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Abstract

Background: Distinguishing early dilated cardiomyopathy (DCM) from physiological left 

ventricular (LV) dilatation with mildly reduced LV ejection fraction (‘grey-zone’) is 

challenging. We evaluated the role of a cascade of investigations to differentiate these two 

entities.

Methods and Results:  Thirty-five asymptomatic active males with DCM, 25 male athletes 

in the ‘grey-zone’ and 24 male athlete controls with normal LV ejection fraction were 

investigated with NT-proBNP, electrocardiography (ECG) and exercise echocardiography. 

‘Grey-zone’ athletes and DCM patients underwent cardiovascular magnetic resonance and 

Holter monitoring. Larger LV cavity dimensions and lower LV ejection fraction were the 

only differences between control and ‘grey-zone’ athletes. None of the ‘grey-zone’ athletes 

had an abnormal NT-proBNP, increased ectopic burden/complex arrhythmias or pathological 

late gadolinium enhancement. These features were absent in 71%, 71% and 50% of DCM 

patients respectively.  95% of ‘grey-zone’ athletes and 60% DCM patients had a normal 

ECG.  During exercise echocardiography, 96% of the ‘grey-zone’ athletes increased LV 

ejection fraction by >11% from baseline to peak exercise compared with 23% DCM patients. 

Peak LV ejection fraction was >63% in 92% ‘grey-zone’ athletes compared with 17% DCM 

patients. Failure to increase LV ejection fraction >11% from baseline to peak exercise or 

achieve a peak LV ejection fraction >63% had a sensitivity of 77% and 83% respectively and 

specificity of 96% and 92% respectively for predicting DCM. 

Conclusion: Comprehensive assessment using a cascade of routine investigations revealed 

that exercise stress echocardiography has the greatest discriminatory value in differentiating 

between ‘grey-zone’ athletes and asymptomatic DCM patients.
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Abbreviations: 

CPET Cardiopulmonary exercise test

CMR Cardiovascular Magnetic Resonance

DCM Dilated cardiomyopathy

ECG Electrocardiogram

LV Left ventricular

NT-proBNP N-terminal pro-brain natriuretic peptide

pV02 Peak oxygen consumption

TDI Tissue Doppler Imaging
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INTRODUCTION

Dilated cardiomyopathy (DCM) is a rare but recognised cause of sudden cardiac death in 

athletes1. A small proportion of endurance athletes show an enlarged left ventricular (LV) 

cavity with borderline/low LV ejection fraction2 which overlaps with the phenotypic 

expression of morphologically mild DCM.  Differentiation between these two entities is an 

important focus of the sports cardiology and imaging societies. Expert opinion suggests that 

comprehensive assessment including the electrocardiogram (ECG), advanced imaging and 

functional assessment is necessary to differentiate these 2 entities3,4; however data regarding 

utility of such investigations  in this context is limited. We sought to evaluate the role of 

conventional investigations to differentiate between physiological adaptation (‘grey-zone’) 

and active asymptomatic individuals with DCM.

METHODS

The data, analytical methods, and study materials will not be made available to other 

researchers for the purpose of reproducing the results or replicating the procedure. 

Researchers interested in the data, methods, or analysis can contact the corresponding author 

for more information.

Study subjects:

Patients with Dilated Cardiomyopathy

Asymptomatic male patients with non-ischaemic DCM were recruited from two tertiary 

cardiomyopathy centres in London.  Dilated cardiomyopathy was defined as systolic 

impairment in association with LV enlargement (either LV end-diastolic dimension >58mm 

or  LV end diastolic volume of >150mls ,equating to 2 standard deviations above the mean, 

as per the American Society of Echocardiography )5.Left ventricular impairment was defined 

5



as LV ejection fraction <55%. Exclusion criteria included ischaemic heart disease, 

hypertension, primary valvular disease, LV ejection fraction<35% and poor 

echocardiographic windows. In individuals who exercised more than 5 hours of exercise per 

week DCM was confirmed by the presence of DCM in a first degree relative, remodelled 

severe LV systolic dysfunction or late enhancement on cardiac magnetic resonance imaging 

(CMR). Thirty-five individuals who fulfilled these criteria agreed to participate in the study.  

Athletes in ‘the grey-zone’

In the United Kingdom, the charity Cardiac Risk in the Young (CRY) subsidises 

cardiovascular evaluations for elite sporting organisations (including British rowing and 

cycling squads and several premier league rugby and soccer teams) as part of pre-

participation screening. Over the period 2015-2017, 8006 athletes were screened by CRY. 

