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Title:  A new role under sortilin’s belt in cancer. 

Abstract:  

 

The neurotensin receptor-3 also known as sortilin was the first member of the small family of 

vacuolar protein sorting 10 protein domain (Vps10p) discovered two decades ago in the 

human brain. The expression of sortilin is not confined to the nervous system but sortilin is 

ubiquitously expressed in many tissues. Sortilin has multiple roles in the cell as a receptor or a 

co-receptor, in protein transport of many interacting partners to the plasma membrane, to the 

endocytic pathway and to the lysosomes for protein degradation. Sortilin could be considered 

as the cells own shuttle system. In many human diseases including neurological diseases and 

cancer, sortilin expression has been shown to be deregulated. In addition, some studies have 

highlighted that the extracellular domain of sortilin is shedded into the culture media by an 

unknown mechanism. Sortilin can be released in exosomes and appears to control some 

mechanisms of exosome biogenesis. In lung cancer cells, sortilin can associate with two 

receptor tyrosine kinase receptors called the TES complex found in exosomes. Exosomes 

carrying the TES complex can convey a microenvironment control through the activation of 

ErbB signaling pathways and the release of angiogenic factors. Deregulation of sortilin 

function is now emerging to be implicated in four major human diseases- cardiovascular 

disease, Type 2 diabetes mellitus, Alzheimer’s disease and cancer. 
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Exosomes discovery timeline:  Exosomes are small extracellular vesicles (“cell bubbles”) 

secreted by most eukaryotic cells. They range from 30 to 100nm in size found in the cell 

culture media and many biological fluids such as blood, saliva and urine, and hence have a 

potential involvement in intercellular communication. They were originally described in 1983 

such as small released vesicles from the multivesicular body (or also known as multivesicular 

late endosome) fusion with the plasma membrane during red blood cell maturation 
1
 (Figure 

1). For many years these vesicles were believed to be the cell’s own garage disposal route. 

Some years later, these scarcely understood microvesicles have been called exosomes. 
2
 Since 

the last decade, exosomal research is growing exponentially, especially after the discovery of 

distinct subsets of RNAs into the exosomal cargo 
3
, which has enriched the knowledge of the 

molecular cocktail that may be shuttled by exosomes. In doing so, many laboratories have 

investigated the close link between exosome secretion and disease, indicative but not 

exhaustive, such as cardiomyocyte hypertrophy 
4
, diabetes 

5
 and cancer. 

6-8
 Remarkably, 

cancer cells may take advantage of exosome secretion in order to control the tumor 

microenvironment, and could endorse thereby the aggressiveness and the tumorigenic features 

of the tumor, such as angiogenesis 
6
, invasion 

8, 9
 and therapeutic escape. 

7
 Encouragingly, 

exosomes are shedding light on their utility as disease diagnostic markers 
10, 11

, as well as in 



the development of novel cancer treatment 
12

, and could take the lion’s share of this major 

challenge. 

 

Sortilin:  Sortilin is a newly identified member of a small family of proteins characterized to 

contain a Vps10p domain. Sortilin can function alone or as part of a co-receptor as well as a 

transporter of proteins from the trans-Golgi network (TGN). 
13

 As a co-receptor of p75 

neurotrophin receptor (p75
NTR

), sortilin binds the immature, pro-forms of nerve growth factor 

(NGF) or brain derived neurotrophic growth factor (BDNF) and induces apoptosis in neuronal 

cells. 
14

 Sortilin’s cytoplasmic tail shares similarity to the mannose-6-phosphate receptor with 

colocalisation to the endosomes and endosome to TGN cargo vesicles. 
15

 In addition, 

sphingolipid activator proteins, acid sphinomyelinase, and cathepsin D and H have been 

shown to be trafficked by sortilin to the lysosomes. 
16-18

 These studies demonstrate that 

sortilin has a dual role both in endocytosis and in receptor trafficking allowing the correct 

sorting of ligands from the cell surface to lysosomes and the traffic of pro-neurotrophins 

(proNTs) such as the neuropeptide neurotensin (NT), proNGF and proBDNF. 
14, 19-23

 

 

