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Abstract

We propose a novel Bayesian method for dynamic regression models where both the

values of the regression coefficients and the importance of the variables are allowed

to change over time. The parsimony of the model is important for good forecasting

performance and we develop a prior which allows the shrinkage of the regression co-

efficients to suitably change over time. An efficient MCMC method for computation is

described. The new method is then applied to two forecasting problems in economet-

rics: equity premium prediction and inflation forecasting. The results show that this

method outperforms current competing Bayesian methods.
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1 Introduction

Forecasting, the estimation of a future value of a variable, plays an important role

in both decision making and strategic planning and has been extensively studied in

econometrics. For example, forecasts of inflation affect the decisions of monetary and

fiscal policymakers, investors who wish to hedge against the risk of nominal assets,

trade unions and management when they negotiate wage contracts, to name a few.

Similarly, forecasts of equity premiums plays an important role for investors who wish

to diversify their equity portfolios to hedge against adverse market movements. The

quality of the forecast depends on: the time scale involved (how far into the future we

are trying to predict), the time period of the empirical sample, and the model used.

Regression models are a popular choice of technique for forecasting since the value

of other variables can be used to inform predictions. However, their use with observa-

tions made over time is complicated by several problems. Firstly, it has been found that

these models can produce poor out-of-sample forecasts when the predictors’ effects are

assumed constant over time. This is generally taken as evidence that the effect of

variables are time-varying. Sims (1980), Stock and Watson (1996), Cogley and Sar-

gent (2001, 2005), Primicery (2005), Paye and Timmermann (2006), Ang and Bekaert

(2007), Canova (2007), and Lettau and Van Nieuwerburgh (2008) are some studies

providing evidence of time varying regressor coefficients in inflation and equity pre-

mium forecasting. Secondly, the increasing availability of large economic datasets has

lead to interest in using regression models with many regressors. It is well-known that

the estimation of regression models becomes more complicated when a large number

of predictors is used due to the increased potential for over-fitting which can lead to

poor out-of-sample forecasts or predictions. The problem of over-fitting can be allevi-

ated by looking for sparse regression estimates where many regression coefficients are

set to zero or values close to zero. This is usually achieved using regularisation of the
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regression coefficients or variable section.

The problem of time-varying predictor effects can be addressed using dynamic re-

gression models (DR), which is a form of time-varying parameter model, where the re-

gression coefficients are assumed to evolve according to some stochastic process. This

defines a dynamic linear model (DLM) (West and Harrison, 1999), or a state-space

model.

The problem of a large number of variables has been addressed in several ways.

Initial work concentrated on models which assume a global measure of the impor-

tance of a variable. Groen et al. (2009) introduced a latent variable which indicates

whether a variable is included in or excluded from the model. The approach is re-

stricted so that the decision to include or exclude a predictor is irreversible. Belmonte

et al. (2011) combined the Bayesian Lasso of Park and Casella (2008) with the model

selection methods of Frühwirth-Schnatter and Wagner (2010) in order to have shrink-

age in a DR setting. This approach allows some regression coefficients to be shrunk

very close to zero for the whole time series and so effectively achieve variable selec-

tion. These methods have the potentially important limitation that the importance of

variables cannot change over time. For example, in some problems certain predictors

could be useful for forecasting at particular times but not at others. In the Bayesian

literature, this problem has been approached by allowing variables to enter and exit

the model over time. Koop and Korobilis (2012) used the dynamic model averaging

(DMA) method of (Raftery et al., 2010) to select a suitable time-varying parameter

model. However, the dynamics on model space are only implicitly defined by their

approach. Alternatively, Chan et al. (2012) constructed the class of time-varying di-

mension (TVD) models which uses an explicitly constructed stochastic process for the

subset of variables to include in the model. This leads to a dynamic mixture model

for which efficient posterior computational methods can be developed using the ap-

proach of Gerlach et al. (2000). However, both approaches are limited to the number
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of models that they can consider. The DMA approach uses full enumeration of posterior

probabilities and the number of models with p regressors is 2p precluding large values

of p. Posterior computation in the TVD model also potentially involves all 2p models

but the authors suggest using a much restricted set of possible models.

The DMA and TVD approaches build on Bayesian variable selection techniques

which explicitly consider all possible regression models. An alternative class of meth-

ods is Bayesian regularisation methods which use absolutely continuous priors and

encourage small regression effects to be aggressively shrunk towards zero under the

posterior (see Carvalho et al. (2010), and Polson and Scott (2011)). These authors

have shown that these methods can lead to posteriors which place substantial mass on

combinations of regression coefficients which are sparse (that is most of the regres-

sion coefficients have values very close to zero). Belmonte et al. (2011) have already

extended one such prior, the Bayesian Lasso, to the dynamic regression setting. Our

methodological contribution differs from their work in two main respects. Firstly, our

prior for the time-varying regression coefficients extends the more general Normal-

Gamma (NG) prior (see Caron and Doucet (2008) and Griffin and Brown (2010)) to

DR models and, secondly, our prior accounts for both time-varying regression coeffi-

cients and time-varying sparsity.

The paper is organized as follows: Section 2 introduces the Normal-Gamma Au-

toRegressive (NGAR) prior, considers some of its properties and describes the full

Bayesian model for dynamic regression with time-varying sparsity. Section 3 describes

the required MCMC method for fitting a dynamic regression model with an NGAR

prior. Section 4 applies the NGAR model to simulated data, while Section 5 considers

empirical studies in equity premium and inflation forecasting. Section 6 summarises

our findings and conclusions.
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2 A Bayesian Dynamic Regression Model with

Time-Varying Sparsity

A dynamic regression (DR) model links a response yt to regressors x1,t, . . . , xm,t (which

have both been observed at time t) by

yt =
m
∑

i=0

xi,tβi,t + ǫt, t = 1, . . . , T (1)

where x0,t = 1 for all t (and so allows an intercept), βi,t is a vector of unknown coeffi-

cients for the i-th regressor at time t, ǫt is the innovation term at time t, and T is the

time of the final observation. The regressors may include both lags of the response and

exogenous variables. The model is usually completed by assuming that β1,t, . . . , βm,t

follow a linear stochastic process (such as a random walk or vector autoregression)

and that the variance of the innovations is time-varying so that ǫt ∼ N(0, σ2t ).