Additionally, the sports cardiology unit at St George’s Hospital is a quaternary referral centre

for athletes from centres throughout the country.   Twenty-five asymptomatic athletes with 

phenotypic features resembling DCM were recruited from these sources.   The ‘grey-zone’ 

was defined as an athlete with LV enlargement and borderline ejection fraction (as outlined 

above) who exercised for ≥8 hours per week. ‘Grey-zone’ athletes were excluded if they 

expressed cardiovascular symptoms or a family history of DCM.

Athlete controls

An athletic control cohort of 24 healthy asymptomatic male athletes with normal LV 

geometry matched to the ‘grey-zone’ athletes for age and sporting discipline were recruited 

through the CRY screening programme.
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Study protocol

Participants underwent health questionnaire, NT-proBNP, 12-lead ECG, baseline and 

exercise echocardiogram and CPET. Beta-blockade-was held for 48 hours prior to exercise 

testing.  ‘Grey-zone’ athletes and DCM patients also underwent a CMR and 24 hour Holter 

monitor. 

Health Questionnaire:

The health questionnaire contained questions regarding cardiovascular symptoms, family 

history and exercise activity.

NT-proBNP

Blood samples for serum NT-proBNP were obtained from participants during resting 

conditions. Analysis was performed within 2 hours of extraction at room temperature using a 

Cobas 8000 E602 Module Immunochemistry Analyser (Roche Diagnostics, Basel, 

Switzerland).
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Electrocardiography

12-lead ECG was performed in the supine position in a quiet room using a  GE Marquette 

Hellige (Milwaukee, WI) ECG machine with a paper speed of 25mm/s as described6. 

Electrocardiograms were interpreted in accordance with  international guidelines7.

Twenty-four hour Holter monitoring

Twenty-four hour ambulatory ECG monitoring was performed using Life Card CF Holters 

(Spacelabs Healthcare).  A high ventricular ectopic (VE)  burden >500 beats/24 hours8 or the 

presence of non-sustained ventricular tachycardia (NSVT)  were considered abnormal. The 

presence of NSVT was defined as ≥3 consecutive beats of >120ms9. 

Echocardiography

Two-dimensional transthoracic echocardiography was performed by 2 board accredited 

sonographers using a commercially available, portable ultrasound system (Vivid E9, GE 

Healthcare, Milwaukee, Wisconsin) with a 1.5 – 3.6 MHz phased array transducer. Images 

were acquired in the conventional parasternal long-axis and short-axis, and apical views. 

Standard measurements made and recorded in accordance with  protocols specified by the 

American Society of Echocardiography5. Pulsed-wave Doppler recordings were obtained to 

assess transmitral early (E) and late (A) diastolic filling. Tissue Doppler Imaging (TDI) was 

acquired at the lateral and septal mitral annulus10. M-mode echocardiography was used to 

assess the tricuspid annular plane systolic excursion (TAPSE).

Speckle Tracking Imaging

Speckle tracking imaging was performed using a designated speckle tracking package (GE 

EchoPAC Clinical Workstation Software (Pollards Wood, UK)) to obtain global LV 
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longitudinal strain (GLS) in the 2-,3-,4- chamber  views then averaged accordingly. A normal

GLS value was <-17%5.

Stress echocardiography

Exercise echocardiography was conducted on a semi-recumbent cycle ergometer (Lode 

Angio with Echo Cardiac Stress Table, Groningen, Netherlands) according to a ramp protocol

of 20 W/min to volitional exhaustion. Standard apical, parasternal and long-axis images and 

transmitral Doppler and TDI of the lateral wall were acquired at baseline and peak exercise. 

Loops were stored on designated software for off-line analysis. Left ventricular volumes and 

ejection fraction were calculated using the Simpson’s Biplane method5. Contractile reserve 

was assessed by calculating the change in LV ejection fraction from baseline to peak 

exercise. Intravenous contrast was not required as all subjects had good endocardial 

definition. 

Cardiopulmonary exercise testing

Cardiopulmonary exercise testing was performed in an upright position with a COSMED 

E100w cycle ergometer (Rome, Italy) using a ramp protocol 20-30 W/min to volitional 

exhaustion. Breath-by-breath gas exchange analysis was performed using a dedicated 

COSMED Quark CPEX metabolic cart (Rome, Italy). Peak oxygen consumption (pVO2) was 

calculated in ml/kg/min.

