HFpEF (rest pulmonary
capillary wedge pressure $15 mm Hg), all of whom
were classified as HFpEF by AI (100% sensitivity). In
the remaining 3 patients, diagnoses included cardiac
amyloidosis, coronary artery disease, and pulmonary
hypertension. For the 3 controls, none had HFpEF by
catheterization (two-thirds correct by AI; 67% speci-
ficity). In the testing data set, estimated 5-year mor-
tality was 37.2% (95% CI: 33.8%-40.5%; 444 deaths),
with significant differences in risk of mortality be-
tween classification groups according to the AI output
after adjustment for age (Central Illustration).

DISCUSSION

We have developed and validated a novel AI model
that, using only a single A4C video clip, demonstrated

https://doi.org/10.1016/j.jacadv.2023.100452


TABLE 2 Summary of Characteristics for Patients With and Without HFpEF (Cases and Controls, Respectively) Who Were Correctly and Incorrectly Classified Using

the AI HFpEF Model or Received No Classification due to High Model Uncertainty

Controls
(Correct)

Controls
(Incorrect)

Controls
(No Class) P Value

Cases
(Correct)

Cases
(Incorrect)

Cases
(No Class) P Value

Patient demographics

Age, y 61.4 � 16.9 [476] 75.7 � 14.3 [105] 71.1 � 15.9 [57] 0.088 73.1 � 12.9 [535] 68.2 � 15.0 [74] 70.7 � 14.7 [37] 0.351

Women 241 (50.6) 52 (49.5) 33 (57.9) 0.549 279 (52.2) 37.0 (50.0) 21.0 (56.8) 0.798

BMI, kg/m 28.4 � 6.7 [476] 29.2 � 6.3 [104] 30.3 � 8.1 [57] 0.344 30.7 � 7.0 [535] 29.4 � 7.3 [74] 30.9 � 6.2 [37] 0.260

SBP, mm Hg 128 � 19 [461] 132 � 23 [102] 129 � 28 [54] 0.416 138 � 24 [525] 134 � 23 [74] 149 � 25 [36] 0.002

African American 112 (23.5) 8 (7.6) 7 (12.3) <0.001 96 (17.9) 20 (27.0) 8 (21.6) 0. 043

White, non-Hispanic 255 (53.6) 85 (81.0) 43 (75.4) 332 (62.1) 48 (64.9) 19 (51.4)

Other 109 (22.9) 12 (9.4) 7 (12.3) 107 (20.0) 6 (8.1) 10 (27.0)

Comorbidities and risk factors

Obesity 324 (68.1) 80 (76.2) 47 (82.5) 0.025 424 (79.3) 52 (70.3) 28 (75.7) 0.204

Hypertension 192 (40.3) 70 (66.7) 39 (68.4) <0.001 464 (86.7) 64 (86.5) 31 (83.8) 0.879

Hyperlipidemia 227 (47.7) 72 (68.6) 32 (56.1) <0.001 392 (73.3) 50 (67.6) 25 (67.6) 0.474

Structural heart disease 255 (53.6) 77 (73.3) 43 (75.4) <0.001 476 (89.0) 58 (78.4) 33 (89.2) 0.032

Atrial fibrillation 56 (11.8) 23 (21.9) 11 (19.3) 0.013 203 (37.9) 15 (20.3) 9 (24.3) 0.004

Coronary artery disease 43 (9.0) 17 (16.2) 5 (8.8) 0.084 183 (34.2) 12 (16.2) 9 (24.3) 0. 004

Chronic kidney disease 56 (11.8) 11 (10.5) 8 (14.0) 0.798 260 (48.6) 28 (37.8) 14 (37.8) 0.118

Diabetes mellitus 69 (14.5) 22 (21.0) 16 (28.1) 0.016 273 (51.0) 33 (44.6) 20 (54.1) 0.528

Pulmonary disease 75 (15.8) 21 (20.0) 13 (22.8) 0.281 217 (40.6) 25 (33.8) 13 (35.1) 0.460

Previous cardiovascular or
cerebrovascular event

80 (16.8) 27 (25.7) 9 (15.8) 0.089 229 (42.8) 22 (29.7) 13 (35.1) 0.077

Cardiovascular measurements

LV mass index,a g/m2 82 � 20 [471] 95 � 22 [98] 93 � 23 [57] 0.552 122 � 35 [523] 115 � 41 [71] 12 � 38 [36] 0.266