In regression models with a large number of regressors, it is common to assume

that only a subset of the regressors is important for prediction. In DR models, this

assumption is most naturally extended to allow the subset of important regressors to

change over time. Therefore, we want to construct a stochastic process which allows

regressors to be either removed from the model, or equivalently some of β1,t, . . . , βm,t

to take values close (or equal) to zero. We will refer to the proportion of time that βi,t

is close to zero (for t = 1, . . . , T ) as the sparsity of the vector βi = (βi,1, . . . , βi,T ). This

allows us to have time-varying sparsity since the i-th regression coefficient is effectively

removed from the regression model at time t if βi,t is very close to zero (and that

proportion is controlled by parameters of the stochastic process). We achieve this by

assuming that β1, . . . , βm follow independent stochastic processes and using a new

form of process, the Normal-Gamma Autoregressive (NGAR) process, for βi, which is

defined below. Let x ∼ Ga(a, b) mean that x follows a Gamma distribution with shape
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parameter a and mean a/b and x ∼ Pn(µ) mean that x follows a Poisson distribution

with mean µ.

Definition 1 The Normal-Gamma Autoregressive (NGAR) process for βi is defined by

κi,s−1|ψi,s−1 ∼ Pn

(

ρi
λi
µi
ψi,s−1

1− ρi

)

, ψi,s|κi,s−1 ∼ Ga

(

λi + κi,s−1,
λi

µi(1− ρi)

)

and

βi,s =

√

ψi,s
ψi,s−1

ϕiβi,s−1 + ηi,s, ηi,s|ψi,s ∼ N
(

0, (1−ϕ2
i )ψi,s

)

s = 2, . . . , T

where

ψi,1 ∼ Ga(λi, λi/µi), βi,1|ψi,1 ∼ N(0, ψi,1).

This process will be written βi ∼ NGAR(λi, µi,ϕi, ρi).

The NGAR prior can also be represented as the product of two independent stochas-

tic processes: ψi = (ψi,1, . . . , ψi,T ) and φi = (φi,1, . . . , φi,T ). Under this representation,

βi,t =
√

ψi,tφi,t where φi = (φi,1, . . . , φi,T ) is generated from an AR(1) process with

autocorrelation parameter ϕi such that φi has the standard Normal as its station-

ary distribution
(

i.e. φi = ϕiφi−1 + ςi where ςi ∼ N(0, 1−ϕ2
i )
)

. We generate ψi =

(ψi,1, . . . , ψi,T ) from a non-Gaussian AR(1) process with a Ga(λi,
λi
µi
) as its marginal

distribution, using the method described in (Pitt et al., 2002; Pitt and Walker, 2005)

and later, independently, developed as the autoregressive gamma process by Gourier-

oux and Jasiak (2006). The conditional density of ψi,t given ψi,t−1 is equal to

∞
∑

κ=0

wκ,ψi,t−1
Ga

(

ψi,t

∣

∣

∣

∣

λi + κ,
λi

µi(1− ρi)

)

(2)

which is a mixture of Gamma distributions with parameters λi + κ, and λi
µi(1−ρi)

, and
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Poisson weights such that

wκ,ψi,t−1
=

exp

{

− ρiλi
µi(1− ρi)

ψi,t−1

}(

ρiλi
µi(1− ρi)

ψi,t−1

)κ

κ!
. (3)

The mean of ψi,t given ψi,t−1 is

E[ψi,t|ψi,t−1] = µi(1− ρi) + ρiψi,t−1,

which has an autoregressive structure, and its conditional variance is

Var[ψi,t|ψi,t−1] =
µ2i (1− ρi)

2

λi
+

2ρiµi(1− ρi)ψi,t−1

λi
.

It is clear from the second representation of the NGAR that E[βi,t|ψi,t] = 0 and

Var[βi,t|ψi,t] = ψi,t. Therefore the value of ψi,t plays a pivotal role in the NGAR set-up.

It affects the mass of the conditional prior distribution of βi,t given ψi,t around zero.

As ψi,t decreases more mass is placed close to zero. This leads to the posterior mean

of βi,t conditional on ψi,t being increasingly shrunk to zero as ψi,t decreases. We can

thus describe ψi,t as the relevance of the i-th regressor at time t. A smaller value of ψi,t

implies smaller relevance and so the posterior mean is increasingly shrunk to zero. This

interpretation of the variance of a normal prior distribution for a regression coefficient

dates back to Tipping (2000) and Bishop and Tipping (2000). Since ψi,t and φi,t are

independent and stationary, the process βi is also stationary and has a Normal-Gamma

stationary distribution. The unconditional variance of βi,t is Var(βi,t) = µi and the

excess kurtosis is κ(βi,t) = 3/λi. Thus for a fixed prior mean, µi, as the value of λi

decreases more mass is placed at zero and as it increases less mass is placed at zero,

affecting the impact of the i-th regressor. Griffin and Brown (2010) study the use of a

Normal-Gamma (NG) prior for regression problems. They conclude that the proportion

of prior mass close to zero is important for obtaining sparse posterior estimates (where
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many regression coefficients are shrunk close to zero) and show that it is controlled by

the shape parameter λi, which we will refer to as the “sparsity parameter” of the prior.

Smaller values of λi imply larger levels of sparsity.
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Figure 1: Simulated paths of βt and ψt with different values of ρ and ϕ with λ = 0.2 and
Var[βi,t] = µi = 1.

Figures 1 and 2 display simulated paths of the NGAR prior for both ψi,t and βi,t

with different combinations of λi, ϕi and ρi. These illustrate the ability of the prior to

generate periods where the regression coefficients are close to zero and periods where

the regression coefficients are away from zero.

The sparsity parameter λi clearly controls the proportion of time that the regres-
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Figure 2: Simulated paths of βi,t and ψi,t with different values of ρi and ϕi with λi = 1 and
Var[βi,t] = µi = 1.

sion coefficient spends close to zero. This proportion becomes larger as λi decreases

which is illustrated in Figures 1 and 2 where λi = 0.2 and λi = 1 respectively. Smaller

values of λi lead to “spikier” processes for ψi,t and βi,t which favours increasingly rapid

changes from small to large values. The autocorrelation parameter ρi controls the de-

pendence between ψi,t−1 and ψi,t. Larger values of ρi leads to a larger autocorrelation

and which favours processes which spend longer periods close to zero or away from

zero. Decreasing the value of ρi allows the regressors to increasingly jump in and out

of the DR model. The autocorrelation parameter ϕi controls the dependence between
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βi,t and βi,t−1 conditional on the ψi = (ψi,1, . . . , ψi,T ) process.

