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Abstract  
 
Protein misfolding disease can be loosely separated into two groups: the non-transmissible 

amyloid diseases (e.g. Alzheimer’s and Huntington’s) and the transmissible amyloid 

diseases (e.g. Scrapie and Kuru). The amyloid and prion diseases present the same 

misfolding mechanism and thus prions can be used to recapitulate the biochemical 

hallmarks of amyloid disease. The budding yeast Saccharomyces cerevisiae is a popular 

and valuable model for the study of prions. Whilst much progress has been made over the 

last century, our understanding of the specific mechanisms which underpin amyloid and 

prion disease is still incomplete. 

 
The aim of this study was to enhance current understanding about the metabolic 

consequence of misfolded proteins. Yeast strains carrying different conformational variants 

of the known prion forming Rnq1 protein were used to obtain metabolic profiles and identify 

key perturbations. This approach began by determining a metabolomic method suitable for 

use in S. cerevisiae. Ultra-High-Performance Liquid Chromatography Mass Spectrometry 

(UHPLC-MS) was used to establish a sample preparation method that accurately revealed 

the metabolic state of S. cerevisiae. It was found that culturing yeast cells in a liquid medium 

and extracting metabolites with an acetonitrile: water (50:50) mix most accurately reported 

on the biological conditions imposed. The endogenous cellular role of the Rnq1 protein was 

studied, using a strain of S. cerevisiae in which the RNQ1 gene had been deleted (∆rnq1). 

A robust data analysis methodology was established and applied to the data obtained, 

utilising cross comparison of two widely used metabolomics analysis programs. Then, 

biomarkers and metabolic pathways associated with the presence of the Rnq1 protein were 

investigated, comparing [RNQ+] and [rnq-] cells. The toxicity of Rnq1 protein overexpression 

in a [RNQ+] background was explored, via the expression of the RNQ1 gene.  

 
These studies reveal that the presence of the Rnq1 protein downregulates the ubiquinone 

biosynthesis pathways within cells, suggesting that the Rnq1 protein may play a 

lipid/mevalonate-based cytoprotective role as a regulator of ubiquinone production.  Distinct 

perturbations in sphingolipid metabolism were observed in [RNQ+] cells, with significant 

downregulation in metabolites within these pathways, providing new evidence of metabolic 

similarities between yeast and mammalian cells as a consequence of prion presence. 

Metabolic perturbations relating to general and specific stress responses caused by 

oxidative stress in the presence and absence of prions were also obtained. This work 

establishes the application of metabolomics as a tool to investigate prion-based phenomena.    
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Chapter One - Introduction  
 
1.1. Prions 

1.1.1. Protein folding 
The term ‘protein folding’ refers to the process whereby a protein acquires its native 

conformation from a completely unfolded state. Efficient protein folding is critical to an 

organism’s health, however the complexities of how cells orchestrate this folding has long 

remained a mystery. 

 

Genes, via translation, dictate the size and order of the 20 commonly occurring amino acids 

available with which to build a simple, linear, polypeptide. However, in reality these 

polypeptides are anything but simple given the incomprehensible magnitude of the variety 

of amino acid combinations and chain lengths that exist. Synthesis of polypeptides is not 

enough to create functional proteins and despite their already abundant complexity, these 

polypeptides fold into three-dimensional conformations aided by a large number of catalysts 

and molecular chaperones (Anfinsen et al. 1961). Even after this process, the native 

structure of the protein remains undetermined. Quite how proteins achieve their native 

conformations from the relatively simplistic genetic codes underlying this process remains 

one of the most difficult questions of modern science (Dill and MacCallum, 2012; 

Vendruscolo et al. 2003; Dobson 2003). 

 

1.1.2. Understanding and modelling protein folding 
It was once thought that proteins fold through a distinct pathway via distinct intermediate 

states (Figure 1.1. A). This classical or Levinthal view was drawn on the basis that undirected 

folding would result in randomised searching for proteins to take their native form through 

an extraordinary number of structural possibilities, given that this would take an 

extraordinarily long time, it was concluded that proteins must fold via predetermined 

pathways (Levinthal, 1968). However, upon experimentation, common intermediate 

structures could not be identified to support this theory and so further development resulted 

in the ‘new view’ hypothesis that moved the model from the two-dimensional pathway to a 

three-dimensional funnel-shaped energy landscape (Dill and Chan, 1997; Baldwin, 1994; 

Anfinsen et al. 1961). This hypothesis was based on the concept that the native form of a 

protein corresponds to the most stable form available given its structure and cellular 

conditions. In essence, the relative position and charge-charge interactions between amino 
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acid residues carry with them an inherent energy cost; therefore, those interactions that 

result in the lowest energy structure shape the folding/energy landscape and hence result 

in the native conformation (Figure 1.1. B) (Makhatadze, 2017). Although in vitro, this 

mechanism of folding occurs almost instantaneously, it is understood to be a fluid process 

requiring many stages including the formation of a folding core nucleus made up of a very 

small number of key residues within the polypeptide. This core then forces the surrounding 

amino acids into a native like form, coalescing the remaining protein around the nucleus and 

hence acquiring the native structure (Fersht, 2000). An important consideration within this 

process are the thermostable forces that shape the protein folding landscape which are 

varied and complex. Often there is only a modest gain in free energy associated with the 

acquisition of the native form compared with the still relatively low energy of a variety of 

misfolded states (Lindquist and Kelly, 2011). 

 

Experimental evidence for such folding behaviour has been extremely difficult to obtain, as 

the rate of decay of most intermediates is less than 1 second and well beyond the 

capabilities of most structural biology methods such as Nuclear Magnetic Resonance (NMR) 

and crystallography. However, thanks to advancing computational power, NMR, Mass 

spectrometry (MS) technology and Hydrogen Exchange (HX) pulse labelling have been 

employed to monitor hydrogen exchange, making it possible to explore these theories 

macroscopically (Englander and Mayne, 2011). Interestingly, this research suggests that 

proteins are composed of separately cooperative ‘foldon’ building blocks which repeatedly 

fold and unfold throughout their journey to their native form (Englander and Mayne, 2011). 

Englander and Mayne, (2011) states that these experiments show ‘foldons’ providing 

structural guidance and a free energy bias which ultimately leads to native formation, 

supporting the ‘new view’ hypothesis. However, the formation of ‘foldons’ in their small 

cooperative units would not fulfil the energy bias required by such a model, suggesting that 

protein folding theories may necessitate one another and ultimately that protein folding may 

occur via a combination of both theories. 
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A) 

 
 
B) 

 

 
 
 
Figure 1.1. The classical model of protein folding alongside the Anfinsen 
thermodynamic model of protein folding within the context of energy requirement. A) 
Shows the classical view or model of defined protein folding B) Shows the Anfinsen 
thermodynamic model of protein folding (adapted from Englander and Mayne (2011))  
 
It is important when considering the native conformation of a protein that it may operate a 

suite of functions within cells and thus will need to be flexible and dynamic. Thus, the ‘correct’ 

shape for a protein to carry out its role within the cell may be inherently disordered. Whilst 

some structured proteins require a well-defined three-dimensional shape to fulfil their cellular 

roles, it is possible for proteins to adopt a far more disordered structure and still function 

within cells (Tompa, 2012). Proteins range in shape from structured proteins, which adopt 

well-formed tertiary structures, to intrinsically disordered proteins (IDPs), which lack a 

tertiary structure of any kind (Figure 1.2.) (van der Lee et al. 2014). 
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Figure 1.2. Five key areas in the spectrum of possible protein structures ranging from 
structured to disordered. From left to right the variation in protein structure from well-
defined three-dimensional conformations to intrinsically disordered proteins (adapted from 
van der Lee et al. (2014))  
 
 

IDPs and their intermediates: intrinsically disordered regions (IDRs), are not capable of 

forming tertiary structures due to the presence of non-biochemically compatible amino acids 

occurring within close proximity of each other (van der Lee et al. 2014). Whether IDPs or 

IDRs form generally depends on the size of this region within the protein. IDP formation is 

normally found when the protein lacks a region of bulky hydrophobic amino acids and hence 

is unable to form a folding core nucleus (Romero, 2001). Once considered to be solely 

associated with disease phenotypes, investigation has showed IDPs and IDRs to be present 

in large numbers within protein-encoded sequences of the human genome. In fact, 44% of 

open reading frames contain disordered regions of greater than 30 amino acids (Oates et 

al. 2013). The prevalence of these disordered regions presents challenges to our 

understanding of protein function and the classical ideas about protein structure. It is 

apparent that whilst knowledge about protein folding continues to increase, much remains 

unknown, uncharacterised, and misunderstood about this fundamental process (van der Lee 

et al.  2014; Oates et al. 2013; Babu et al. 2012). 