Cardiovascular magnetic resonance

Cardiovascular magnetic resonance imaging was performed using methods described and 

analysed using semi-automated software11 . All imaging measurements were recorded as 

absolute values and indexed to body-surface area as per the DuBois-DuBois formula12. 

Delayed enhancement images were acquired after administration of gadolinium 

diethylenetriamine pentaacetate. Isolated late gadolinium enhancement (LGE) at the right 
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ventricular insertion was not considered pathological as this is a common finding in healthy 

endurance athletes8.

Statistical analysis:

Analyses were performed using SPSS (Version 25.0 IBM Corp). Shapiro-Wilk Test was 

performed to assess for normality of distributions. Continuous variables are presented as 

mean ± standard deviation, and groups were compared using unpaired Student’s t-tests. 

Categorical variables were presented as percentages and were compared using Fisher Exact 

Tests. Receiver operating characteristic (ROC) curve analysis was performed to test the 

sensitivity of the echocardiographic variables in predicting DCM. Athlete was considered a 

negative test, whereas DCM was considered a positive test.  Optimal cut-off values, defined 

by the best compromise between sensitivity and specificity, were calculated by the Youden’s 

Index. Inter-reader variability was assessed by intra-class correlation coefficients. Statistical 

significance was defined for p-values<0.05. Forward step-wise logistic regression was used. 

Stress echocardiographic variables with an area under the curve (AUC) >0.7 as identified by 

the ROC curve suggesting a fair test were included in the model.

To determine sample sizes, we estimated using previous study of exercise radionuclide 

angiography which showed those with contractile reserve (representing athletes) had an 

increase in LVEF of 5±6% and those with poor outcome (representing the DCMs) had a 

change of LVEF of 0±5%13. Using these assumptions, we calculated we needed at least 21 in 

each cohort to provide 80% power. To allow for a margin of error we aimed to recruit at least

30 DCM patients and match them for age and baseline LVEF with the ‘grey-zone’ athletes 

(α=5%, 1-β=80%, n=21).
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Ethics:

Full ethical approval was granted by the Chelsea Research Ethics Committee, London UK 

and participants provided informed written consent.

RESULTS

Demographics

Patients with DCM

The DCM patients were aged 39.5±13.4 (18-68) years. The majority (88.6%) were white. All 

patients were in NYHA Class 1 and exercised for an average of 5.3±5.0 hours per week. 

Most patients were on prognostic medications for heart failure including beta-blockers (n= 

24; 68.6%) and ACE-inhibitors or angiotensin II receptor blockers (n =23; 65.7%). Three 

patients (8.6%) had an implantable cardioverter-defibrillator in-situ. Fifteen patients (42.9%) 

had familial DCM, 4 who were gene positive. Three (8.6%) had anthracycline induced DCM,

4 (11.4%) had post-viral DCM and fifteen (42.9%) had idiopathic DCM. 
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Athletes

‘Grey-zone’ athletes (32.3± 10.4; range 18-58 years) and control athletes (36.7±7.7; 22-48) 

were similar age; however ‘grey-zone’ athletes were younger than DCM cohort (p=0.035). 

As with the DCM cohort, the majority (>90%) were white. ‘Grey-zone’ athletes and athlete 

controls exercised for a mean of 15.0±7.5 and 11.4±3.2 hours per week and participated 

primarily in endurance sports.  ‘Grey-zone’ athletes participated in cycling (n=8, 32%), 

endurance running (n=10, 40%), triathlon (n=3, 12%), rowing (n=3, 12%) and rugby (n=1, 

4%). Control athletes competed in cycling (n=15; 62.5%), triathlon (n=2; 8.3%), endurance 

running (n=6; 25.0%) and rowing (n=1; 4.2%). 