We complete our model by assuming a stochastic volatility process for the observa-

tional errors, σ21, . . . , σ
2
T in equation (1). These will be given the gamma autoregressive

process uses in the construction of the NGAR (Pitt et al., 2002; Pitt and Walker, 2005;

Gourieroux and Jasiak, 2006) which results in a process specified by

κσt−1|ψσt−1 ∼ Pn
(

λσρσσ2t−1/ ((1− ρσ)µσ)
)

and σ2t ∼ Ga
(

λσ + κσt−1, λ
σ/ (µσ (1− ρσ))

)

,

for t = 2, . . . , T with σ21 ∼ Ga (λσ, λσ/µσ) .

We will make Bayesian inference in the DR with independent NGAR processes for

the regression coefficients. The prior that we described allow us to control the spar-

sity of the posterior distribution of the regression coefficients (i.e. the proportion of

regression coefficients with mass close to zero at a time t), and assumes that regressors

should rarely jump in and out of the model. Both assumption are important to avoid

over-fitting of the dynamic regression model.

The parameter µi acts as an overall relevance parameter for the i-th regression

coefficient since it controls the marginal variance of βi,t. In particular, βi,t will be close

to zero for all t if µi is small. Therefore, a hierarchical prior is specified for µ1, . . . , µm

where

µi ∼ Ga(λ⋆, λ⋆/µ⋆), i = 0, . . . ,m

with

λ⋆ ∼ Ex(1/s⋆), p(µ⋆) ∝ (µ⋆ + 2b⋆)−3

where Ex(γ) represents an exponential distribution with mean 1/γ. This introduces a

second level of sparsity (at the level of the regressors rather than the time-varying re-

gression coefficients). This is particularly important in problem with many regressors

where some regressors have no regression effect across all observations. The hyperpa-
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rameter s⋆ is the prior mean of λ⋆ and so gives an initial idea of the level of sparsity

using the ideas described in Griffin and Brown (2010). The parameter µ⋆ is given a

heavy-tailed prior with b⋆ being the prior mean which is given a value suitable for the

spread of the regression coefficients in the particular application.

The prior now has two sparsity parameters. The parameter λ⋆ is the sparsity param-

eter for the whole series of each regression coefficient. Smaller values of λ⋆ indicate

that more µi’s are close to zero, and so βi,t is close to zero at all time t for more regres-

sors. In contrast, λi controls the sparsity within the time series of the i-th regression

coefficient and a small value of λi would indicate that the regression coefficient is close

to zero for a large proportion of observations. The shape parameter λi is given the prior

p(λi) ∝ λi(0.5 + λi)
−4

which is a heavy-tailed prior giving values around 1. This centres the prior over the

Lasso cases (which arises when λi = 1).

The dependence parameters ϕi and ρi play a key role in our model. We make the

assumption that the processes for the regression coefficients and the relevances are

strongly autocorrelated. We therefore choose informative priors. The flexibility of the

NGAR can lead to over fitting when the values of ϕi and ρi are small. The problem of

over fitting is particularly acute in DR models since we have m regression coefficients

at each time point. The realisations in Figures 1 and 2 confirm that even a value of

ρi close to 0.9 allows regressors to quickly be excluded form the DR model. Therefore

informative priors effectively exclude models which allow the regression coefficients to

rapidly change over time (and so will lead to overfitting). The priors used were

ϕi ∼ Be(77.6, 2.4), ρi ∼ Be(77.6, 2.4), i = 0, . . . ,m,

which gives a prior mean of 0.97 with most mass over 0.9.
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The priors for the parameters of the volatility process σ2t are chosen as

λσ ∼ Ga(3, 1), p(µσ) ∝ (1 + µσ)−3/2, ρσ ∼ Be(38, 2).

σ21 ∼ Ga (λσ, λσ/µσ) ,

The choice for λσ signifies that the volatility process will have stationary distribu-

tion which is less heavy tailed than a Laplace distribution. The mean µσ is given a

very heavy tailed prior to allow for a wide-range of possible values. The dependence

parameter ρσ is given an informative prior that enforces stationarity and which places

most of its mass on values greater than 0.85. This seems reasonable given the value

usually associated with stochastic volatility models.

3 Computation

MCMC methods to fit the dynamic regression model in (1) with the NGAR will be de-

scribed in this section. The MCMC sampler exploits the observation that the regression

model conditional on ψ is a Gaussian state-space model and so the marginal likelihood

p(y|X,ψ, σ2, ρ,ϕ), where ψ = (ψ1, . . . , ψm), σ
2 = (σ21, . . . , σ

2
T ), ρ = (ρ1, . . . , ρm) and

ϕ = (ϕ1, . . . ,ϕm), can be efficiently calculated using the Kalman filter. Therefore, the

posterior is sampled integrating over β1, . . . , βm, realisations of these parameters can

generated using standard forward-filtering backwards-sampling (Frühwirth-Schnatter,

1994; Carter and Kohn, 1994) in the Gibbs sampler. The steps of the MCMC sampler

are as follows.
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Updating ψ

The full conditional distribution of ψi,1 is proportional to

ψi,1
λi+κi,1−3/2

(

λiρi
(1− ρi)µi

)κi,1

exp

{

− ψi,1λi
µi (1− ρi)

}

exp











−1

2







β2i,1
ψi,1

+

(

βi,2 − ϕi

√

ψi,2

ψi,1
βi,1

)2

ψi,2 (1− ϕi2)

















,

the full conditional distribution of ψi,t is proportional to

ψi,t
λi+κi,t−1+κi,t−3/2

(

ρiλi
(1− ρi)µi

)κi,t

(1− ϕ2)1/2 exp

{

−λiψi,t
µi

(

1 +
2ρiλi

(1− ρi)µi

)}

× exp











−1

2







(

βi,t − ϕi

√

ψi,t

ψi,t−1
βi,t−1

)2

ψi,t (1− ϕi2)
+

(

βi,t+1 − ϕi

√

ψi,t+1

ψi,t
βi,t

)2

ψi,t+1 (1− ϕi2)

















if 1 < t < T and the full conditional distribution of ψi,T is proportional to

ψ
λi+κi,T−1−3/2
i,T (1−ϕ2

i )
−1/2 exp

{

− λiψi,T
(1− ρi)µi

}

exp











−1

2







(

βi,T − ϕi

√

ψi,T

ψi,T−1
βi,T−1

)2

ψi,T (1− ϕi2)

















.