Relative wall thickening
(ratio)

0.43 � 0.08 [471] 0.45 � 0.07 [98] 0.47 � 0.09 [57] 0.146 0.50 � 0.13 [524] 0.48 � 0.10 [71] 0.52 � 0.10 [36] 0.196

LA volume index,a mL/m2 28.7 � 42.4 [164] 30.0 � 7.8 [48] 27.7 � 5.8 [25] 0.797 46.4 � 15.7 [179] 39.4 � 10.1 [27] 35.4 � 10.7 [14] 0.414

Ejection fraction, % 63 � 6 [476] 62 � 6 [105] 63 � 6 [57] 0.253 61 � 6 [535] 63 � 6 [74] 63 � 6 [37] 0.636

Global longitudinal
strain, %

�20 � 2 [38] �20 � 0 [2] 0 [0] 0.963 �14 � 4 [54] �16 � 4 [4] �114(5 [3] 0.451

Early diastolic mitral
filling velocity
(E wave; ms)

74 � 17 [473] 71 � 17 [105] 71 � 18 [56] 0.936 103 � 27 [533] 98 � 23 [73] 94 � 27 [37] 0.528

E: A ratio 1.15 � 0.40 [470] 0.88 � 0.30 [104] 0.94 � 0.39 [55] 0.397 1.58 � 0.91 [526] 1.26 � 0.63 [73] 1.16 � 0.5 [36] 0.569

E-wave deceleration
time (ms)

206 � 44 [457] 235 � 52 [103] 227 � 63 [52] 0.335 207 � 62 [522] 218 � 69 [71] 201 � 53 [36] 0.198

Septal mitral annular early
diastolic tissue
velocity (e’; cm/s)

8.2 � 2.2 [466] 6.4 � 2.0 [103] 7.2 � 2.1 [56] 0.021 4.9 � 1.4 [517] 6.1 � 2.3 [72] 4.9 � 1.5 [37] <0.001

Septal E/e’ ratio 9.4 � 2.5 [466] 11.9 � 3.7 [103] 10.3 � 2.9 [56] 0.001 22.1 � 7.4 [517] 17.5 � 6.1 [72] 21.1 � 10.1 [37] 0.015

Lateral mitral annular
early diastolic tissue
velocity (e’; cm/s)

11.2 � 3.8 [260] 7.5 � 2.3 [68] 8.8 � 2.5 [31] 0.080 6.6 � 2.2 [339] 7.9 � 2.8 [37] 6.48 � 2.3 [27] 0.014

Lateral E/e’ ratio 7.2 � 2.4 [260] 9.7 � 2.9 [68] 8.4 � 3.2 [31] 0.020 16.8 � 6.2 [339] 12.8 � 4.6 [37] 16.2 � 8.0 [27] 0.033

Average E/e’ ratio 8.9 � 2.5 [467] 11.1 � 3.0 [104] 9.9 � 2.9 [56] 0.006 20.4 � 6.6 [523] 16.4 � 5.7 [72] 19.4 � 8.9 [37] 0.028

Pulmonary artery systolic
pressure, mm Hg

29 � 7 [320] 31 � 7 [71] 32 � 8 [40] 0.711 45 � 14 [445] 44 � 13 [51] 43 � 18 [31] 0.783

Tricuspid regurgitation
velocity, m/s

2.4 � 0.3 [320] 2.5 � 0.3 [73] 2.5 � 0.3 [41] 0.701 3.0 � 0.5 [448] 3.0 � 0.5 [52] 2.9 � 0.6 [31] 0.380

Biomarkers

BNP, pg/mL 104 � 140 [29] 158 � 131 [9] 56 � 35 [5] 0.173 724 � 1674 [83] 437 � 660 [13] 472 � 330 [8] 0.959

NT-proBNP, pg/mL 366 � 588 [53] 395 � 375 [14] 142 � 75 [3] 0.467 6,398 � 10,665 [229] 5,742 � 11,147 [24] 2,839 � 6114 [14] 0.413