Electrocardiography

All participants were in sinus rhythm. Fourteen (40%) DCM patients had an abnormal ECG 

compared with 2(8.0%) ‘grey-zone’ and 1 (4.2%) control athlete (p=0.0007). Among the 

DCM cohort, 4 (11.4%) had left bundle branch block, 2(5.7%) had pathological q waves, 

2(5.7%) had ST-segment depression, 5(14.3%) had T-wave inversion and 4(11.4%) had ≥ 2 

ventricular extrasystoles. None of these abnormalities were seen in either athletic cohort.  Ten

(28.6%) DCM patients had an abnormal Holter. Five (14.3%) had > 500 ventricular 

extrasystoles, 2(5.7%) had isolated NSVT and 3(8.5%) had > 500 ventricular extrasystoles 

and NSVT. None of the ‘grey-zone’ athletes had an abnormal Holter.  
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NT-proBNP

Mean NT-proBNP was higher in the DCM patients compared to the ‘grey-zone’ and control 

athletes (131.4±158.0 pg/ml versus 39.7±23.2pg/ml. and 33.0±20.7 pg/ml(p<0.0001)); 

however there was no difference in NT-proBNP levels between both athlete groups. Ten 

(28.6%)  DCM patients had a NT-proBNP>125pg/ml (upper limit of normal)14 compared 

with  none of the athletes. 

Baseline Echocardiography

There were no significant differences in the LV end-diastolic dimensions or ejection fraction 

between ‘grey-zone’ athletes or DCM patients. Both groups had larger LV end-diastolic 

dimensions compared with control athletes but there were no differences between the groups 

in left atrial diameter or LV mass. Transmitral early diastolic filling and mitral E/A ratio was 

similar in the three groups. Both athletic cohorts showed significantly higher TDI 

measurements at the mitral valve annulus compared with DCM patients. Lateral S’ wall was 

also significantly higher in both athletic groups compared to DCM patients. All the ‘grey-

zone’ athletes and 28 (80.0%) DCM patients had a lateral E’ ≥ 10 cm/s.  Twenty (80%) 

‘grey-zone’ athletes and 15 (42.9%) DCM patients had an S’ wave≥10 cm/sec. Right 

ventricular measurements were significantly larger in both athletic groups compared to the 

DCM patients; however right ventricular function was similar in all groups (Table 1). 
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Table 1: Baseline echocardiographic characteristics.

DCM (n=35) Athlete in the 

‘grey-zone’ (n=25)

Athlete controls 

(n=24)

P value

LA dimension (mm) 39.5±5.7 37.3±5.0 37.1±5.8 0.160

LVEDD (mm) 60.3±2.2* 59.3±2.3* 53.3±3.3 <0.0001

LVEDD/BSA 28.6±3.6 29.8±2.0 28.2±2.7 0.137

LVESD (mm) 45.7±5.5* 41.8±3.4* 35.3±3.7 <0.0001

LVESD/BSA 21.7±3.6 21.0±2.2 18.7±2.4 <0.0001

LV Mass (g) 209.8±58.1 200.3±47.9 180.6±30.4 0.081

Baseline LVEDV (ml) 185.27±31.2* 185.0 ±20.4* 152.4±22.9 <0.0001

Baseline LVEDV/BSA 87.5±17.8 92.9±11.5 80.7±12.2 <0.0001

Baseline LVESV (ml) 97.9±22.8* 92.7±12.0* 64.4±11.7 <0.0001

Baseline LVESV/BSA 46.2±11.6 46.6±5.7 34.0±5.9 0.014

Baseline SV (ml) 87.3±16.3 92.6±12.0 88.1±13.7 0.346

Baseline SV/BSA 41.3±9.1 46.5±6.7 46.7±7.6 0.095

LV ejection fraction (%) 47.6±5.4* 49.9±2.5* 58.3±2.3 <0.0001

TAPSE (mm) 22.2±4.0 23.6±3.2 24.5±4.1 0.059

RVD1 (mm) 40.2±5.6 45.4 ±4.6† 41.4±5.0† 0.001

RVD2 (mm) 27.6±5.1 31.9. ±5.5 29.5±5.5 0.010

RVD3 (mm) 88.0±14.9 95.9±6.2 88.6±18.6 0.084

Fractional Shortening 

(%)

24.1±5.7 29.2 ±4.7 33.7±6.3 <0.0001

Mitral E wave (cm/s)

0.711±0.20

0.52±0.15 0.88±0.17 0.487

Mitral A wave (cm/s) 0.52±0.15 0.44±0.14 0.46±0.10 0.094
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Mitral E/A ratio 1.53±0.62 1.97±0.66 1.93±0.97 0.096