The parameter can be updated using a Metropolis-Hastings random walk step where

a new value of ψi,t is proposed from a Normal distribution with the current value

of ψi,t as the mean and variance τi,t. The variance τi,t is tuned adaptively using the

method of Atchadé and Rosenthal (2005) which updates τi,t to τi,t +
1
γη (αγ − 0.3)

where γ is the iteration number of the MCMC sampler, αγ is the acceptance probability

of the Metropolis-Hastings step at the γ-th iteration and 0.5 < η < 1. This choice of η

guarantees that the average acceptance rate converges to 0.3. We use the value η = 0.6

in our examples.
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Updating κi,t

The full conditional distribution of κi,t is proportional to

(

λi
(1− ρi)µi

)λi+κi,t ( ψi,tλiρi
(1− ρi)µi

)κi,t

ψ
λi+κi,t−1
i,t+1

1

κi,t!Γ(λi + κi,t)

for 1 ≤ t ≤ T − 1. We update this parameter using a Metropolis-Hastings step with the

proposed value κ′i,t where κ′i,t = κi,t + 1 with probability 1/2 and κ′i,t = κi,t − 1 with

probability 1/2. The move is rejected if κ′i,t < 0.

Updating λi, µi and ρi

These parameters are updated using a Metropolis-Hastings sampler. Let θi = (λi, µi, ρi).

Updating from the full conditional distribution of θi can lead to slow mixing. This

problem can be addressed by jointly proposing a new value θ′i from a transition kernel

q(θi, θ
′

i) with new values of ψi and κi conditional on θ′i using a retrospective method

(Papaspiliopoulos et al., 2007). These new values of ψi and κi will be denoted ψ′

i and

κ′i and are proposed in the following way

ψ′

1,i =











λiµ
′

i

λ′iµi
ψi,1 + Ga(λ′i − λi, λ

′

i/µ
′

i) if λ′i > λi

λiµ
′

i

λ′iµi
ψi,1 Be(λ′i, λi − λ′i) if λ′i < λi

κ′i,t =











κi,t + Pn
(

ρj
′

1−ρj ′
ψ′

i,tλ
′

i

µ′i
− ρj

1−ρj

ψi,tλi
µi

)

if ρi
′

1−ρi′
ψ′

i,tλ
′

i

µ′i
> ρi

1−ρi

ψi,tλi
µi

Bi
(

κi,t,
ρi

′(1−ρi)
ρi(1−ρi′)

µiψ
′

i,tλ
′

i

µ′iψi,tλi

)

if ρi
′

1−ρi′
ψ′

i,tλ
′

i

µ′i
< ρi

1−ρi

ψi,tλi
µi

for t = 1, . . . , T − 1 and

ψ′

i,t =











λiµ
′

i(1−ρi
′)

λiµi(1−ρi)
ψi,t + Ga

(

λ′i + κ′i,t−1 − λi − κi,t−1,
λ′i

µ′i(1−ρi
′)

)

if λ′i + κ′i,t−1 > λi + κi,t−1

λiµ
′

i(1−ρi
′)

λiµi(1−ρi)
ψi,t Be(λ′i + κ′i,t−1, λi + κi,t−1 − λ′i − κ′i,t−1) if λ′i + κ′i,t−1 < λi + κi,t−1
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for t = 2, . . . , T . The acceptance ratio for the Metropolis-Hastings algorithm is

min

{

1,
p(y|X,ψ′, σ2)p(θ)q(θ′, θ)

p(y|X,ψ, σ2)p(θ)q(θ, θ′)

}

.

It is possible to update λi, µi and ρi jointly but we have updated each parameter one-

at-a-time using a random walk proposal. These proposals are: log λ′i ∼ N(log λi, τ
λ
i ),

logµ′i ∼ N(logµi, τ
µ
i ) and

log ρi
′ − log

(

1− ρi
′
)

∼ N (log ρi − log (1− ρi) , τ
ρ
i ) .

The values of τλi , τµi and τρi are tuned automatically using the method described in the

section on updating ψ.

Updating ϕi

The full conditional distribution of ϕi is proportional to

p
(

y
∣

∣X,ψ, σ2, ϕ
)

ρϕi77.6(1− ϕi)
2.4.

The parameter can be updated using a Metropolis-Hastings random walk step where

the new value ϕi
′ is simulated by

logϕi
′ − log

(

1− ϕi
′
)

∼ N (logϕi − log (1− ϕi) , τ
ϕ
i ) .

The variance τϕi is updated automatically using the method described in the updating

of ψ.
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Updating σ2
t

The full conditional distribution of σ2t follows a generalised inverse Gaussian distribu-

tion which has density

(c/d)h/2

2Kh(
√
cd)

(σ2t )
h−1 exp

{

−1

2

(

cσ2t +
d

σ2t

)}

,

where Kh is a modified Bessel function of the second kind. The parameter values of

the full distribution for σ2t are

d =

(

yt −
m
∑

i=0

βi,txi,t

)2

, t = 1, . . . , T,

c =











2λσ

µσ(1−ρσ) , t = 1, T

2 λ
σ+ρσλσ

µσ(1−ρσ) , 1 < t < T

and

h =



























κσt + λσ − 0.5, t = 1

κσt + κσt−1 + λσ − 0.5, 1 < t < T

κσt−1 + λσ − 0.5, t = T

.

Updating κσt

The full conditional distribution of κσt is proportional to

(

λσ

(1− ρσ)µσ

)λσ+κσt
(

σ2t λ
σρσ

(1− ρσ)µσ

)κσt

(σ2t+1)
λσ+κσt −1 1

κσt !Γ(λ
σ + κσt )

for 1 ≤ t ≤ T − 1. We update this parameter using a Metropolis-Hastings step with

the proposed value κσt
′ where κσt

′ = κσt + 1 with probability 1/2 and κσ ′t = κσt − 1 with

probability 1/2. The moves is rejected if κσt
′ < 0.
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Updating µ⋆

The full conditional distribution of µ⋆ is proportional to

(µ⋆ + 2β⋆)−3

(

λ⋆

µ⋆

)mλ⋆

exp

{

−λ
⋆

µ⋆

m
∑

i=1

µi

}

,

where m is the number of regressors and b⋆ a positive constant. The parameter can

be updated using a Metropolis-Hastings random walk step where the proposed value

µ⋆′ is simulated according to logµ⋆′ ∼ N
(

logµ⋆, τµ
⋆)

. The variance τµ
⋆

is tuned auto-

matically using the method described in the updating of ψ. In both the simulated and

empirical examples β⋆ = 0.05.