 

1.1.3. Protein folding complications 
It is evident that proteins face many trials throughout their journey to their native 

conformation. For example, in vivo, protein folding is unaided by the relative ‘pollution’ of the 

crowded cellular environment. The requirement for this complex process to be completed 

all the while being bombarded by macromolecules such as proteins, polysaccharides and 

lipids unsurprisingly causes complications (White et al. 2010; Ellis and Minton, 2006). These 

obstacles mean that many proteins fail to reach their native conformations or misfold into 

stable non-native ones. 
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Furthermore, protein folding occurs in a variety of cellular locations, some of which are highly 

specialised. These different cellular environments, such as the ER (endoplasmic reticulum) 

and the mitochondria, are incredibly variable in their biochemical nature and the cell must 

tackle these changing environments with each presenting a different set of problems for 

protein folding (Valastyan and Lindquist, 2014; White et al.  2010; Ellis and Minton, 2006). 

 

1.1.4. Protein folding solutions 
Many cellular defence mechanisms exist against misfolded proteins. One of these defence 

strategies is the constitutive expression of molecular chaperones throughout the cell. 

Playing a key role in correct protein folding and aiding misfolded proteins to regain their 

correct conformation, molecular chaperones respond to perturbations in protein 

homeostasis and are dynamically upregulated in response to the accumulation of misfolded 

or unfolded proteins (Kim et al. 2013). This response occurs across the cell but the most 

well characterised of these ‘regulation events’ occurs in the ER and the nuclear and cytosolic 

compartment. Known as the unfolded protein response (UPR) and heat shock response 

(HSR) respectively, it was thought that the upregulation of molecular chaperones was an 

emergency-based response which occurred as a result of environmental stress. 

Consequently, it is now understood that this is an ever-present dynamic process, constantly 

monitoring and responding to small changes in protein homeostasis (Hartl et al. 2011). 

 

When the role of the molecular chaperone becomes obsolete and the misfolded protein 

cannot be refolded into its native form, secondary systems such as autophagy and the 

ubiquitin-proteasome system (UPS) are deployed to break down and recycle these 

misfolded proteins. This is not performed lightly; proteins take considerable energy to build, 

hence their breakdown is a costly but necessary expenditure. Primarily the UPS acts as the 

protein degradation system for short-lived proteins, fine tuning the background levels of 

regulatory proteins and maintaining the availability of amino acids during times of high stress 

(Nedelsky et al.  2008). Autophagy has historically been thought to play a role in the 

degradation of large proteins mainly during chronic stress but recently it has been found that 

autophagy plays a role in the defence against diseases caused by protein misfolding, equal 

to or greater than the UPR. Further work to understand these complex mechanisms is 

ongoing (Dasuri et al. 2013; Nedelsky et al. 2008). 
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1.1.5. Protein misfolding and aggregation 
Given the inherent complexity and breadth of the process of protein folding, there is ample 

opportunity for mistakes within this process to occur. Importantly these mistakes may have 

the opportunity to lead to a disease phenotype (Valastyan and Lindquist, 2014; Dobson, 

2003). The energy landscape which sculpts protein folding is a sensitive and dynamic 

process and perturbations can have major effects resulting in protein misfolding events. 

Such misfolding events are fundamentally rooted in pathological conditions (Figure 1.3.) 

(Valastyan and Lindquist, 2014; Kim et al. 2013). 

 

 

 
 
Figure 1.3. Six of the main protein structures ranging from unfolded to insoluble 
amyloid fibrils in the context of the cellular energy landscape. Depicts the energy 
landscape of protein folding and aggregation. Native state formation is shown on the left and 
‘other’ non-native state formation is shown on the right. (adapted from Raskatov and Teplow 
(2017)) 
 
 

Destabilising mutations within the protein sequence (sometimes appearing as single 

nucleotide polymorphisms or as large repeat areas of genome) are a known cause of protein 

misfolding. Additionally, the IDRs which are now considered a ‘normal’ part of protein folding, 

can sometimes be associated with a disease phenotype (Valastyan and Lindquist, 2014; 
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van der Lee et al. 2014; Tompa, 2012). In general, it has been found that protein misfolding 

occurs when the native structure of the protein is perturbed by underlying mutations in the 

corresponding genetic code, either introducing or increasing the number of non-

biochemically compatible amino acids occurring within close proximity to one another.  

 

Non-biochemical compatibility is defined here as a region within a protein were there are 

many polar amino acids positionally near many hydrophobic amino acids, creating instability 

within a protein’s structure. Many of these regions are known to be rich in the polar amino 

acid’s asparagine, glutamine, and serine. It is known that the introduction of these amino 

acids (especially in high quantity, through large repeat sections of genome) reduces the 

solubility of the protein in question and increases the number of hydrogen and salt bridges 

throughout the protein, affecting secondary structure and making it much harder for the cell 

to degrade (Trevino et al. 2007; Perutz et al. 2002). 

 

Table 1.1. Nature, name and associated three and single letter codes of the 20 most 
common amino acids.  
 

Nature Name Three letter code Single letter code 
Charged Arginine Arg R 

Lysine Lys K 
Aspartic Acid Asp D 
Glutamic Acid Glu E 

Polar Glutamine Gln Q 
Asparagine Asn N 
Histidine His H 
Serine Ser S 
Threonine Thr T 
Tyrosine Tyr Y 
Cysteine Cys C 
Methionine Met M 
Tryptophan Trp W 

Hydrophobic Alanine Ala A 
Isoleucine Ile I 
Leucine Leu L 
Phenylalanine Phe F 
Valine Val V 
Proline Pro P 
Glycine Gly G 

 
 
The 20 most common amino acids, their names, three letter code and single letter code 
listed by their biological nature 
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Often with IDRs that cause mammalian disease, the normal native form of the protein will 

have been faithfully made by cells for years and then, via causes unknown, the IDRs 

suddenly start to have an effect on the overall structure of the protein causing it to misfold 

into an abnormal conformation. The presence of these misfolded proteins not only causes 

the protein to lose its functional role within the cell, but it initiates a cascading reconfiguration 

of the remaining native protein, causing misfolding and acquisition of the abnormal 

conformation.  These misfolded proteins then aggregate in cells in many oligomeric stages, 

eventually leading to the formation of large amyloid fibres (Figure 1.4.). 

 

 
 
 
Figure 1.4. The sequence of events through time that occur when a protein misfolds. 
This figure depicts the current understanding of the sequence or mechanism of protein 
misfolding events through time which ultimately lead to amyloid formation.  
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These so called ‘amyloids’ (meaning starch-like) appear (as visualised by iodine staining 

under light microscopy) as fibril or thread-like (Hardy and Selkoe, 2002; Caughey and 

Lansbury, 2003). Closer examination using cryo-electron microscopy and solid-state NMR 

has revealed that amyloid fibrils are a few nanometres in diameter but can be micrometres 

in length. They are highly ordered in a cross-β pattern and all amyloids are surprisingly 

generic irrespective of the native protein which has misfolded to create them (Fitzpatrick et 

al. 2013; Dobson, 2003; Petkova et al. 2002). This finding suggests that the primary amino 

acid structure has little bearing on the overall architecture of the protein, causing much 

questioning to arise regarding our understanding of protein structure and indeed even the 

central dogma.  