Deceleration time (ms) 199.8±44.164

.2

206.8±61.2 185.7±40.4 0.426

Lateral E’ (cm/s) 13.7±4.8 17.2±4.4† 17.1±3.3† 0.008

Lateral S’ (cm/s) 8.8±2.3 11.4±2.3† 11.7±1.9† <0.0001

Lateral E/E’ 5.99±2.32 4.33±1.35† 4.53±1.03† 0.004

Septal E’ (cm/s) 9.0±2.3 11.44±3.0† 12.5±4.2† 0.001

Septal S’ (cm/s) 7.7±1.3 8.4±1.8 8.9±1.5 0.038

Septal E/E’ 8.24±1.67 7.27±2.33† 6.36±1.94† 0.035

Average E/E’ 6.75±1.91 5.24±1.61† 5.30±1.26† 0.007

BSA=body surface area; GLS=global longitudinal strain; LA=left atrial; LV=left 

ventricular; LVEDD=left ventricular end-diastolic dimension; LVEDV=left ventricular end-

diastolic volume; LVESD=left ventricular end-systolic dimension; LVESV=left ventricular 

end-systolic volume; RVD1=right ventricular basal dimension; RVD2=right ventricular mid-

cavity dimension; RVD3=right ventricular longitudinal dimension 3; SV=stroke volume; 

TAPSE=tricuspid annular plane systolic excursion.*=non-significant between the DCM 

patients and athletes in the ‘grey-zone’; †= non-significant between between ‘grey-zone’ and

control athletes.
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Speckle Tracking Imaging

Average GLS was highest in the in the athlete controls (-17.4±1.9%), followed by ‘grey-

zone’ athletes(-16.0±2.1%) and DCM patients (-13.6±3.0%) p<0.0001. Seventeen (68%) 

‘grey-zone’ athletes, 14 (58.3%) athlete controls and 27 (79.4%) DCM patients had GLS 

values outside the normal range (<-17%).5 

Exercise echocardiogram

Stroke volume at baseline and peak exercise was higher in both athletic groups than DCM 

patients (Table 2).  All but one of the ‘grey-zone’ athletes (96.0%) increased LV ejection 

fraction from baseline to peak by >11% as did 19 (79.2%) control athletes (Figure 1). In 

contrast, only 8 (22.9%) individuals with DCM increased LV ejection fraction by > 11% 

(Figure 1).   All the athlete controls and 23(92.0%) of ‘grey-zone’ athletes achieved a peak 

LV ejection fraction>63% compared with only 6 (17.1%) DCM patients (Figure 2). Thirty 

(85.7%) DCM patients failed to increase LV ejection fraction by >11% or achieve a peak 

ejection fraction > 63%. All cohorts demonstrated improvement in  indices of diastolic (E’) 

and longitudinal systolic function (S’) from baseline to peak exercise, however both athletic 

groups showed a greater improvement in S’ of the lateral wall compared with DCM patients 

(Table 2). 
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Table 2: Stress echocardiographic characteristics.

DCM (n=35) Athlete in the

‘grey-zone’ 

(n=25)

Athlete 

controls 

(n=24)

P value

Total Watts 234.6±48.0 308.6±59.6* 293.5±59.6* <0.0001

Peak LVEDV (ml) 176.3±40.3 167.4±17.5 140.7±22.8 <0.0001

Peak LVEDV/BSA 83.4±21.6 84.0±8.7 75.2±11.1 <0.0001

Peak LVESV (ml) 86.2±34.7 56.2±11.3 40.3±4.9 <0.0001

Peak LVESV/BSA 40.7±17.4 28.3±6.3 21.3±2.8 <0.0001

Peak SV (ml) 90.1±22.8 11.2 ±15.6 101.8±17.9 <0.0001

Peak SV/BSA 42.7±11.6 55.7±6.9 53.9±9.5

Peak LV ejection fraction (%) 52.0.±11.5 67.6 ±3.9 71.4±3.4 <0.0001

Change in LV ejection fraction

(%)

4.9±8.9 17.7 ±4.1 13.1±3.1 <0.0001

Peak mitral E wave 1.34±0.28 1.30±0.27 1.46±0.24 0.217

Peak Lateral E’ (cm/s) 21.5±5.5 23.6±5.2 23.8±5.8 0.266

Peak Lateral E/E’ 6.6±2.3 5.9±2.0 5.86±1.84 0.463

Peak S’ (cm/s) 15.6±5.0 22.1±6.1* 22.5±6.6* <0.0001

Peak SBP (mmHg) 189.5±26.7 210.3±24.7* 202.3±27.2* 0.007

Peak DBP (mmHg) 98.0 ±11.0 102.3 ±13.9 94.1±14.50 0.018

Peak HR (bpm) 148.6±15.4 162.2 ±11.1 150.6±9.7 0.01

Peak BP product 28062.9±631

4.1

34152.7±498

5.2*

30432.5±4373.