Updating λ⋆

The full conditional distribution of λ⋆ is proportional to

exp {−λ⋆/s⋆}
(

λ⋆λ
⋆

µ⋆λ
⋆
Γ(λ⋆)

)m

exp

{

−λ
⋆

µ⋆

m
∑

i=1

µi

}

m
∏

i=1

µλ
⋆

i .

The parameter can be updated using a Metropolis-Hastings random walk step where

the proposed value λ⋆′ is simulated according to log λ⋆′ ∼ N
(

log λ⋆, τλ
⋆)

. The variance

τλ
⋆

is again tuned automatically using the method described in the updating of ψ. In

both simulated and empirical examples s⋆ = 10.

We ran the MCMC sampler for both the simulated and empirical examples using

12000 iterations and discarded the initial 2000 as burn in, and stored every 2nd draw.

An iMac with a 2.66 GHz Intel Core i5 processor, and memory 4 GB 1067 MHz DDR3

was used, and the computing time was between 5 to 10 hours for the equity premium

example and between 12 to 19 for the inflation examples.
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4 Simulated Example

The following simulated example illustrates the ability of the NGAR prior to allow time-

varying sparsity in dynamic regression. We generated the data from equation (1) with

m = 5, xi,t ∼ N(0, I5) and xi,1, . . . , xi,T independent. We introduced five regression

coefficients: β1,t followed an AR(1) process with AR parameter 0.97 and a Normal

marginal distribution with mean 2 and variance 0.25, β2,t followed an AR(1) process

with AR parameter 0.97 and a Normal marginal distribution with mean 0 and variance

0.25 for t < 100 and β2,t = 0 for t > 100 with β2,1 ∼ N(2, 0.25),

β3,t =











0 if t ≤ 20, 51 ≤ t ≤ 120, and 151 ≤ t ≤ 200

−2 if 21 ≤ t ≤ 50, and 121 ≤ t ≤ 150

,

and β0,t (the intercept), β4,t and β5,t were zero for all times. The innovation variance

σ2t was generated using an AR(1) process on the log scale

log σ2t = log(0.01) + 0.97(log σ2t−1 − log(0.01)) +

√

0.01

1− 0.972
νt

where νt ∼ N(0, 1). The initial value of each parameter was drawn from its stationary

distribution. The generated values for the regression coefficients are shown in the first

row of Figure 3 where β1,t is always important, β4,t and β5,t are never important, the

importance of β2,t tends to decrease until t = 100 after which the value of β2,t is zero,

and β3,t enters and exits the model abruptly on two occasions.

The second row of Figure 3 shows the estimated regression coefficients which fol-

low the true values closely. The posterior median and 95% credible interval of β0,t, β4,t

and β5,t are very close to zero. The NGAR prior is also able to adapt to the changing

importance of β2,t and the abrupt behaviour of β3,t in the model. The third row of

Figure 3 shows the posterior inference on the regressor time-varying relevance factor

√

ψi,t. The values for the intercept, x1, x4 and x5 are fairly constant and close to zero.
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Figure 3: Simulated: First row - true regression coefficients βi,t, Second row - the posterior median
(solid line) and 95% credible interval (grey shading) of βi,t, and Third row - the posterior median
(solid line) and 95% credible interval (grey shading) of

√

ψi,t.

The posterior median of the relevance factor for x2 is decreasing until about t = 100

and then takes a value close to zero, whereas the posterior median of the relevance

factor for x3 correctly replicates the abrupt entries and exits of the regressor from the

model. We can therefore conclude that the results of this simulation illustrate the

ability of the NGAR prior to shrink values close to zero when the data supports.

5 Empirical Examples

In this section we apply the dynamic regression model with an NGAR prior for the

regression coefficients to both equity premium and inflation datasets. Our aim is to
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provide evidence that the NGAR prior adequately accounts for the time-varying effect

of the regression coefficients, and produces good out-of-sample forecasts by identifying

those variables that lead to the best predictive performance. This latter point also

relates to the identification of variables that not only lead to better prediction but also

the time period for which they are most relevant.

In Section 2, we discussed the NGAR prior for the time-varying regression coeffi-

cient, βi,t, and the time-varying relevance of the ith regressor, ψi,t. Recall that a smaller

value of ψi,t implies that the the i-th predictor is less important at time t. We present

two plots for each data set. The first plot displays the posterior median of
√

ψi,t as it

changes over time and shows the importance of each predictor over time (including

periods where it has most impact). The second plot displays the posterior median of

βi,t over time, which evaluates the effect of each relevant predictor. It is natural to

expect that when a predictor is not relevant (when the posterior median of
√

ψi,t is

zero), then the value of βi,t should be very close to zero. We also plot the time-varying

innovation variance, σ2t , to identify the periods when σ2t changes. All plots display the

95% credible intervals (CI).