Continued on the next page
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excellent ability to distinguish between patients with
and without HFpEF. Compared to current clinical al-
gorithms, the AI HFpEF model resulted in an accurate
diagnostic output for more patients, and successfully
identified patients with worse 5-year survival.
The ability to automatically detect HFpEF with
limited clinical information has important practical
ramifications, particularly for screening in centers
without the time or expertise to complete diagnostic
quality diastolic assessment, resulting in



TABLE 2 Continued

Controls
(Correct)

Controls
(Incorrect)

Controls
(No Class) P Value

Cases
(Correct)

Cases
(Incorrect)

Cases
(No Class) P Value

Clinical algorithms

H2FPEF score
(continuous)

37 � 27 [476] 58 � 25 [105] 57 � 25 [57] 0.869 83 � 21 [535] 65 � 29 [74] 78 � 21 [37] 0.002

H2FPEF: low 158 (33.2) 5 (4.8) 5 (8.8) 4 (0.8) 1 (1.4) 0 (0) 0.002

H2FPEF: high 30 (6.3) 20 (19.1) 9 (15.8) <0.001 248 (46.4) 19 (25.7) 9 (24.3)

H2FPEF: indeterminate 288 (60.5) 80 (76.2) 43 (75.4) 283 (52.9) 54 (73.0) 28 (75.7)

HFA-PEFF: unlikely 287 (60.3) 26 (24.8) 20 (35.1) <0.001 8 (1.5) 4 (5.4) 0 (0) 0.076

HFA-PEFF: probable 184 (38.7) 74 (70.5) 37 (64.9) 331 (61.9) 48 (64.9) 27 (73.0)

HFA-PEFF: indeterminate 5 (1.1) 5 (4.8) 0 (0) 196 (36.6) 22 (29.7) 10 (27.0)

Values are mean � SD [N] or n (%) [N]. P value refers to statistical test between correct, incorrect, and unclassified groups within controls, and the same comparison within cases. aIndexing was performed to
body surface area. Average filling refers to the calculated mean of the septal and lateral mitral annular early diastolic tissue velocity when both metrics are available, or the available metric when only 1 is
available. Categories within the “Comorbidities and risk factors” section only refer to individuals with the given condition present. Obesity refers to a BMI >25.0 kg/m2. Structural heart disease refers to the
presence of an enlarged LA volume index ($34.0 mL/m2) or LV mass index ($116/96 g/m2 for males and females, respectively), a relative wall thickening >0.42, or a posterior wall thickness $12 mm.
Pulmonary disease refers to the presence of lung disease or chronic obstructive pulmonary disorder. Previous cardio- or cerebrovascular event refers to the presence of a previous stroke, transient ischemic
attack, coronary artery revascularization, or myocardial infarction. Pulmonary artery systolic pressure calculated as: 4 (tricuspid regurgitation velocity)2 þ estimated right atrial pressure. HFA-PEFF probability
categories calculated according to Pieske et al.12 Patients with a score of 0 or 1, between 2 and 4, and 5 or more, were denoted as unlikely, indeterminate, and probable likelihood of HFpEF, respectively.
H2FPEF continuous and categorical scores were calculated according to Reddy et al.11 For the categorical score, patients with a score of 0 or 1, 2 to 5, or 6 to 9, were denoted as low, indeterminate, and high
probability of HFpEF, respectively.

AI ¼ artificial intelligence; BMI ¼ body mass index; BNP ¼ brain natriuretic peptide; H2FPEF ¼ Heavy, Hypertensive, Atrial Fibrillation, Pulmonary Hypertension, Elder, and Filling Pressure; HFA-PEFF ¼
Heart Failure Association-Pretest Assessment, Echocardiographic and Natriuretic Peptide Score, Functional Testing, and Final Etiology; HFpEF ¼ heart failure with preserved ejection fraction; LA ¼ left atrial;
LAVi ¼ left atrial volume index; LV ¼ left ventricle; LVMi ¼ left ventricular mass index; NT-proBNP ¼ N-terminal pro brain natriuretic peptide; SBP ¼ systolic blood pressure.