5.8*

<0.0001

bpm=beats per minute; BP=blood pressure; DBP= diastolic blood pressure; HR=heart 

rate; LV=left ventricular; LVEDV=left ventricular end-diastolic volume; LVESV=left 
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ventricular end-systolic volume; SBP=systolic blood pressure; SV=stroke volume. *=non-

significant between ‘grey-zone’ and control athletes. 
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Cardiovascular Magnetic Resonance 

All but 1 DCM patient and 1 ‘grey-zone’ athlete underwent a CMR. Pathological late 

gadolinium enhancement was observed in 17 (50.0%) DCM patients (mid wall n=12 and 

subepicardial n=5) compared with none of the ‘grey-zone’ athletes (supplementary Table 1). 

Cardiopulmonary exercise testing: 

Athletes achieved a greater work load and pVO2 compared with DCM patients 

(supplementary Table 2). There were no significant differences in any cardiopulmonary 

parameters between both athletic groups.  A significant proportion (n=25; 71.4%) of DCM 

patients had a normal pV0215 with 7(20%) achieving a pV02 of >120% predicted. Of this 7, 

all had ventricular arrhythmias on Holter and all but one had the presence of late 

enhancement on CMR. None of the patients with DCM achieved a pV02 of ≥57ml/kg/min 

compared with 10(40%) ‘grey-zone’ athletes. 
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Discriminating ability of echocardiographic parameters

Receiver-operator characteristic curve analysis showed peak LV ejection fraction ≤63% 

(AUC 0.904; p<0.0001) and change LV ejection≤11% (AUC 0.906; p<0.0001) predicted 

DCM with good sensitivity and excellent specificity (Table 3). Step-wise logistic regression 

model including a change in LV ejection fraction ≤ 11%, peak LV ejection fraction ≤ 63%, 

peak stroke volume ≤ 94 ml and peak S’≤ 21 cm/s as predictors of DCM, revealed a that 

change in LV ejection fraction ≤11% independently predicted DCM.  The final model had a 

Nagelkerke R2 of 0.677. 
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Table 3: Receiver operator characteristic curve analysis evaluating biomarkers and 

structural and functional stress echocardiographic and cardiopulmonary exercise test 

parameters to predict dilated cardiomyopathy. 

Variable AUC Sensitivity Specificit

y

P value

NT-proBNP (>75 pg/ml) 0.645 48.6% 96.0% 0.045

E’ Lateral Peak (<25cm/s) 0.638 78.8% 48.0% 0.066

S’ Lateral Peak (≤21cm/s) 0.792 84.4% 64.0% <0.001

Stroke Volume Peak (≤94ml) 0.754 62.9% 96.0% <0.001

LV Ejection Fraction (≤63%) 0.904 82.9% 92.0% <0.0001

Change in left ventricular ejection 

fraction from baseline to peak 

exercise (≤11%)

0.906 77.1% 96.0% <0.0001

AUC=area under the curve; LV=left ventricular.

21



Inter-observer variability

Agreement between observers for the echocardiographic variables was assessed on a random 

sample of 40 stress echocardiograms using intra-class coefficient between the primary 

observer and an independent observer blinded to the initial readings and other results. The 

intra-class coefficients for the assessment of baseline LV ejection fraction, the difference 

between baseline to peak LV ejection fraction and peak LV ejection fraction were 0.734, 

0.877and 0.899 respectively. 

DISCUSSION

To our knowledge this is the first study which has comprehensively assessed the utility of a 

cascade of investigations to differentiate between the physiological ‘grey-zone’ and 

morphologically mild DCM. Our results reveal the combination of investigations including 

NT-proBNP, electrocardiogram, Holter and CMR and will fail to diagnose DCM>30% of 

cases. Whereas NT-proBNP>125 pg/ml was highly specific for pathological LV systolic 

impairment, less than a third of our DCM cohort showed these values. The electrocardiogram

plays a fundamental role in the diagnosis of hypertrophic and arrhythmogenic 

cardiomyopathy, in which it is abnormal in 9016% and 80%17 of individuals; however only 

40% of our active individuals with DCM demonstrated pathological electrocardiograms7 

Indices of diastolic and longitudinal function.