5.1 Equity Premium Prediction

The set of variables relevant to equity premium forecasting is large. It ranges from

variables relating to dividends and earnings such as dividend yield and price earnings

ratio to interest rates, bond yields, and inflation. For our empirical study we use the

same data set as Goyal and Welch (2008). The response variable is the value weighted

monthly return of the S&P 500 obtained from the CRSP database. For our illustration

we considered all the twelve predictors (see Appendix A for the complete list), includ-

ing cross sectional beta premium (CSP) (see Roll and Ross, 1994). For this reason the

sample period is restricted from May 1937 to December 2002, as it is the period where

values of CSP are available.
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Figure 4: Equity Premium: Posterior medians (solid line) of the time-varying regression relevance,
√

ψi,t. (yaxis = value of
√

ψi,t , xaxis = time) with 95% credible interval (grey shading)
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Figure 5: Equity Premium: Posterior medians (solid line) of the time-varying regression coefficients,
βi,t. (yaxis = value of βi,t , xaxis = time) with 95% credible interval (grey shading)

The plots of the posterior medians and 95% credible intervals (CI’s) of
√

ψi,t for

various predictors, and the posterior medians and 95% CI’s of βi,t for those predictors

are displayed in Figures 4 and 5 respectively. From the original list of twelve predic-

tors, eight had posterior medians and 95% CI’s for both
√

ψi,t and βi,t that were very

close to zero, and therefore are not displayed in our plots. These excluded variables

were: B/M, LTY, NTIS, INFL, LTR, D/Y, and DFY (see Appendix A for full details). The

four most relevant predictors of the equity premium, which are displayed in Figures 4
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Figure 6: Equity Premium: (a) the posterior median (solid line) and 95% CI (grey shading) of the
relevances of the intercept

√

ψ0,t, (b) the posterior median (solid line) and 95% CI (grey shading)
of the intercept β0,t, and (c) posterior median (solid line) and 95% CI (grey shading) of the time-
varying innovation volatility, σ2t . (yaxis = values of

√

ψ0,t, β0,t and σ2t respectively, xaxis = time)

and 5, are: EPR (earnings price ratio), CSP (relative valuation of high and low beta

stocks), DE (dividend payout ratio), and TBL (3m T-bill rate). The relevance of EPR is

relatively constant over time. The same is true for its regression coefficient, which has

a posterior median around 7 for the whole period. EPR has a positive effect on the eq-

uity premium for the whole period which is expected as it signals a firm’s profitability.

The regression coefficients for CSP and DE show more fluctuation in their relevance

over time. However, their relevance is still relatively constant over time. The coeffi-

cient of CSP is almost always positive. It increases from the mid 1950’s up to the mid

1980’s and then it decreases. In addition we can also observe an oscillating pattern

within this gradual increase and decrease of the CSP effect. One possible explanation

is that within each decade there are years of high economic growth followed by years

of slow growth. The beta of the firm is a measure of the firm risk that is attributed

to the market and cannot be diversified. The beta will be high in times of recession

and will affect equity premiums more than during periods of high growth. The coef-

ficient of DE is also positive for all time periods, with it’s effect being largest during
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the 1980’s, the period when the Reagan administration began the deregulation of US

financial markets. The effect decreases from the 1990’s to 2010’s and this could be due

to the shift of emphasis in investment decisions from DE to firm growth prospects. The

final important predictor is TBL. Its importance clearly changes from period to period.

It is a very important predictor during the 1930’s, 1950’s and 1970’s. During these

periods its coefficient is positive except in the 1970’s when it is negative. This could

be attributed to the 1973 oil shock which led the US (and the rest of the world) into

recession. During this period the interest rates soared to the double digits thus nega-

tively affecting equity premiums. Goyal and Welch (2008) do not provide estimates for

the regression coefficients but look at the importance of predictors by running simple

regressions for different periods within the sample.

Figure 6 displays the time-varying relevance and the effect of the intercept (the first

two plots) and the behaviour of the innovation variance, σ2t over time. The importance

of the intercept is fairly constant. Its effect is increasing over time and is positive with

the exception of the period of the second World War and the beginning of the 1950’s

which was a period of reorganisation following the War. The innovation variance is

fairly constant over time, around 0.11.

5.2 Inflation Forecasting

Forecasts of inflation are usually classified according to the type of explanatory vari-

ables used. The size of the set of potential variables is huge and is usually split into

four subsets: past inflation forecasts, where the explanatory variables are previous lags

of inflation; Phillips curve forecasts, which involve activity variables, such as economic

growth rate or output gap, unemployment rate, and lagged inflation; forecasts based

on variables which are themselves forecasts of asset prices (combination indices), term

structures of nominal debt, and consumer surveys; and forecasts based on other ex-

ogenous variables such as government investment, the number of new private houses
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Figure 7: PCE deflator: Posterior medians (solid line) of the time-varying regression relevance,
√

ψi,t. (yaxis = value of
√

ψi,t , xaxis = time) with 95% CI (grey shading)

For our inflation forecasting study we constructed a data set using data series ob-

tained from: FRED, the economic database of the Federal Reserve Bank of St Louis, the

consumer survey database of the University of Michigan, the Federal Reserve Bank of

Philadelphia, and the Institute of Supply Management. We use two different quarterly

measures of US inflation as the response variable, the personal consumption expendi-

ture (PCE) deflator and the gross domestic product (GDP) deflator. We therefore fit

two separate models. The sample period for both is from the second quarter of 1965
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Figure 8: PCE deflator: Posterior medians (sold line) of the time-varying regression coefficients,
βi,t. (yaxis = value of βi,t , xaxis = time) with 95% CI (grey shading)

to first quarter of 2011. Our data set includes 31 predictors, from activity and term

structure variables to survey forecasts and previous lags. The full list with details of

each is included in Appendix A.

We first discuss the results based on the PCE deflator. The plots of the posterior

median and 95% CI of
√

ψi,t for each of the predictors are displayed in Figure 7. The

posterior median and 95% CI of βi,t for each predictor are displayed in Figure 8. From

the thirty one predictors eight were noticeably relevant in forecasting the PCE defla-

tor and are displayed in the plots of Figures 7 and 8. These are: TBill 3m rate, INF

EXP (inflation expectation), Lag 4, IMGS (import of goods and services) growth, Lag2,
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Figure 9: PCE deflator: (a) the posterior median (solid line) and 95% CI (grey shading) of the
relevances of the intercept

√

ψ0,t, (b) the posterior median (solid line) and 95% CI (grey shading)
of the intercept β0,t, and (c) posterior median (solid line) and 95% CI (grey shading) of the time-
varying innovation volatility, σ2t . (yaxis = values of

√

ψ0,t, β0,t and σ2t respectively, xaxis = time)

DJIA (S&P 500 returns), RGEGI (real government consumption expenditure and gross

investment) growth, and M1 (narrow commercial bank money). Unlike equity premi-

ums, the posterior median of βi,t is rarely far from zero. Therefore, we interpret the

95% credibile interval as a set of plausible values for the regression coefficients. This

allows us to identify times when a large absolute value of the regression coefficient is

implausible and also variables for which it is implausible that the regression coefficient

takes a particular sign (either positive or negative).