 

As amyloids have a large number of intermolecular contact and hydrogen bonds, they have 

very high levels of kinetic and thermodynamic stability and it has been suggested that the 

amyloid rather than being a rare disease-related phenomenon is simply an alternate state 

which may be acquired by any protein (Cremades et al. 2012). Experimentation in vitro has 

found that this is indeed the case and that the generic amyloid cross-β lateral structure can 

be adopted by any protein (Auer et al.  2008). It appears that this structure is favoured when 

high concentrations of the protein in question are present. This leads to the surprising 

discovery that the ‘critical’ concentration required for protein X to form amyloids in vitro is 

less than the concentration of protein X present in vivo, and yet in cells, the aggregates do 

not form. The explanation for this observation is that whilst the native state of a protein may 

not represent the global free energy minimum that the amyloid does, it may represent the 

local free energy minimum in vivo, or alternatively/additionally, that kinetic barriers to the 

amyloid state prevent formation (Baldwin et al. 2011). 

 

1.1.6. Aggregation theories 
Initially a lack of molecular knowledge underpinning how amyloids formed led to the 

conclusion known as ‘the amyloid hypothesis’. This stated that these large, protease 

resistant fibres are the cause of the toxicity associated with disease. However, definitive 

links between amyloid fibres, toxicity and disease phenotype have never been conclusively 

established, causing this theory to dwindle (Hardy and Selkoe, 2002). 

 

A now widely accepted alternate theory, ‘the oligomeric hypothesis’ (Cremades et al. 2012), 

postulates that amyloid formation is a mechanism employed to aid cell survival, suggesting 
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that during the assembly process of amyloids, toxic intermediates are generated. These 

toxic oligomeric intermediates are considered to be the most damaging to cells (Cremades 

et al. 2012; Campoioni et al. 2010; Haass and Selkoe, 2007). However, given the variety of 

size and structure of oligomers throughout the intermediate stages of amyloid formation, 

experimental evidence for the causative toxic protein species that may introduce disease 

and be responsible for transmission remains unattainable (Karran et al. 2011). It is possible 

that almost any of these misfolded species are likely to expose groups of amino acids that 

are not conducive of cellular biochemical activity, hence generating a source of toxicity and 

causing cellular dysfunction. Of these misfolded species, the larger rudimentary amyloid 

core oligomers, with their large hydrophobic surfaces, are considered to have the most 

devastating interactions with cellular components (Cremades et al.  2012; Campoioni et al.  

2010). However once proteo- and amyloid fibres are produced, the percentage of this 

hydrophobic surface which is exposed is greatly reduced, thus the toxic effect is ameliorated 

or reduced (Auer et al.  2008; Cheon et al.  2007). 

 

1.1.7. Protein misfolding disease 
Protein misfolding disease can be loosely separated into two groups: the amyloid diseases 

and the prion diseases. Pathologically, a well understood and frequent characteristic of 

amyloid disease and prion disease is the disruption of protein homeostasis leading to the 

accumulation and aggregation of misfolded proteins (Knowles et al.  2014). Amyloid disease 

and prions differ in that prions are considered transmissible and amyloid diseases have not. 

However, recent evidence of iatrogenic transmission in humans and experimental 

transmission to mouse models of amyloid disease have led to a reconsideration of the 

definition between the two (Jaunmuktane et al.  2015). In reality, prion proteins can be 

capable of performing normal physiological functions, although they are also associated with 

a plethora of disease states. Recent discoveries of prion formation by the Parkinson’s-

causing protein α-synuclein, commonly considered a hallmark of amyloid disease, has again 

provided evidence for a revision of the definition between amyloid and prion (Pruisner et al.  

2015). 

 

Throughout the 20th Century, economic growth and improved knowledge has allowed 

medical science to extend the average human lifespan significantly. The average global 

lifespan is estimated to have been 33 years in 1900 rising to 67 years in 2000. Remarkably 

this trend is clear, regardless of region of the world; all seem to be subject to an approximate 
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doubling of average life expectancy within this century (Roser, 2017). Whilst this triumph of 

medical science is, and should, be celebrated, it is not without its challenges. The relatively 

small-time span of human evolution has not shaped our cellular biology to be durable 

enough to cope with the consequences of greatly extended longevity and so now the 

community faces new challenges (Knowles et al. 2014; Dobson, 2003). Today approximately 

50 human disorders relating to protein misfolding and aggregation are known to exist. These 

are predicted to stop the great increases in life expectancy mentioned and promises to place 

great economic and emotional burden on the people, communities, and governments of the 

world. As such, the need for greater understanding of the underlying disease biology 

becomes increasingly urgent (Knowles et al. 2014; Valastyan and Lindquist, 2014).   

 

Poised to be the ‘new great plague’ it is estimated that there will be 84 million new cases of 

Alzheimer’s disease in the next 30 years (World Alzheimer report, 2016; World Alzheimer 

report, 2010). Some amyloid diseases are already abundant within populations with type II 

diabetes affecting 300 million people worldwide (Olshansky et al. 2005). Whilst intensive 

research has been directed towards deciphering the mechanisms of diseases such as 

Alzheimer’s and Parkinson’s, current understanding remains incomplete (Knowles et al. 

2014; Valastyan and Lindquist, 2014). For instance, despite genetic studies identifying key 

mutations in genes that clearly cause Alzheimer’s and Parkinson’s, exactly how (or why) 

these mutations lead to the death of neurons remains a mystery (Knowles et al.  2014; Golde 

and Petrucelli, 2009). Exploration of the relationships between the quantity of amyloid 

present and disease progression show that in systemic amyloidosis, such as type II 

diabetes, a clear relationship between these two factors is observed (Eisenberg and Jucker, 

2012; Haass and Selkoe, 2007). In contrast, the neurodegenerative diseases (ND) such as 

Alzheimer’s and Parkinson’s show no correlation between detectable protein level and 

disease progression or cellular damage (Eisenberg and Jucker, 2012; Haass and Selkoe, 

2007). This, combined with a lack of reliable biomarkers for ND, means that accurate 

diagnosis of these disorders remains largely qualitative in nature, often requiring high levels 

of disease progression to be present for diagnosis. What has become clear is that a plethora 

of factors including intracellular mechanisms, local tissue environment, systemic 

environment and mechanisms related to neurodevelopment and ageing, all play a role in 

the development of these complex diseases (Ramanan and Saykin, 2013). 
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Table 1.2. The most common amyloid and prion diseases, including the disease name, 
mode of transmission, causal protein, and the host species.  
 
 
A) 
 

The Amyloid Diseases 
Disease Mode of transmission Protein Host 

Species 
Alzheimer's Sporadic (95%) or 

inherited (5%) 
Amyloid β and tau Human 

Parkinson's Mostly Sporadic or 
inherited (10%) 

α-Synuclein Human 
Huntington's Inherited (autosomal 

dominant) 
Huntingtin (exon 1, htt) Human 

Amyotrophic lateral 
sclerosis (ALS) 

Sporadic (90%) or 
inherited (10%) 

Superoxide dismutase 
(SOD1) 

Human 

 
 
B) 
 

The Prion Diseases 
Disease Mode of 

Transmission 
Protein Host Species 

Scrapie Sporadic 
(90%), 

inherited (8%) 
or infectious 

(2%) 

PrPC Sheep, Goats 
Bovine Spongiform encephalopathy 

(BSE) 
Cattle 

Chronic Wasting Disease Pigs, Deer, Elk, 
Mule, Moose 

Feline Spongiform encephalopathy Feline 
Creutzfeldt-Jakob Disease (CJD) Human 
Gerstmann-Straussler-Scheinker 

syndrome (GSS) 
Human 

Fatal familial insomnia (FFI) Human 
Kuru Human 

 
 
a) Examples of common mammalian amyloid diseases including their mode of transmission, 
the name of the protein which mis-folds thereby resulting in the disease phenotype and the 
species effected. b) Examples of common mammalian prion diseases including their mode 
of transmission, the name of the protein which mis-folds thereby resulting in the disease 
phenotype and the species effected.  
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1.1.8. Prion Disease 
Many landmark discoveries have contributed to our current understanding of prion disease 

and the prion hypothesis; that misfolded proteins are responsible for the maintenance and 

transmission of the proteinaceous infectious particles known as prions (Griffith, 1967; 

Prusiner, 1982). 