Baseline echocardiographic markers of systolic and diastolic function as assessed by E’ and 

S’ at the lateral wall had a sensitivity of 51.4% and 88.6% respectively in differentiating 

between ‘grey-zone’ athletes and DCM patients. Although GLS was higher in the ‘grey-zone’
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athletes in the compared to DCM patients, more than half had low values5. Our experience 

suggests that this particular modality has limited value when used in isolation in this context.

Exercise stress echocardiography

Our results support the utility of exercise echocardiography in differentiating between these 

entities. Failure to increase LV ejection fraction by>11% at peak exercise is a useful marker 

of impaired contractile reserve. Only 6 patients with DCM were able to generate a LV 

ejection fraction >63% at peak exercise compared to more than 90% of the ‘grey-zone’ 

athletes and all of the athletic controls; therefore is an additional marker of pathology. The 

sensitivity of either of these parameters was around 80% and the specificity around 90%. 

Combining these parameters to define a ‘normal’ test reduces the false negatives to 5(14.2%) 

with only 2 false positives (8%). 

There is limited data used to define contractile reserve in health and this has predominantly 

focused on pharmacological and non-echocardiographic methods13,18,19 .  We used exercise 

echocardiography as it is more physiological and exercise echocardiography is readily 

available to the physician. Our findings are in-keeping recent study using exercise CMR 

which also found that a failure to increase LV ejection fraction by >11% at peak exercise 

predicted DCM20.

Cardiopulmonary exercise testing

Although all but one of the ‘grey-zone’ athletes showed normal pV02, we observed normal 

pV02 in three quarters of the DCM cohort. Our ROC curves showed that a pV02≤40.7ml/min/

kg had a sensitivity of 80.0% and specificity of 92% for predicting DCM. Superior pV02 
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>120% predicted was seen in a fifth of our cohort which is similar to a published study 

looking athletes with hypertrophic cardiomyopathy21.All of the individuals with a 

pV02>120% predicted had ventricular arrhythmias and most had late enhancement on cardiac

MRI. Therefore, highly trained individuals may have excellent functional capacity despite 

significant pathology

Cardiovascular Magnetic Resonance

Cardiovascular magnetic resonance is the gold-standard for the assessment of 

cardiomyopathy, with mid-wall late enhancement in individuals with an increased LV 

volume and depressed LV ejection fraction being almost diagnostic for DCM. In our study 

CMR identified around 50% patients with DCM, suggesting that baseline CMR is less 

predictive than stress echocardiography in differentiating between physiology and pathology. 

Although we did not utilise T1 and T2 mapping techniques, preliminary data suggests  these 

techniques are discriminatory in distinguishing athlete’s heart from DCM22.

Algorithm

We have produced a clinical algorithm for assessing these individuals (Figure 3). The 2 

individuals without cardiac MRI have been excluded from analysis. Our results demonstrate 

the combination of NT-proBNP, ECG and Holter monitoring would confirm DCM in <60% 

of cases. An additional exercise echocardiogram, would diagnose in 31 (91.2%) cases. A 

subsequent CMR could exclude pathology in another 3% of cases without any impact on the 

false positive results. Overall, the algorithm has a sensitivity of 94.1%, specificity of 83.3%, 

positive predictive value of 88.9% and negative predictive value of 90.9%. Although 
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cardiopulmonary exercise testing may add value >70% of asymptomatic DCM patients had a 

normal pV02 therefore we would not recommend this investigation in isolation.

Limitations

Study participants were predominantly white and exclusively male therefore results may not 

readily be applicable to the female or black population. Given the rarity of patients with 

DCM who are asymptomatic and athletes in the ‘grey-zone’, the numbers studied are 

relatively small. Due to the cross-sectional nature of the study we are unable to confidently 

exclude the development DCM in the ‘grey-zone’ athletes in the future. 

CONCLUSION

When attempting to differentiate between physiological adaptation from mild DCM a 

combination of NT-proBNP, electrocardiogram, Holter monitoring, baseline 

echocardiographic and CMR parameters have a modest discriminating value; however 

exercise echocardiography has good sensitivity and excellent specificity. 
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Figure titles and legends:

Figure 1:

(a) Change in left ventricular ejection fraction from baseline to peak exercise in athletes 

in the ‘grey-zone’ (left), athlete controls (centre) and individuals with morphologically 

mild DCM (right). Each circle represents an individual and the horizontal line represents the

mean and the 95% confidence intervals. Almost all the athletes in both cohorts increase the 

LV ejection fraction by >11% compared to the DCM cohort who demonstrate a heterogenous

response. DCM=dilated cardiomyopathy; LVEF=left ventricular ejection fraction.