The 3m Tbill rate is the most important predictor of PCE. It appears that its im-

portance is more obvious during periods of economic slowdown, financial crises and

recessions. These periods are the 1970s the late 1980’s and early and late 2000’s. Its

coefficient also reflects this. It is highly positive during all the aforementioned peri-

ods, so the PCE deflator increases when interest rates increase. The importance of INF

EXP is decreasing over time. It is more important up to the early 1980’s and then it

becomes less important. Its coefficient is positive and it is decreasing over time. Its

effect is more obvious from the 1970’s up to the 1990’s. From then on its coefficient

approaches zero. The importance of the remaining six predictors is fairly constant over
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time. Their coefficients are also fairly constant, however they provide more informa-

tion as to which periods their effect was more obvious. The coefficient of IMGS growth

is positive during the mid 1970’s (the period of the oil shock) showing its impact on the

PCE deflator. From then on its effect is small to almost insignificant. The coefficient of

RGEGI growth is small for almost all periods except the late 1980’s when it is negative.

The coefficient of M1 is almost zero up to the start of the 2000’s and then for most

of the decade it is negative. Though empirical evidence suggests that rapid increases

in the money supply lead to rapid increases in inflation, when we looked at the time

plots of the changes in M1 and the changes in PCE deflator we found that during the

late 2000’s, the start of the current financial crisis, the rapid increase in the supply of

money had a negative impact on inflation. It is therefore reasonable to observe this

negative coefficient for M1. The coefficient of DJIA is very close to zero except during

the period of the oil shock when it had a negative effect on inflation. Finally, of the

two lags of PCE deflator it is the coefficient of the second lag that exhibits the most

changes over time. It is positive up to the 1970’s approaching zero during the end of

this period, it picks up again during the 1980’s approaching zero in the early 1990’s

and it then turns negative up to the late 2000’s.

The time-varying importance and effect of the intercept are shown in the first two

plots of Figure 9, whereas the third plot displays the behaviour of the innovation vari-

ance σ2t . The intercept is more important during periods of slow economic growth and

recession (1970’s , late 1980’s and 2000’s). Its coefficient is positive in the 1970’s and

1980’s and turns negative in the 2000’s. The innovation variance oscillates over time

and reaches its peak around 2008, the start of the recent financial crisis.

The posterior median and 95% CI plot of
√

ψi,t for each of the predictors of the

GDP deflator are displayed in the plots of Figure 10. The posterior median and 95%

CI plot of βi,t for each predictor are displayed Figure 11. Based on our NGAR model

we identified sixteen important predictors for the GDP deflator, double the number of
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Figure 10: GDP deflator, h = 1: Posterior medians (solid line) of the time-varying regression
relevance,

√

ψi,t. (yaxis = values of
√

ψi,t, xaxis = time) with 95% CI (grey shading)

those of the PCE deflator. This is reasonable as GDP reflects the value of all finished

goods and services produced within the country whereas the PCE reflects personal con-

sumption of goods and services. The five common predictors are: INF EXP, DJIA, TBILL

3m, RGEGI growth, and IMGS growth. INF EXP is clearly an important predictor of the

GDP deflator. It is more important in the mid 1970’s and mid 1980’s. Its coefficient is

positive from the start of our sample period up to the start of the 2000s, when it starts

to approach zero. The lower band of its 95% CI suggests that it may also have a nega-
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Figure 11: GDP deflator: Posterior medians (solid line) of the time-varying regression coefficients,
βi,t. (yaxis = values of βi,t , xaxis = time) with 95% CI (grey shading)

tive effect on the GDP deflator. The TBILL 3m rate has on the other hand a small fairly

constant effect on the GDP deflator as its coefficient is fairly constant at zero for all

time periods. The TBILL’s effect is clearly different to that on the PCE deflator as per-

sonal consumption expenditure is more directly affected by changes in interest rates.

The coefficient of RGEGI growth is negative in the 1980’s as was the case with the

PCE deflator, however its effect on the GDP deflator is clearly more obvious. Unlike the

case of the PCE deflator, the coefficient of M1 is fairly constant over time and very close

to zero, whereas the coefficient of DJIA is very close to zero just as we observed for
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Figure 12: GDP deflator: (a) the posterior median (solid line) and 95% CI (grey shading) of the
relevances of the intercept

√

ψ0,t, (b) the posterior median (solid line) and 95% CI (grey shading)
of the intercept β0,t, and (c) posterior median (solid line) and 95% CI (grey shading) of the time-
varying innovation volatility, σt. (yaxis = values of

√

ψ0,t, β0,t and σ2t respectively, xaxis = time)

the PCE deflator. In terms of the remaining eleven predictors, the coefficients of GS1,

UNRATE, Output Gap, Lag 2 and AHEPNSE are fairly constant for all time periods. In

the case of AHEPNSE (average hourly earning of private non managerial employees)

we can observe a possible switch in the sign of its coefficient. During the 1980’s it

changes from positive to negative. The coefficients of the other six predictors exhibit

more time-varying behaviour. For MATERIALS the coefficient is positive between the

1970’s and 1980’s possibly due the oil shock which led to increases in prices and thus

to higher inflation. From the 1980’s onwards this effect becomes smaller and perhaps

at some time points turning negative. The coefficient of private employment shows an

inverse pattern to that of materials. It starts fairly small (possibly negative) and it then

becomes positive (from the 1990’s to late 2000’s). Periods of economic growth always

provide more employment opportunities in the private sector. The coefficient of NFP

(non farm payroll) also has the same effect on the GDP deflator. Finally the coefficient

of the third lag of GDP deflator is almost always positive as is the case with that of

IMGS growth. The time-varying importance and effect of the intercept are shown in

the first two plots of Figure 12, whereas the third plot displays the behaviour of the in-
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novation variance σ2t . The intercept is more important during periods of slow economic

growth and recession (1970’s , late 1980’s and 2000’s). Its coefficient is positive in the

1970’s and 1980’s and turns negative in the 2000’s. The innovation variance oscillates

over time and reaches its peak in the mid 1970’s and around 2008, two recessionary

periods.