TABLE 3 Repeatabil

(Different Video Clip

Repeatability

Read 1

Negative

Positive

No classification

Negative agreement

Positive agreement (

No classification agre

Reproducibility

Read 1
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Negative agreement

Positive agreement (

No classification agre

AI ¼ artificial intelligence;
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indeterminate or unclear clinical diagnoses. Com-
bined, the technical and clinical feasibility demon-
strated with this model could result in faster patient
access to effective pharmacological therapy.

Although there have been other AI models devel-
oped to tackle the burden of HFpEF, they have relied
on accurate chamber segmentation to derive a series
of features used for classification19 or used the com-
plete echocardiographic study to automate
ity (Same Video Clip Used Twice), and Reproducibility

Per Patient) of the AI HFpEF Model

Read 2

Negative Positive No Classification

550 0 0

0 640 0

0 0 94

(95% CI) 100

95% CI) 100

ement (95% CI) 100

20 3 3

3 39 2

3 4 5

(95% CI) 76.9 (60.0-90.3)

95% CI) 86.7 (76.9-94.3)

ement (95% CI) 45.5 (13.3-72.0)

HFpEF ¼ heart failure with preserved ejection fraction.
computation of left ventricular diastolic function
parameters.18 To our knowledge, this is the first
model developed on a single routinely acquired video
clip, demonstrating feasibility and high classification
accuracy consistent with comprehensive clinical and
echocardiographic assessment in expert centers,7,23,24

albeit using substantially less clinical information. In
comparison, recent AI developments in diastolic
function scoring17 were developed using complete
data sets; a scenario rarely representing the clinical
norm. Comparative effectiveness of different models
is beyond the scope of this study, but considering the
observed proportion of missing data (Table 4), such a
model could support existing diagnostic efforts
without requiring additional calculation of current or
new (eg, left atrial strain) metrics.

The phenomenon of nondiagnostic outcomes using
existing guidelines and the sometimes cumbersome
intricacy of diastolic assessment in HFpEF are widely
reported.7,14,24-26 The performance of such methods
varies considerably,7,11,23,24 but can be excellent in
expert centers, or when missing or discordant data
are not an issue. In complex clinical cases, whilst
there is guidance for estimating filling pressure when
echocardiographic signals are difficult to interpret
(atrial fibrillation10), the assessment is often avoided
entirely. Compared to current clinical algorithms, or
guideline-derived cut-offs for various diagnostic
markers, the AI HFpEF model retuned fewer non-
diagnostic outputs (Table 4), successfully reclassify-
ing almost 75% of those who would be non-diagnostic
according to the HFA-PEFF or H2FPEF scores



TABLE 4 Traditional Methods to Classify Patients as High or Low Likelihood of Having HFpEF Using Guideline Echocardiogram Cut Points

or Validated Clinical Algorithms

Criteria n No Class Sensitivity (95% CI) Specificity (95% CI)

AI HFpEF model 1,284 94 87.8 (84.6–90.6) 81.9 (78.0–85.3)

Echocardiogram guideline thresholds

Left atrial volume indexa $34 mL/m2 457 39 83.5 (72.5–92.0) 84.4 (73.9–94.0)

LV mass indexa >116/95 g/m2 1,256 93 65.8 (61.2–69.5) 86.6 (83.9–90.2)

Relative wall thickness >0.42 1,257 93 75.3 (71.3–78.8) 47.1 (41.4–51.5)

LV posterior wall thickness >12 mm 1,259 94 52.2 (47.3–56.5) 86.5 (83.3–89.3)

Global longitudinal strain $-16% 101 3 72.4 (50.0–100.0) 92.5 (16.7–100.0)

Average E/e’ ratio $15 1,259 93 78.2 (73.9–82.2) 96.8 (95.1–98.3)

Septal mitral annular early diastolic tissue velocity (e’) <7 cm/s 1,251 93 86.2 (82.9–90.0) 73.8 (70.1–78.2)

Lateral mitral annular early diastolic tissue velocity (e’) <10 cm/s 762 58 89.6 (84.8–94.0) 56.4 (48.6–63.3)

Septal E/e’ >15 1,251 93 81.7 (77.9–84.4) 96.8 (95.2–98.3)

Lateral E/e’>13 762 58 67.6 (60.1–74.1) 95.1 (91.5–98.2)

Tricuspid regurgitation velocity >2.8 m/s 965 72 60.2 (54.5–65.3) 90.6 (87.0–93.9)