 

Clear descriptions from across Europe of the prion disease scrapie appear in the literature 

as early as 1750 (Leopoldt, 1750; Comber, 1772). However, despite being a prevalent 

problem for many years, it was not until 1936 that the first evidence of natural disease 

transmission was provided via intraocular inoculation of infected spinal cord tissue (Cullie 

and Chelle, 1936). This established the infectious nature of the disease as one that can be 

passed from one individual to another. Confirmation of the infectious nature of scrapie 

occurred in 1936 by William Gordon, when scrapie was accidentally transmitted during 

inoculation against a common virus: unknowingly, the inoculation contained a formalin-

extract derived from an infected animal (Gordon, 1966; Bradley et al.  2002). Further reports 

confirming the transmissible nature of scrapie and its long incubation period (estimated to 

be 2 years) were later published for sheep, goat, and mice (Cullie and Chelle, 1939; 

Chandler, 1961). 

 

Kuru was the first of the human prion diseases to be described, reported in 1950 as a ‘new 

disease’ by anthropologists visiting Papua New Guinea (Linsley, 1951). It took some time to 

convince the medical profession that the disease was not a genetically determined disorder; 

a reasonable, albeit inaccurate, assumption, occurring only in some cannibalistic tribes in 

Papua New Guinea (Bennett et al. 1959; Lindenbaum, 2008).  Klatzo’s (1959) observations 

of the histopathology of Kuru infected brains showed a remarkable similarity to the lesion-

ridden brains described by Jakob and Creutzfeldt. In 1966 it was shown that Kuru infected 

human tissue and was capable of transmitting the disease to monkeys. This was followed 

by similar experimentation involving Creutzfeldt-Jakob disease and Gerstmann-Straussler-

syndrome (Gajdusek, 1977; Gibbs et al. 1968; Masters et al. 1981). 

 

Until the 1960’s it had been assumed that the pathogen responsible for all of the diseases 

mentioned was microbial based. However, through a ground-breaking series of 

experiments, Alper and her team demonstrated that the infectious agent of scrapie was ‘of 

an unusual nature’ (Alper et al. 1967; Alper et al. 1966; Alper, 1993). 
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Using procedures which were known to destroy nucleic acids, such as high levels of ionizing 

radiation and ultraviolet light, Alper showed that the infectious material remained intact 

(Alper et al. 1967). The team also estimated the minimum molecular weight required to 

maintain infectivity to be 2x105 Da, too small to possibly be a virus or any other known 

pathogen (Alper et al. 1966). 

 

In 1967 Pattison and Jones’ extraction experiments led them to the conclusion that the 

transmissible agent of scrapie may be a small basic protein. That same year Griffith (1967) 

based on these findings proposed three methods by which a protein could act as an 

infectious agent: - 

 

1. The protein could switch on a damaging reaction in the host that is normally off 

2. An aberrant form of the protein that has spontaneously produced, could serve 

as a template to induce production of the more aberrant forms 

3. A protein may take on a diseased form when it passes from animal to animal 

 

During the 1980’s Stanley Prusiner tested these theories, coining the phrase prion or 

‘proteinaceous infectious particle’ (Prusiner, 1982). By isolating the PrP 27-30 protease K-

resistant C-terminal core of the full-length pathological prion protein (PrPSc) from infectious 

material and positively identifying it as a protein, Prusiner’s team had finally provided 

experimental validation for the protein-only theory (Bolton et al. 1982). They went on to show 

that PrPSc was protease resistant, that infectivity was proportional to protein concentration, 

and invaluably, that infectivity decreased in the presence of both chemicals which destroy 

protein structure and anti-PrP antibodies (Gabizon et al. 1988). Subsequently in 1997 

Prusiner was awarded the Nobel Prize in Medicine for "his discovery of Prions - a new 

biological principle of infection" (NobelPrize, 2018). 

 

The identification of the single host gene encoding PrP (PRNP) and the corresponding 

mRNA in mammals, found no significant differences between genotype or expression in 

healthy and infected animals (Oesch et al. 1985; Chesebro et al. 1985). This led to the 

conclusion that the prion protein could exist in two distinct conformations: a normal native 

non-pathogenic conformation termed PrPC and a misfolded pathogenic isoform, PrPSc 

(Balser et al. 1986; Prusiner, 1998). Continuation of genetic analysis discovered the first 

PRNP mutation linked to familial prion disease; there are now several mutations known to 
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either cause, or increase the likelihood of, developing prion disease. As previously 

mentioned, these range from SNPs (single nucleotide polymorphisms) changing single 

amino acids to large genomic repeats (Finckh et al. 2006; Mastrianni, 2003; Goldfarb et al.  

1992; Hsiao et al. 1989). Once PRNP familial mutations were discovered, the opportunity to 

study PrPSc in vitro arose. Transgenic mice were created and overexpression of their 

mutated PRNP genes resulted in a transmissible neurodegenerative disease similar to prion 

disease (Hsiao et al. 1990; Jackson et al. 2009; Sigurdson et al. 2009; Telling et al. 1996a; 

Telling et al. 1996b; Nazor et al. 2005). Further experimentation demonstrated that the 

absence of the PRNP gene in knock out mice left hosts unable to contract infection or 

develop any symptoms (Bueler et al. 1993). 

 

One rather particular feature of prions is the existence of distinct strains. Although distinct 

strains of pathogens can be explained by differences in their genome, it has long been 

unclear how a protein could be responsible for multiple distinct phenotypes (Collinge and 

Clarke, 2007). It has been observed experimentally, through proteolytic fragment size and 

glycoform ratios following proteinase K digestion, that different fragment sizes of PrPSc and 

thereby alternate conformations exist. Indeed, these changes in fragment size of PrPSc are 

associated with different clinical phenotypes of prion disease, including incubation time, 

brain pathology and protease sensitivity (Safar et al. 1998; Hsaio et al. 1990; Gibbs et al.  

1968). The variance in proteinase K digestion kinetics, denaturation curves and the faithful 

replication of strain-associated biochemical characteristics when amplified provide 

compelling evidence that prion strains are associated with a conformation change in PrP 

(Sigurdson et al. 2009; Castilla et al. 2005; Saborio et al. 2001). 

 

Today it is understood that PrPSc is responsible for the prion diseases in mammals; the 

transmissible spongiform encephalopathies (TSE’s) are currently untreatable and therefore 

fatal neurodegenerative disorders. With similar symptoms to the Amyloid diseases, TSE’s 

are characterised by spongiform degradation, neuronal loss, brain vacuolation, astrogliosis 

and the formation of large amyloid plaques in the brain (Collinge, 2005; Unterberger et al. 

2005). It is now well understood that these symptoms are caused by a conformational 

change in a normal cell-surface glycoprotein (PrPC) creating an altered protease-resistant 

isoform (PrPSc). This process can be facilitated by enzymes or chaperones or can occur 

spontaneously. The presence of this degradation resistant PrPSc modifies the synthesis of 

its normal cellular counterpart causing it to become highly infectious and accumulate in the 

brain in large numbers (Balser et al. 1986; Prusiner, 1998).  
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This templating action, seen in all amyloid or prion disease, is due to monomers adding to 

the end of fibrils. As they do so, they adopt a cross-β conformation to match the peptides in 

the aggregates, thus provide a template for newly formed monomers. As is the case with 

many prion proteins, the normal cellular function of PrPC is unclear, although it is posited 

that it plays a cytoprotective role against internal and external stresses (Linden, 2017). 

Several other theories exist including roles in neuronal development, synaptic plasticity, iron 

uptake and neuronal myelin sheath maintenance (Westergard et al. 2007; Mani et al. 2003; 

Taylor et al. 2009; Steele et al. 2006). Whilst much progress has been made over the last 

century, our understanding of the specific mechanisms which underpin amyloid and prion 

disease is still incomplete. Interestingly, for the pathology of Alzheimer’s disease, recent 

findings in mouse models suggest a relationship between PrPc signalling disruption and 

continuing cognitive decline, with late depletion of PrPc capable of restoring cognition in mice 

(Lima-Filho and Oliveira, 2018; Salazar and Strittmatter, 2017). 