(b) The change in ejection fraction from baseline to peak exercise. The ‘grey-zone’ 

athletes are on the left, the DCM cohort on the right and the control athletes in the centre. All 

the athletes demonstrate an increase in LV ejection fraction compared to the DCM patients 

who show a heterogenous response. 

DCM=dilated cardiomyopathy; LVEF=left ventricular ejection fraction.

Figure 2: Peak exercise LV ejection fraction. This figure shows peak exercise LV ejection 

fraction from baseline to peak exercise in ‘grey-zone’ athletes (left), control athletes (centre)  

and DCM cohort (right). Each circle represents an individual and the horizontal line 

represents the mean and the 95% confidence intervals. All the athlete controls and almost all 

the ‘grey-zone’ athletes increase their LV ejection fraction to >63% from baseline to peak 
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exercise which is in contrast to the DCM cohort. DCM=dilated cardiomyopathy; LVEF=left 

ventricular ejection fraction.

Figure 3:

The figure reveals a stepwise clinical algorithm for differentiating between physiological left 

ventricular dilatation and morphologically mild DCM in apparently healthy active young 

individuals with a dilated left ventricle and borderline/low left ventricular ejection fraction, .  

The number and percentages of both cohorts with abnormal investigations is shown with the 

cumulative true negative and true positive results on the extreme right and left respectively. 

The overall sensitivity of the algorithm is 94.1% with a specificity of 83.3%. The positive 

predictive value is 90.3% with a negative predictive value of 94.7%.

CMR=cardiovascular magnetic resonance; DCM=dilated cardiomyopathy; 

ECG=electrocardiogram; LV=left ventricular; LVEF=left ventricular ejection fraction; 

NPV=negative predictive value; NT-proBNP=N-terminal pro-brain natriuretic peptide; 

PPV=positive predictive value; TN=true negatives; TP=true positives.
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Figure 1(a): Change in left ventricular ejection fraction from baseline to peak exercise 

in athletes in the ‘grey-zone’ (left), athlete controls (centre) and individuals with 

morphologically mild DCM (right). Each circle represents an individual and the horizontal 

line represents the mean and the 95% confidence intervals. Almost all the athletes in both 

cohorts increase the LV ejection fraction by >11% compared to the DCM cohort who 

demonstrate a heterogenous response. DCM=dilated cardiomyopathy; LVEF=left ventricular 

ejection fraction.
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Figure 1(b): The change in ejection fraction from baseline to peak exercise. The ‘grey-

zone’ athlete cohort is represented on the left, the DCM cohort on the right and the control 

athletes in the centre. All the athletes demonstrate an increase in LV ejection fraction 

compared to the DCM patients who show a heterogenous response. 

DCM=dilated cardiomyopathy; LVEF=left ventricular ejection fraction.
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Figure 2: Peak exercise LV ejection fraction. This figure shows peak exercise LV ejection 

fraction from baseline to peak exercise in ‘grey-zone’ athletes (left), control athletes (centre)  

and DCM cohort (right). Each circle represents an individual and the horizontal line 

represents the mean and the 95% confidence intervals. All the athlete controls and all but 2 of

the athletes in the ‘gray-zone’ increase their LV ejection fraction to >63% from baseline to 

peak exercise which is in contrast to the DCM cohort in which only 4 are able to do this. 

DCM=dilated cardiomyopathy; LVEF=left ventricular ejection fraction.
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Figure 3:

The figure reveals a stepwise clinical algorithm for differentiating between physiological left 

ventricular dilatation and morphologically mild DCM in apparently healthy active young individuals 

with a dilated left ventricle and borderline/low left ventricular ejection fraction, based on our findings 

from this study.  The 2 individuals without cardiac MRI have been removed from this analysis. The 

number and percentages of both cohorts with abnormal investigations is shown with the cumulative 

true negative and true positive results on the extreme right and left respectively. The overall 

sensitivity of the algorithm is 94.1% with a specificity of 83.3%. The positive predictive value is 

88.9% with a negative predictive value of 90.9%.

CMR=cardiovascular magnetic resonance; DCM=dilated cardiomyopathy; ECG=electrocardiogram; 

LV=left ventricular; LVEF=left ventricular ejection fraction; NPV=negative predictive value; NT-

proBNP=N-terminal pro-brain natriuretic peptide; PPV=positive predictive value; TN=true negatives;

TP=true positives.
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