Pulmonary artery systolic pressure >35 mm Hg 958 71 73.4 (67.5–78.4) 84.7 (81.1–89.1)

BNP/NT-proBNP $125/35 459 29 97.6 (94.0–100.0) 36.9 (22.6–56.6)

Clinical algorithm

HFA-PEFF 1,284 701 95 (92.0–97.8) 97.1 (94.7–98.9)

H2FPEF 1,284 776 98.2 (96.3–99.8) 74.0 (66.9–79.0)

Data presented are the total sample of patients with data available for use in the classification (“n”), number of patients with data available who receive a nondiagnostic output
from the AI HFpEF model (“no class). aIndexing was performed to body surface area. Average filling refers to the calculated mean of the septal and lateral mitral annular early
diastolic tissue velocity when both metrics are available, or the available metric when only 1 is available. Pulmonary artery systolic pressure calculated as 4 (tricuspid
regurgitation velocity)2 þ estimated right atrial pressure (5 mm Hg). HFA-PEFF probability categories calculated according to Pieske et al12 Patients with a score of 0 or 1 were
considered unlikely likelihood of HFpEF (negative output; predicted control), and 5 or more considered probable likelihood of HFpEF (positive output; predicted case). H2FPEF
categorical scores were calculated according to Reddy et al11 Patients with a score of 0 or 1 were considered low probability of HFpEF (negative output; predicted control), and
6 or more considered high probability of HFpEF (positive output; predicted case).

H2FPEF ¼ Heavy, Hypertensive, Atrial Fibrillation, Pulmonary Hypertension, Elder, and Filling Pressure; HFA-PEFF ¼ Heart Failure Association-Pretest Assessment,
Echocardiographic and Natriuretic Peptide Score, Functional Testing, and Final Etiology; HFpEF ¼ heart failure with preserved ejection fraction; LA ¼ left atrial; LV ¼ left
ventricle.
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(Figure 3). Furthermore, the model identified those
with increased risk of mortality (Central Illustration),
and its use in clinical practice—particularly in those
who would otherwise be indeterminate—might facil-
itate a higher proportion of patients being managed
correctly (Figure 4, Supplemental Appendix). Further
research is required to understand whether the added
feasibility and high classification performance trans-
late to meaningful clinical endpoints, including re-
ductions in follow-up procedures, hospitalization, or
death.

Technological advances provide increased capacity
to capture information not readily observed by the
human eye, albeit often at the expense of interpret-
ability. Grad-CAM is one approach to facilitate inter-
pretability in AI, identifying important regions in the
image to discriminate between cases and controls. In
an example of correct classification (Figure 2), the
Grad-CAM highlights regions which correspond to
clearly defined cardiac structures which might have
clinical importance.9,10,12 In incorrect classifications,
seemingly extracardiac structures would serve as a
red flag for clinicians in their trust of the model
output. Specifically, the Grad-CAM should prompt the
clinician to consider whether the highlighted region is
important in the clinical discrimination between
HFpEF and not HFpEF; if so, the model output could
be trusted and follow-up management initiated
(testing and/or prescription), if not, the output re-
quires further validation. This fits with the intention
for such a preliminary (categorical) model in clinical
application, acting as another reader, encouraging
clinicians to take a second look if required, or perform
follow-up testing if necessary. Nonetheless, while a
high-level of “explainability” might or might not
facilitate greater benefit to patients, future work is
required to better understand such models and guide
more transparent and patient-level interpretation.

Comparison of correct, incorrect, and nonclassified
patients highlight that the model has excellent
discriminatory capacity (Central Illustration), partic-
ularly in “typical” HFpEF compared to more complex
differential diagnoses (Table 2). Misclassified patients
might represent a cohort demonstrating provokable
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FIGURE 3 Alluvial Plot Demonstrating Reclassification of Patients Using Clinical Scores Compared to the AI HFpEF Model

Patients in the independent testing data set were given a categorical score based on relevant functional and morphological echocardiographic, and biomarker pa-

rameters. Patients were categorized as unlikely (0 or 1), indeterminate (2-4), or probable (5-6) likelihood of heart failure with preserved ejection fraction for the