5.3 Comparison to other methods

We compare the predictive performance of the DR model with our NGAR prior to

other Bayesian variable selection and regularisation methods that have recently been

proposed for DR models with a large number of potential predictors. These methods

are: Time Varying Dimension (TVD) models (Chan et al., 2012), the dynamic model

average (DMA) approach (Koop and Korobilis, 2012), and the hierarchical shrinkage

(HierShrink) prior of Belmonte et al. (2011). In case of the former two methods we

use the priors suggested in the related papers and in case of the DMA we set the “for-

getting” parameters λ = α = 0.99, as the paper suggested. We also fit a rolling window

Bayesian Model Averaging (BMA) using a g-prior for prediction. We use the default

choices of Fernandez et al. (2001) for the g-prior with the previous k observations, i.e.

yt−k, . . . , yt−1, to predict at each time point. Finally, we use the random walk model

of Atkeson and Ohanian (2001) as a benchmark model. We focus on one step ahead

forecasts and our comparison metric is the root mean square error (RMSE) using the

posterior mean as our estimated calculated on the second half of the data

√

√

√

√

1

T − s

T
∑

t=s+1

(yt − E [yt|y1, . . . , yt−1, x1, . . . xt])
2

where xt = (x0,t, x1,t, . . . , xm,t) and s = ⌊T2 ⌋ (i.e. the largest integer less than or equal

to T/2). The posterior predictive means of yt for t = s+1, . . . , T were calculated using
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particle filtering methods and includes uncertainty in all parameters.

Equity Premium PCE Inflation GDP Inflation
RW 1.100 0.635 0.373

NGAR 0.977 0.611 0.410
DMA 1.01 0.660 0.422
TVD1 2.193 2.688 2.688
TVD2 0.986 0.623 0.481
TVD3 0.992 0.628 0.500

HierShrink 1.547 1.131 2.556
gprior1 2.822 0.796 0.660
gprior2 1.648 0.712 0.588
gprior3 1.282 0.681 0.516

Table 1: RMSE of out-of-sample prediction with different priors for the three data sets. The
smallest RMSE for each data set is written in bold.

Table 1 displays the RMSE for all three data sets under the different models. There

are three versions of TVD which make different assumptions about the evolution of the

regression coefficients and which are fully described in (Chan et al., 2012). The win-

dow lengths for the three g-priors were 100 (gprior1), 200 (gprior2) and 300 (gprior3)

for the equity premium data and 50 (gprior1), 70 (gprior2) and 90 (gprior3) for the

inflation data. The choice of the window is controlled by the number of regressors

included (which must be less than the window length) and the number of observations

in the sample. The NGAR is the best performing approach for two data sets (equity

premium and PCE inflation) and the second best performing for the GDP inflation data

(with only the random walk giving better predictions). The TVD2 and TVD3 model and

DMA also perform well across the three data sets. In general, the models which are the

complexity of the model to change over time (NGAR, TV and DMA) outperform the

other approaches (HierShrink and rolling window g-prior). This illustrates the impor-

tance of allowing time-variation in the relevance of regression coefficients. The poor

performance of the HierShrink prior suggests that the double exponential prior may be

unsuitable with these data and imply too little sparsity. This illustrates the importance

of allowing for time varying sparsity in these data.
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6 Discussion

This paper introduces a new approach to time-varying sparsity in dynamic regression

models. The time-varying regression coefficients follow a stochastic process with a

Normal-Gamma marginal distribution and smaller values of the shape parameter imply

that the process will spend more time at values close to zero. This allows us to iden-

tify periods when regression coefficients are very close to zero and so are effectively

removed from the model. A Normal-Gamma prior on the variance of the marginal

distribution of βi,t encourages shrinkage of the whole path of βi,t close to zero. The

empirical examples illustrate that the method leads to smaller out-of-sample predictive

RMSE than several recently proposed approach to dynamic regression models with

many regressors.
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A Data Appendix

Name Description

B/M ratio of book to market value for the Dow Jones Industrial Average
TBL 3m Treasury Bill: Secondary Market Rate
LTY Difference between the long term yield on government bonds and treasury bill
NTIS ratio of 12m moving sums of net issues by NYSE listed stocks to total year end market cap
INFL Consumer Price Index
LTR Long term government bond yield
SVAR Sum of squared daily returns of S&P500
CSP Cross-sectional beta premium (relative valuation of high and low beta firms)
D/Y Dividend yield: difference between the log of dividends and the log of lagged prices (S&P500)
EPR Earnings price ratio: difference between the log of earnings and the log of prices (S&P500)
DE Dividend payout ratio: difference between the log of dividends and the log of earnings (S&P 500)
DFY Default yield spread: difference between BAA and AAA-rated corporate bond yields

Table 2: Equity Return Data. Source: Goyal and Welch (2008)

Name Description

GDP Difference in logs of real gross domestic product
PCE Difference in logs of real personal consumption expenditure
GPI Difference in logs of real gross private investment
RGEGI Difference in logs of real government consumption expenditure and gross investment
IMGS Difference in logs of imports of goods and services
NFP Difference in logs non-farm payroll
M2 Difference in logs M2 (commercial bank money)
ENERGY Difference in logs of oil price index
FOOD Difference in logs of food price index
MATERIALS Difference in logs of producer price index (PPI) industrial commodities
OUTPUT GAP Difference in logs of potential GDP level
GS10 Difference in logs of 10yr Treasury constant maturity rate
GS5 Difference in logs of 5yr Treasury constant maturity rate
GS3 Difference in logs 3yr Treasury constant maturity rate
GS1 Difference in logs 1yr Treasury constant maturity rate
PRIVATE EMPLOYMENT Log difference in total private employment
PMI MANU Log difference in PMI-manufacturing index
AHEPNSE Log difference in average hourly earnings of private non management employees
DJIA Log difference in Dow Jones Industrial Average Returns
M1 Log difference in M1 (narrow-commercial bank money)
ISM SDI Institute for Supply Management (ISM) Supplier Deliveries Inventory
CONSUMER University of Michigan consumer sentiment (level)
UNRATE Log of the unemployment rate
TBILL3 3m Treasury bill rate
TBILL SPREAD Difference between GS10 and TBILL3
HOUSING STARTS Private housing (in thousands of units)
INF EXP University of Michigan inflation expectations (level)
LAG1, LAG2, LAG3, LAG4 The first, second, third and fourth lags of the response variable

Table 3: Inflation Data. Sources: FRED database, Federal Reserve Bank of St.Louis, University
of Michigan Consumer Survey database, Federal Reserve Bank of Philadelphia, and Institute of
Supply Management.
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