 

Although prions were traditionally associated with disease, understanding of their complex 

nature has expanded to encompass a wide range of functional prion-like proteins. Stephan 

et al. (2015) state that whilst the switch to the prion state is spontaneous and de novo in 

nature for pathological prions, functional prion switching appears to be tightly regulated by 

cells involving specific stimuli. Expression of mammalian cytoplasmic polyadenylation 

element-binding protein 3 (CPEB3) in yeast resulted in the formation of heritable aggregates 

(Stephen et al. 2015). This, alongside studies in mouse models, confirms the role of CPEB3 

in long-term memory maintenance as an actin/CPEB3 feedback mechanism for synaptic 

plasticity induced by serotonin (Stephen et al. 2015; Si et al. 2010). Similar prion-based 

determinants or strong prion-like characteristics have been found in antiviral immune 

defence signalling and the immune response as well as within luminidependens, understood 

to be a key mechanism of cold tolerance and seasonal variation within flowering plants 

(Chakrabortee et al. 2016; Cai et al. 2014). Despite this expansion in understanding of the 

‘prion concept’, prions are still considered an excellent model for the study of the underlying 

pathology of amyloid disease. 

 

For some years, this study has been hindered by the lack of an appropriate model organism 

from which to study prion and amyloid formation within a reasonable timescale. However, in 

1994, Reed Wickner correctly hypothesised that the unusual heritable traits observed in the 

yeast Saccharomyces cerevisiae were, in fact, prion forms of normal cellular proteins 

(Wickner, 1994). These unusual heritable trains were first reported by Brian Cox who 



40 
 

searched for the underlying genetic factors responsible for the [PSI+] trait but had been 

unable to identify a mutation responsible (Cox et al. 1988). On discovery of yet another 

unusual pattern of inheritance, [URE3], Wickner drew the conclusion that prion forms of 

Sup35 and Ure2 respectively were responsible for the associated traits, establishing the 

presence of prions in the Fungal kingdom and a new model organism for prion 

experimentation (Wickner, 1994). Whilst these proteins are no relation and share no 

sequence similarity to their lethal mammalian counterpart, PrP, they exhibit the hallmark 

templating mechanism of prions, are composed of protein fibrils, propagate by seeding and 

exist in both soluble and insoluble amyloid isoforms (Caughey and Lansbury, 2003). A 

suitable model system had been found. 

 

1.1.9. Prions in Yeast 
The budding yeast Saccharomyces cerevisiae is known to contain over 20 prion forming 

IDRs or PrDs (prion domains), ten of which that have been well-characterised (Wickner et 

al. 2015; Liebman and Chernoff, 2012). Among eukaryotic model organisms, S. cerevisiae 

offers many advantages for the study of the mechanism and cellular influence of prion 

formation. This is demonstrated by S. cerevisiae ’s ability to recapitulate many cellular and 

molecular features of amyloid-based disease, including the existence of two stable protein 

states: a relatively unstructured but soluble form and a self-perpetuating amyloid. Unlike 

more complex eukaryotes, S. cerevisiae can be grown on defined media within timescales 

similar to bacterial growth (Feldmann 2012). This, combined with the availability of powerful 

genetic and molecular techniques, makes it a popular and valuable model organism for the 

study of prions (Botstein and Fink 2011; Sherman, 2002; Botstein, 1997). 

 

The growing number of known yeast prions exhibit a surprising amount of diversity, including 

proteins from many different functional classes involved in a host of cellular functions 

including gene transcription, mRNA translation and metabolic regulation. Offering such an 

array of potentially short lived or Lamarckian diversity, it has long been argued that the 

epigenetic influence of prions gives them the potential to influence survival outcomes in 

changing environments (Chakravarty et al. 2020; Jarosz et al. 2014a; Halfmann et al. 2010; 

Sondheimer and Lindquist, 2000). It is important to note, however, that yeast prions can also 

be damaging to cells; this can be caused by their presence having a negative impact on cell 

survivability or by introducing cellular toxicity via amyloid formation (Wickner et al. 2020; 

Tuite, 2015; Kelly et al. 2012a; Nakayashiki et al. 2005).  
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Table 1.3. Table of the most well characterised yeast prions with a summary of information regarding their native function, prion 
phenotype, and other prion relevant summary information.  
 
 

Prion [PSI+] [RNQ+]/[PIN+] [URE3] [SWI+] [OCT+] [MOT3] [ISP+] 

Protein determinant Sup35 Rnq1 Ure2 Swi1 Cyc8 Mot3 Sfp1 

Native function Translation 
termination 

Unknown Nitrogen 
regulation 

Transcriptional 
regulation 

Transcriptional 
regulation 

Transcriptional 
regulation 

Transcriptional 
regulation 

Prion Phenotype Increased 
nonsense 

suppression 

Heterologous 
prion 

appearance 

Use of poor 
nitrogen source 

Loss of 

function 

Loss of 

function 

Loss of 

function 

Opposite of loss 
of function 

Infectivity of fibres Yes Yes Yes Yes ND Yes ND 

Amyloid Yes Yes Yes Yes ND Yes ND 

QN-rich domain Yes Yes Yes Yes Yes Yes Yes 

Variants Isolated Yes Yes Yes ND ND ND ND 

Overproduction 
induces 

Yes ND Yes ND Yes Yes Yes 

Cured by hsp104∆ Yes Yes Yes Yes Yes Yes No 

Cured by GdnHCl Yes Yes Yes Yes Yes Yes Yes 

Found in Wild No Yes No ND ND ND ND 

 
Not determined is signified by the letters ND (adapted from Liebman and Chernoff (2012) and Chernova et al. (2014)).  
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1.1.10. Sup35p and the [PSI+] Prion 
The S. cerevisiae  prion, [PSI+] is the most extensively studied of yeast prions, understood 

to be the prion form of the translation termination factor Sup35p. Encoded for by the 2058 

base pair sequence of the SUP35 gene on chromosome IV, Sup35p consists of 685 amino 

acids. The N-terminal PrD of Sup35p appears between amino acid 1-114, the highly charged 

middle domain is present between amino acid 124-253 and the functional C-domain 

responsible for its role in translation termination appears at amino acid 254-685 (Derkatch 

et al. 2004; Lindquist et al. 2001). Shown in Figure 1.5. 

 

Essential for prion formation and propagation, the N-terminal PrD consists of two distinct 

regions: an atypical asparagine and glutamine (Q/N) rich region (between residues 1-40) 

and a series of five near identical oligopeptide repeats (amino acids 41-97) known as the 

oligopeptide repeat region (OPR). It is thought that the Q/N rich region provides critical 

stability for amyloid aggregation, aiding in the formation of the amyloid core via the 

nucleation and polymerization of Sup35p (Derkatch et al.  2004; Chien and Weissman, 2001; 

DePace et al. 1998). The OPR exhibits the same repeat pattern that is seen in mammalian 

PrP and indeed some sequence similarity exists between the two. Important for the 

propagation of the [PSI+] prion state, Sup35p OPR is implicated in mediating chaperone 

access to regions of the protein and/or in stabilizing Sup35p-Sup35p interactions. The N-

terminal region is not required for prion maintenance or the normal function of the Sup35 

protein, oddly the ‘M’ domain of Sup35p seems to play no role in either the normal or prion 

function and is therefore entirely dispensable for both, where, by contrast, the C-terminal 

domain is essential for cell viability (Shukundina et al. 2006).  As is the case with all amyloids, 

the conversion from normal Sup35p to the abnormal prion conformation is associated with 

the formation of thermostable, protease resistant, β-sheet rich amyloid fibres and whilst the 

M and C-domains of the protein may retain their normal folds, the cross-β interactions 

previously mentioned connect the prion domains and allow templating to occur (Toombs et 

al.  2010; Chernoff, 2007; Ross et al.  2005; Derkatch et al.  2004) 
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Figure 1.5. Schematic diagram of Sup35 protein domains and prion domains, 
highlighting the Q/N rich nucleation domain of Sup35p and the oligopeptide repeats 
of the Prion forming domain. At the top of the Figure is the entire Sup35p protein, showing 
the prion forming domain (PFD) in purple between amino acid 1-114, the middle (M) domain 
in cream between amino acid 114-253 and the Core (C) domain in purple between amino 
acid 253 and 685. At the bottom of the Figure the PFD is magnified to reveal, the Glutamine 
(Q) and Asparagine (N) content of the nucleation domain between amino acids 1 and 39 
and between amino acids 39 and 114 oligopeptide repeats are shown in yellow with the 
single letter amino acid code of this repeat detailed (adapted from Toombs et al. (2011) and 
Osherovich et al. (2004))  
 
Known to alter cellular fitness, the presence of the [PSI+] prion interferes with translation 

fidelity by affecting reading frame selection and decreasing cellular translation termination 

efficiency. Fortuitously, this role in translation termination results in an easily identifiable 

phenotypic assay in all yeast strains carrying the ade1-14 or ade2-1 mutation (Byrne et al.  