Heart Failure Association-Pretest Assessment, Echocardiographic and Natriuretic Peptide Score, Functional Testing, and Final Etiology (HFA-PEFF) score (A), and low-

probability (0 or 1), indeterminate (2-5), or high-probability (6-9) of heart failure with preserved ejection fraction for the Heavy, Hypertensive, Atrial Fibrillation,

Pulmonary Hypertension, Elder, and Filling Pressure (H2FPEF) score (B). AI ¼ artificial intelligence; HFpEF ¼ heart failure with preserved ejection fraction.
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increases in filling pressure, or signs and symptoms of
HF not captured by the clinical coding employed
herein. Important validation work in the future will
involve assessment of model performance in adjudi-
cated HF outcomes and/or invasively measured filling
pressure.

STUDY LIMITATIONS. The diagnostic details of each
case were not adjudicated. Therefore, it is possible
that some controls had subclinical disease, albeit
representative of patients in major clinical trials
(Supplemental Appendix). Nonetheless, an important
progression for the current model is to increase ca-
pacity and validate detection of HFpEF earlier in the
clinical pathway, particularly when patients might
have dyspnea on exertion, but not at rest (eg, patients
referred for diastolic stress testing, or invasive filling
pressure measurements at rest and with exertion9,12),
or when limited echocardiographic imaging occurs
earlier in the pathway (eg, point-of-care ultrasound).
Another limitation is that complete matching for age
was not possible; patients with HFpEF were older.
However, survival analysis was age-adjusted and
sensitivity analysis demonstrated no meaningful
change in interpretation in only age-matched pa-
tients. Future work will be required for recalibration
or updating of the model in other patient groups (eg,
increased filling pressure but no HF diagnosis, or
indeterminate filling pressure assessment by TTE),
validating its application in other echocardiography
laboratories and in different demographic groups,
and prospective evaluation of comparative effective-
ness with clinical scores.

CONCLUSIONS

We present a novel AI HFpEF model which, based
on only a single routinely acquired TTE video clip,
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FIGURE 4 Decision Curve Analysis for Patient Management Decisions Incorporating the AI HFpEF Model

Decision curve analysis comparing net benefit of patient management decisions are based on the output of HFA-PEFF score, (A) and score (B) and/or the artificial

intelligence heart failure with preserved ejection fraction model. Assuming a 20% prevalence of heart failure with preserved ejection fraction in the target population,

and a threshold probability of 30%, managing a patient based on the combined information provided by the PEFF or H2FPEF score and the artificial intelligence heart

failure with preserved ejection fraction model results in 5 to 6 more patients with heart failure with preserved ejection fraction (out of assumed 20 in the population)

being managed appropriately compared to managing based on the PEFF or H2FPEF scores alone. Further details are provided in the Supplemental Appendix.

AI ¼ artificial intelligence; H2FPEF ¼ Heavy, Hypertensive, Atrial Fibrillation, Pulmonary Hypertension, Elder, and Filling Pressure; HFA-PEFF ¼ Heart Failure

Association-Pretest Assessment, Echocardiographic and Natriuretic Peptide Score, Functional Testing, and Final Etiology; HFpEF ¼ heart failure with preserved ejection

fraction.

J A C C : A D V A N C E S , V O L . 2 , N O . 6 , 2 0 2 3 Akerman et al
A U G U S T 2 0 2 3 : 1 0 0 4 5 2 AI Detection of HFpEF From Echocardiographic Video Clip

13
accurately detected HFpEF, provided fewer non-
diagnostic outputs than current clinical scores, and
identified patients with worse survival. The appli-
cation of this classifier in the screening for HFpEF,
particularly when their diagnosis is uncertain, has
the potential to automate an accurate detection
process for a complex clinical syndrome, resulting
in more patients getting a correct and expeditious
diagnosis.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: A 3D

CNN was developed to identify patients with HFpEF using

only the A4C echocardiogram video clip. Age-adjusted

mortality was higher in patients identified as having

HFpEF.

TRANSLATIONAL OUTLOOK: Future work is needed

to assess the model in other patient groups (eg, increased

filling pressure but no HF diagnosis or indeterminate

filling pressure assessment by echocardiography), and

validate its application in other echocardiography

laboratories and in different demographic groups.
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