Role of sortilin in cancer:  Given the important function of pro-neurotrophin receptors such 

as sortilin play in cellular development, cell survival and death. 
24

 An imbalance in cellular 

homeostasis can be affected by neurotrophin signalling which could lead to the progression of 

cancer. 
24, 25

 Not surprising, sortilin expression is elevated in several human cancer cells 

including brain, prostate, colon, pancreas, skin, pituitary. 
25-29

 Some of the initial studies 

demonstrated that a furin-cleaved form of sortilin could bind NT at the cell surface 
19, 20

 and 

traffic NT to the endocytic pathway whilst maintaining a constant level of sortilin expression 

at the cell surface. 
21

 In a later study, sortilin was shown to be released from cells requiring 

cleavage of sortilin luminal domain by a protein kinase C-dependent protease. 
30

 However, the 

mechanism used for sortilin release from these cells and the consequence to the 

microenvironment was uncertain. In colon cancer, sortilin forms a dimeric complex with 

NTSR1 which is internalised upon NT stimulation. 
31

 The binding of NT to sortilin-NTSR1 

and trafficking of this complex induces signaling pathways by modification of mitogen-

activated protein (MAP) kinases and the turnover of phosphoinositide (PI) facilitated by 

NTSR1. 
31

 It is not known why sortilin is released from cancer cells but evidence is now 

emerging to implicate that sortilin may modify the neighbouring cells/environment. Massa 

and colleagues studied the human adenocarcinoma epithelial cell line (HT29) to assess the 

ability of soluble sortilin to be released and internalised using radioreceptor assays and 

microscopy. 
32

 The binding of soluble sortilin is independent from the transactivation of the 

epidermal growth factor receptor (EGFR) resulting in raised intracellular calcium 

concentration and significant activation of PI3 kinase pathway through Akt phosphorylation 

dependent upon of FAK/Src phosphorylation. 
32

 The PI3 kinase pathway is implicated in the 

survival mechanisms of cancer cells. 
33

 The action of soluble sortilin could be explained to 

have an autocrine/paracrine function.  



A number of reports have hinted that NT mediated by sortilin stimulated by an 

autocrine/paracrine function could be a mechanism associated with the tumorigenesis. 
26-28

 

The cell responds to two types of neurotrophin signal, one elicited by the p75
NTR

 and the other 

by Trk tyrosine kinase receptors. 
34

 Sortilin can interact with either of these receptors but the 

consequential outcome affects cell survival. Sortilin traffics from the TGN to the cell surface 

through the secretory pathway where it interacts with p75
NTR 

that can signal a pro-

neurotrophin-induced cell death. The signals induce cell death by the pathway of c-Jun N-

terminal kinase 3 and caspases 3, 6 and 9. 
35-38

 Trk interaction with sortilin promotes cell 

survival and in the case of neuronal cells stimulates cell survival, differentiation, innervation 

and plasticity /effect cell survival. Sortilin can associate with all the Trk receptors (A, B and 

C) 
24, 25

 implicating an important role in cell survival that is disrupted in human disease.  

 

Sortilin is a key component of exosome biogenesis. Unprecedented reports have found that 

sortilin expression level is associated to different types of cancer. 
26-28

 Some of these studies 

have implicated that sortilin could play a role in the tumorigenesis process. 
26, 27

 Our team has 

been interested in these links between sortilin and cancer and at the same time the cross-talk 

between the epidermal growth factor receptor (EGFR) and tyrosine kinase receptor (Trk) 

signalling pathways. 
13

 We have discovered that sortilin can form a novel complex with TrkB 

and EGFR found in exosomes that are released from lung cancer cells conveying a 

microenvironmental control upon endothelial cells. 
39

 In this study, we examined closely the 

secretion mechanism utilised for the extracellular domain of sortilin from human lung cancer 

cells (A549) and the effect on the microenvironment. We show for the first time that sortilin 

uses a ‘canonical pathway’ and can be found in exosomes. We demonstrate that sortilin is a 

key component of exosomes mediating communication between A549 and endothelial cells 

(Figure 2). Sortilin is already known to play a prime function in cancer cells; however we 

have reported herein that it plays a new role in both the assembly of a tyrosine kinase complex 

and its exosome release. This novel complex called ‘TES’ complex expressed by exosomes 

results in the linkage of two tyrosine kinase receptors, TrkB and EGFR with sortilin. We 

demonstrate in this study that the TES complex coveys a control on the microenvironment i.e. 

endothelial cells and initiates the activation of angiogenesis via exosome transfer. Therefore, 

our data suggested that sortilin and its partners have a paracrine through exosome transfer and 

control of the microenvironment. This novel complex containing sortilin could play the role 

as a molecular switch in cancer progression by promoting angiogenesis. 