2009; Cox et al. 2003; Ugolini and Bruschi, 1996). Mutation in the adenine biosynthetic 

pathway leads to the accumulation of a red pigment in yeast colonies which contain the 

normal conformation of the Sup35p protein, known as [psi-] (Ugolini and Bruschi, 1996). 

However, in [PSI+] strains, the prion form of Sup35, now known as Sup35p, causes a read 

through of the stop codon within this biosynthetic pathway, resulting in no accumulation of 

red pigment and therefore white colonies (Byrne et al. 2009; Chernoff, 2007; Cox et al. 

2003).  As well as being useful for identification, this allows colony selection based on the 

bias of adenine selection, given that [psi-] cells cannot produce adenine due to the nonsense 

mutation and therefore cannot grow on adenine-free defined media (Figure 1.6). It is worth 

noting that experimentally the use of synthetically defined drop-out media within the study 

of S. cerevisiae is a very powerful tool, troubled by the increasing resistance and general 

tolerance of fungal organisms to antibiotics, drop out media presents a more reliable and 

easy to use alternative and is therefore widely used for selection. 
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Figure 1.6. Assaying the presence of the [PSI+] prion by suppression of the ade1-14 
nonsense mutation. Blue motifs are representative of ribosomes, effective stop codons are 
shown in red and ineffective stop codons are shown in green. The proteins within the cell 
are reflective of the prion status of the cell, either containing only native conformation [prion-] 
or prion aggregates [prion+]. The colour of the yeast cells is indicative of the colour change 
seen as a result of the a nonsense adenine mutation presence in cells hence allowing for 
the build-up of a red colony pigment in (A) [psi-]  due to the reading of the stop codon allowing 
for adenine biosynthesis or a white colony pigment (B) [PSI+] due to the readthrough and 
loss of function of the subsequent biosynthetic pathway.  
 
 

A) 

B) 
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1.1.11. The molecular chaperone Hsp104p 
Molecular chaperones interact, stabilise and aid proteins to maintain cellular protein 

homeostasis. To fulfil this role, they must recognise and bind to unfolded or misfolded 

proteins and mechanically facilitate their folding into the native conformation (Hartl et al.  

2011). Hsp104p is one such molecular chaperone, belonging to the family of Hsp’s (heat 

shock proteins). Hsp104p is a homohexameric AAA ATPase and (in vivo) it is responsive to 

stresses including heat, ethanol, and sodium arsenite and is required for the propagation of 

yeast prions (with the exception of [ISP+]) (Liebman and Chernoff, 2012). Inhibition of the 

ATPase activity of Hsp104p by guanidine hydrochloride (GdnHCl) leaves cells unable to 

efficiently propagate [PSI+] or any other prion (Grimminger et al. 2004; Jung et al. 2002; 

Ferreira et al. 2001). Small concentrations, between 3-5mM, of GdnHCl are enough to 

achieve this; a process commonly referred to as ‘curing’ (Byrne et al.  2007; Grimminger et 

al.  2004; Tuite et al.  1981). This Hsp104p mediated ‘curing’ of GdnHCl is known to block 

the ability of Hsp104p to cleave the [PSI+] amyloid fibres into smaller, heritable oligomers, 

known as ‘propagons’ (prion seeds) (Park et al. 2012; Byrne et al. 2009; Byrne et al. 2007). 

In doing so the number of ‘propagons’ required to successfully transmit the prion from 

mother to daughter are depleted and efficient prion seeding is not achieved for all daughter 

cells (Byrne et al. 2009; Byrne et al. 2007).  

 

Deletion of Hsp104p eliminates the presence of the [PSI+] prion and, surprisingly, the same 

is true if Hsp104p is overexpressed (Chernoff et al. 1995). Paushkin et al. (1996) reasoned 

that this curing via over expression of Hsp104p may be as a result of increased cleavage or 

fragmentation, breaking down amyloids at such a rate that ‘propagons’ are refolded by the 

UPS into the correct conformation without the chance for templating to occur. However, 

recently Ness et al. (2017) have provided evidence that no such breakdown of Sup35p 

aggregates occur when Hsp104p is overexpressed. Rather it is the distribution of 

‘propagons’ between mother and daughter cells that is unequally partitioned via a 

mechanism not currently known. It was reported that mother cells retain all ‘propagons’ in 

approximately 10% of divisions per generation, creating daughter cells completely devoid of 

prion and thus [psi-] (Ness et al. 2017).  

 

1.1.12. Rnq1p and the [RNQ+] Prion 
The [RNQ+] or [PIN+] prion is known to facilitate the de novo appearance of prions or other 

PrD-containing proteins, including [PSI+] (Derkatch et al. 2001) and exon 1 from the human 
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huntingtin protein (Derkatch et al. 2004), allowing them to convert from their soluble state to 

their amyloid states. Clear experimental evidence supports this concept as Rnq1 proteins in 

their prion conformation (known as [RNQ+]) have been found within Sup35p polymers, 

asserting the role that [RNQ+]  has in the seeding of Sup35p (Liebman and Chernoff, 2012). 

Initially named [PIN+] as a result of this function (meaning [PSI+] inducing), it was considered 

that the [RNQ+] trait was an intermediate conformation of the non-amyloid form of Sup35 

(Serio et al. 2000). However, subsequent experimentation has revealed that this role in 

heterologous prion appearance facilitates the de novo formation of many prions and so 

[RNQ+] (meaning rich in asparagine (N) and glutamine (Q)) is the more common 

nomenclature (Sondheimer and Lindquist, 2000).  

 

Moreover, gene deletion of the Rnq1p determinant is sufficient to convert a strain from 

[RNQ+] to [rnq-], as is the atypical prion treatment of GdnHCl curing (Derkatch et al. 2001; 

Osherovich and Weissman 2001; Sondheimer and Lindquist, 2000). As expected of prion 

behaviour, the presence or absence of the prion form of Rnq1p correlates with the 

appearance and disappearance of aggregate formation and intermediate non-aggregated 

Rnq1p induces the appearance of [RNQ+] when transformed into [rnq-] background (Patel 

and Liebman, 2007; Derkatch et al. 2001). Although required for the de novo appearance of 

prions, once a prion form of a protein has been established cellularly the [RNQ+] prion is no 

longer needed and hence plays no role in prion propagation (Liebman and Chernoff, 2012; 

Derkatch et al. 2000; Derkatch et al. 1997). This role as a facilitator or seeding mechanism 

indicates that there is a hierarchy present within yeast prions and whilst other amyloid forms 

of other Q/N-rich regions can perform a similar seeding function, this is uncommon and 

always in a reduced capacity, leaving [RNQ+] firmly placed at the top of this hierarchy 

(Liebman and Chernoff, 2012; Derkatch et al. 2000; Derkatch et al.  1997).  

 

The presence of distinct variants has also been observed within [RNQ+] cells, via the 

manipulation of the [PSI+] reporter system detailed previously. Fusing the prion forming 

domain of the Rnq1 protein to the translation termination domain of the Sup35 protein allows 

the indicative phenotypic red to white assay to inform as to the ‘strength’ of the [RNQ+] strain 

(Bardill and True, 2010). Interestingly, this work has revealed a relationship between 

temperature and the distribution of variant strength, with fibres formed at lower temperatures 

exhibiting ‘strong’ phenotype with morphologically distinct, short, and curly amyloid fibres 

and higher temperatures favouring a ‘weak’ phenotype with large bundled fibres. Stein and 

True (2011) showed that the ‘weak’ variants lost their prions at a much higher rate (~40%) 
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when compared with the strong strains (<1%). These observations support the 

morphological data, as seeding is much more likely to be unsuccessful with the large 

insoluble aggregates seen in ‘weak’ strains and vice versa. Curiously, despite these 

differences, both the ‘weak’ and ‘strong’ strains’ ability to induce [PSI+] was reported as being 

unhindered with only medium variants showing low levels of [PSI+] induction. An explanation 

for this observation was provided with there being high levels of self-templating but a less 

efficient interaction with Sup35p within ‘strong’ strains (and vice versa with ‘weak’ variants), 

hence leaving medium variants lacking in both functions (Kalastavadi and True, 2010).  

 

a) 

 
b) 
 
MDTDKLISEAESHFSQGNHAEAVAKLTSAAQSNPNDEQMSTIESLIQKIAGYVMDNR
SGGSDASQDRAAGGGSSFMNTLMADSKGSSQTQLGKLALLATVMTHSSNKGSSNRGF
DVGTVMSMLSGSGGGSQSMGASGLAALASQFFKSGNNSQGQGQGQGQGQGQGQGQGQ
GSFTALASLASSFMNSNNNNQQGQNQSSGGSSFGALASMASSFMHSNNNQNSNNSQQ
GYNQSYQNGNQNSQGYNNQQYQGGNGGYQQQQGQSGGAFSSLASMAQSYLGGGQTQS
NQQQYNQQGQNNQQQYQQQGQNYQHQQQGQQQQQGHSSSFSALASMASSYLGNNSNS
NSSYGGQQQANEYGRPQQNGQQQSNEYGRPQYGGNQNSNGQHESFNFSGNFSQQNNN
GNQNRY 
 
Figure 1.7. Rnq1p detailed protein domain and amino acid information a) Schematic 
diagram of Rnq1p domains and prion domains, highlighting the Q/G rich tract and the 
oligopeptide repeats of the C-terminal or PFD of Rnq1. At the top of the Figure is entire 
Rnq1p, showing the nitrogen (N) domain in purple between amino acid 1-153, the protein 
forming domain (PFD) in purple between amino acid 153-405. At the bottom of the Figure 
the PFD is magnified to reveal, the glutamine (Q) and glycine (G) content of the nucleation 
domain between amino acids 153 and 172 and between amino acids 172 and 405 
oligopeptide repeats are shown in yellow. b) Amino acid code of Rnq1p. All hydrophobic 
amino acids are shown in red, polar amino acids in green and charged amino acid in black.  
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Coded for by the 1218bp gene RNQ1 on chromosome III of the S. cerevisiae genome, the 

Rnq1p protein is known to contain 405 amino acids. Compared to the well-studied Sup35p, 

little is known about the protein domains of Rnq1p. It is known that the N-terminal plays no 

part in prion formation, instead the PrD appears at the C-terminal of the protein between 

residue 153-402 and contains four discrete Q/N rich residues (shown in Figure 1.7.) (Stein 

and True, 2011). Experimentation on these regions has shown that whilst one specific region 

of these four is required for prion formation, prions can be maintained if any two are present 

(Kadnar et al.  2010). The native form of Rnq1pis soluble and relatively unstructured in its 

conformation; atypically the PrD region is known to form β-sheet rich amyloids in its prion 

formation (Liebman and Chernoff, 2012).  

 

Despite the efforts of several labs, the native role of the non-aggregated conformation of 

Rnq1p has remained elusive. Known to be a non-essential gene, its only known role is as 

an epigenetic modifier of prion formation (Sondheimer and Lindquist, 2000). The cellular 

presence of the [RNQ+] prion does not result in a measurable growth defect and is not toxic 

per se, but overexpression of Rnq1p or a polyQ-containing protein in a [RNQ+] background 

causes cell toxicity (Douglas et al. 2008). Interestingly, it has been shown that this toxicity 

of overexpression is not caused by generalised proteomic stress but instead is as a result 

of highly specific mitotic arrest (Treusch and Lindquist, 2012). Past experimentation has 

revealed that this toxic effect can be elevated via the overexpression of molecular 

chaperones involved in the propagation of amyloid formation and accentuated by their 

suppression (Douglas et al. 2008). This highlights the role that intermediates to fibrillation 

play in the toxic effects seen, supporting the oligomeric hypothesis, and bringing into 

question their interactions with normal cellular functioning. 

 

Whilst other prions such as [PSI+] and [URE3] are not found in natural, industrial and clinical 

isolates, [RNQ+] has been found in approximately 16% of 70 wild populations tested by Kelly 

et al. (2012a), similar to the previous findings of Nakayashiki et al. (2005). However, a larger 

study by Halfmann et al. (2012) of 690 natural S. cerevisiae isolates detected [RNQ+] in 

approximately 6% of samples. This study also detected weak [PSI+] in approximately 1%; 

however, all isolates in which [PSI+] was detected were from wineries and therefore arguably 

their status as ‘wild’ is debatable (Kelly et al. 2012; Halfmann et al. 2012).  

 

Contrasting ideas about the nature of prions in the wild exist (Debets et al. 2012). Some 

argue that the ability to aggregate and/or interact with other Q/N rich proteins is key to 
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Rnq1p’s biological role (Kadnar et al.  2010). With experimental data showing that [RNQ+] 

is predominantly benign and between 25% and 40% of the time, beneficial (Halfmann et al. 

2012; Halfmann et al. 2010).  These groups argue that the prion determinant of Rnq1p is 

maintained within wild populations in small numbers as a sophisticated evolutionary “bet-

hedging” tool (Halfmann et al. 2012; Halfmann et al. 2010). Capable of coping with 

unexpected stress, [RNQ+] significantly rises in number (up to 60-fold) within a population 

during stressed conditions acting as a valuable mechanism of phenotypic variability. In 

laboratory conditions, once the stressor is removed, the favoured [prion-] state is quickly 

restored (Treusch and Lindquist, 2012; Halfmann et al. 2012; Halfmann et al. 2010). In 

contrast, it could be argued that if any of the yeast prions were indeed beneficial then they 

would have been brought to fixation within wild populations (Wickner et al. 2020; Kelly et al. 

2012a; Nakayashiki et al. 2005). Kelly et al. (2012b) show that maintenance of [RNQ+] only 

appears to be maintained in wild populations with highly polymorphic RNQ1 loci’s, 

suggesting that these sequence differences are capable of blocking or ameliorating prion 

propagation or its pathogenetic effects.  

 

Arguments regarding the role of yeast prions as a disease, based on the fixation of prions 

within wild populations, are largely built on the functional [Het-s] prion of Podospora 

anserine. The [Het-s] prion is reported in 92% of het-s isolates with evidence for this prion’s 

role in heterokaryon incompatibility corresponding to a cell death reaction; an event which 

only occurs upon the fusion of genetically distinct variants (Debets et al. 2012). However, 

studies of other yeast prions appear to support the alternative epigenetic or Lamarckian 

inheritance model (Treusch and Lindquist, 2012; Halfmann et al. 2012; Halfmann et al. 

2010). The [GAR+] prion, for instance, causes the spontaneous switching of the cell’s 

metabolic requirements from glucose to alternative carbon sources (Jarosz et al. 2014a). 

This prion manifests via a curious relationship between bacteria and yeast when they occupy 

the same environment. [GAR+] is induced by a factor secreted by cohabiting bacteria in 

correlation with changes in the environmental availability of glucose (Jarosz et al. 2014b). A 

not dissimilar prion, [SMAUG+], regulates the breeding preference and survival strategies of 

yeast cells, allowing for pre-adaptation to nutrient repletion (Chakravarty et al. 2020; Itakura 

et al. 2020).  Thus, Jarosz et al. (2014a) and Chakravarty et al. (2020) argue that these 

prions are conserved as part of an adaptive strategy, allowing continued population growth 

and maintenance in diverse and changeable environments.  
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1.2 Metabolomics 
 

1.2.1. Metabolites, the metabolome, and metabolomics 
The term ‘metabolites’ refers to the small biological molecules present both intra- and 

extracellularly, with the ‘Metabolome’ being the nomenclature for the entire suite of 

metabolites (Patti et al. 2012; Nielsen and Oliver, 2005). Metabolites are usually of low 

molecular weight (<1500Da), have a varied biochemical make up and are often present in 

small quantities all of which makes their detection a complex endeavour. Considered 

indicative of the pathway, chemical intermediates and intended modification of the parental 

chemical compound, metabolites represent the biochemical molecular phenotype of cells. 