The unanswered questions of sortilin’s role in exosome/EV biogenesis. It is well 

appreciated that MVBs have two fates in the cell; they act as a platform to deliver cargo 

destined for lysosome-mediated degradation or as a portal to release ILVs/exosomes from the 

cell. The endosomal sorting of cargo is mediated by a sequence events involving four 

multiprotein complexes (ESCRT0, -I, -II, and –III). The clathrin coats condense and cluster 

cargo at the cytosolic face of the MVB membrane ready to be captured and recruited to ILVs. 

These early events of cargo recruitment are assisted by the ESCRT machinery, ESCRT-0 and 

ESCRT-I. In a previous study, the HRS gene found in the ESCRT-0 complex could be 

involved in the formation and secretion of exosomes. 
40

 Knocking down some of the genes 



that encode for components of the ESCRT-0 complex (HRS, STAM1 or TSG101) perturb 

exosome release and affect the size and/or protein content of the ILVs demonstrating an 

important role played by the ESCRT complex. 
41

 Our data suggested a possible unreported 

new role for sortilin as a possible cargo recruiter to ILVs through cargo recognition and 

sorting at the MVB. The challenge remains to determine several questions: (1) what is the 

intracellular route of sortilin trafficking through the secretory pathway; (2) at what stage is 

sortilin important for ILV formation at the MVB; (3) what is sortilin’s mechanism to recruit 

cargo or the regulation of ILV formation; (4) and at the same time whether sortilin released as 

exosomes from cells plays a role in the angiogenesis process. Furthermore, an imbalance in 

sortilin expression in cancer could alter the content of exosomes regulating the delivery of 

both a genomic and proteomic content to the target cells. To this end, the challenge remains to 

define the exact role of sortilin in cancer thus providing clues to sortilin’s global role in other 

types of human diseases. 

  



Figure 1 Main discoveries in extracellular vesicle biology 

Timeline showing the main discoveries in the extracellular vesicle research. 

 

Figure 2- Role of sortilin in EV biogenesis 

Sortilin is initially synthesised in the constitutive secretory pathway as a precursor encoding a 

short propeptide sequence. The propeptide is cleaved by pro-protein convertases at the TGN 

allowing sortilin to enter the secretory pathway (stage 1). There are a number of likely routes 

that sortilin can be trafficked. Sortilin can be trafficked along a number of possible routes 

such as trafficking to the plasma membrane through constitutive secretory vesicles (stage 2). 

Alternatively, sortilin could be anterograde transported from the TGN by itself or with its 

binding partners to the early endosomes (stage 3). Sortilin present at the cell surface or in the 

endocytic pathway could be cleaved by disintegrin and metalloproteinase domain-converting 

protein (ADAM) 10 or ADAM17, and followed by γ-secretase (stage 5). Following 

endoproteolytic cleavage, sortilin could form a heterotrimeric complex with TrkB and EGFR 

(TES complex) which is internalized through a clathrin-dependent endocytosis process into 

early endosomes (stage 6). At the plasma membrane, the purple spots represent clathrin 

associated with vesicles (clathrin-coated vesicles [CCV]) or the bilayered clathrin coats at the 

endosome. The intraluminal vesicles (ILV) are formed by an invagination event at the 

membrane of the late endosomes/multivesicular body (MVB). Sortilin may play a role in the 

recruitment of certain cargo such as its binding partners- TrkB and EGFR, which could be an 

ESCRT-dependent mechanism. The MVB and its content could be degraded via the 

lysosome-mediated pathway for degradation or alternatively the MVB are transported to the 

cell surface were they dock at the plasma membrane requiring Rab27A to release the vesicles 

into the extracellular space (stage 7). The exosomes carrying the TES complex could be 

released and taken up in the target cell. The uptake of TES-containing exosomes initiates 

cellular communication through upregulation of cell signaling events by the induction of cell 

survival through the EGFR cascade and the angiogenesis process (stage 8). 
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