Metabolites, produced as direct result of the cellular processes the ‘omics’ field fixates on; 

DNA (deoxyribose nucleic acid) is transcribed (genomics and transcriptomics), this is in turn 

translated into protein sequence and proteins are formed (proteomics), enzymatic reactions 

within the cell alongside a host of biochemical compound import and export cause metabolic 

reactions to take place, and so metabolism occurs with a set of chemical conversions 

leading to metabolites being produced or consumed (metabolomics) (Figure 1.8.) (Roberts 

et al.  2013; Patti et al. 2012; Duportet et al. 2011). Chemical compounds considered as 

energy sources and building blocks of the cell are used to perform and maintain all of the 

cellular functions, achieved via the process of oxidation or conversion to more stable 

compounds allowing for a release of energy available for the cell to store or to use for other 

anabolism. Whilst engaged within this chemical process of metabolism (Greek ‘metabole’ 

meaning change or transformation) these chemical compounds are referred to as 

metabolites (Pinu et al. 2017; Baidoo et al. 2012; Fiehn, 2002).  
 

 

Figure 1.8. The ‘omics’ cascade, showing the relationship between the genome, 
proteome and metabolome within S. cerevisiae. The possible number of variables at 
each stage within S. cerevisiae. *The size of S. cerevisiae’s metabolome is unknown, 
however there are currently 1.6 x 104 identified metabolites, involving approximately 900 
genes, the size of the metabolome itself is estimated to be upwards of 1.0 x 105 (adapted 
from Patti et al. 2012 and Gerszten and Wang, 2008 using Ramirez-Gaona et al. 2017; BNID 
100237, BNID 102988, BNID 106198, Milo et al. 2010). 
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The wide-scale cellular implications of metabolism and the constant requirement of cells for 

energy means that any given metabolite does not exist for long or in isolation. The formation 

of metabolites depends entirely on the nature of the enzyme that acts upon a parent 

compound and the composition of the parent compound’s structure. Within primary 

metabolism, metabolites have a fast turnover in cells which reflects the fast-paced nature of 

biological life and illustrates why primary metabolism is often highly conserved across 

species. The need for cells to generate energy and synthesise biological components means 

that metabolites are not generally permitted by cells to accumulate (Pinu et al. 2017; Villas-

Boas et al. 2007). Since metabolites are the intermediate and by-products of metabolic 

reactions, these processes are dynamic and continuingly fluctuating and so metabolites 

within primary metabolism are likely to be in low abundance (Pinu et al. 2017; Villas-Boas 

et al. 2007). More diverse across species, secondary metabolism however is typically a 

slower process and linked to survivability or fecundity. Second metabolism consists of a 

smaller number of reactions and hence turnover rate is slower and therefore the relative 

levels of compounds are often higher (Villas-Boas et al. 2007). This change in turnover rate 

is often determined as metabolic flux and understanding of this interconversion rate has in 

recent times been a strong focus within the field (Anotoniewicz, 2015; Villas-Boas et al. 

2007).  

 

The structural and thus chemical and physical diversity of metabolites is enormous and 

provides additional challenges not faced by other ‘omics’ disciplines (Villas-Boas et al. 

2007). It is currently thought that upwards of 110,000 metabolites are present within human 

cells and the number is even higher in plants at upwards of 1,000,000 (HMDB, 2019; Chae 

et al. 2014). Metabolites range in molecular weight, molecular size, and polarity, 

encompassing many different chemical classes including the nucleotides, sugars, amino 

acids, alcohols, phenolics, steroids and lipids among others (Villas-Boas et al.  2007; Nielsen 

and Oliver, 2005; Dunn and Ellis, 2005).  

 

Unlike genes or proteins that are subject to post translation modifications, metabolites with 

their complexity and specificity, are considered to be a functional end point within cells. 

Metabolomics, said to provide “a functional read out of the physiological state” of an 

organism (Mathew and Padmanaban 2013), is the study of the entire metabolome of an 

organism, aiming to measure, identify and quantify metabolites in cells, tissues and 

biological fluids at a given time point using sophisticated analytical technologies (Roessner 

and Bowne, 2018; Mathew and Padmanaban 2013; Weckwerth 2010; Fiehn 2002; Oliver et 
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al. 1998). A combined effort over the last two decades has seen rapid improvements in the 

‘omics’ fields. This is certainly apparent within metabolomics, with the prevalence of 

metabolomics publications rising exponentially since the start of the century. A search of 

Medline for the term metabolomics, reveal 2 publications in 2000 rising to 4800 in 2018 (Web 

resource at URL:http://dan.corlan.net/medline-trend.html). This is, in part, due to a rise in 

awareness of the potential applications of the field but can largely be attributed to an 

increased availability of the analytical technologies, method development and the increasing 

commonality of computational power. Metabolomics is increasingly used to study a wide 

range of topics including disease mechanisms, biomarker discovery, cellular networking, 

environmental response, and evolutionary studies within a variety of systems ranging from 

microbial to mammalian (Zhang et al. 2013).  Metabolomics is poised to be a key player in 

the development of fundamental knowledge, forming links in our understanding between 

genomics, transcriptomics, proteomics and metabolomics and, by doing so, better 

understanding how cellular biology interacts with its own architecture and its environment 

(Ramanan and Saykin, 2013; Patti et al.  2012; Gieger et al. 2008).  However, both the 

transient nature of many metabolites and their complex diversity, present many challenges 

to the metabolomics community in their pursuit of this understanding. 

 

1.2.2. Metabolomics workflow 
When considering metabolomics experimentation, it is first necessary to determine the 

number of metabolites that require measurement. In doing so, researchers are able to define 

their experimental workflow in accordance with the recommendations for either ‘targeted’ or 

‘untargeted’ metabolomics (Figure 1.9.).  

 

So called ‘targeted’ metabolomics aims to accurately identify, measure, and quantify a 

predefined list of metabolites (a subset of the metabolome), normally associated with one 

or more specific pathways of interest (Bingol, 2018). Using authenticated standards 

researchers apply this method in the pursuit of specific biochemical questions and 

hypotheses regarding particular pathways (Patti et al.  2012). This method is commonly used 

during the development of metabolomic methodologies, enabling the measurement of a 

range of intracellular metabolites and allowing for the assessment of any given protocol by 

way of comparison to others. This has allowed for the development of robust and highly 

sensitive methods which enable reliable quantification of relatively low-level metabolites 

within cells (Roberts et al. 2013). In addition, this method is well used to study the effects of 
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pharmaceutical and therapeutic interventions via drug metabolism (Patti et al. 2012). Limited 

to hundreds of metabolites, targeted metabolomics data analysis is simpler and although a 

strength, it is also compromised in that its analysis is limited to only what is currently known 

(or contained within a given metabolite library) reducing the scope for discovery and 

introducing bias (Bingol, 2018; Paglia et al. 2018; Patti et al. 2012).  

 

Untargeted metabolomics by contrast is technically more demanding with data pre-

processing and analysis being both time and bioinformatically challenging. It does however 

introduce no bias to the study by way of metabolite selection, aiming to sample the entire 

complement of metabolites produced by a cell at a given time point (Paglia et al.  2018; Patti 

et al. 2012). Untargeted metabolomics allows for the measurement of thousands of features 

and the identification of novel and unexpected metabolites but is considered to be one of 

the most widely accepted bottlenecks for untargeted metabolomics (Bingol, 2018). Online 

algorithms and databases are capable of defining and annotating compound specific 

features allowing for neutral masses to be calculated and putative identifications given. 

There are however limitations to this approach. Whilst lists improve daily (and the addition 

and development of MS/MS spectral databases have been of great assistance with 

identification), metabolite databases are not comprehensive, are often method-dependent 

and have inherent biases towards synthesised compounds (due to high levels of 

fragmentation detail being available) (Bowen and Northern, 2010). Other methods of 

identification such as extensive structural study via fragmentation spectra or experimental 

chemical shift patterns are possible but these are often cost and time intensive, requiring 

large scale isolation of compounds which can often prove impractical at best and impossible 

at worse (Bingol, 2018; Bowen and Northern, 2010).  

 

Understanding the biological implications of this type of global information can be 

challenging, as frequently data sets are very large and difficult to comprehend. To tackle 

this, untargeted metabolomic experiments often focus on metabolic profiling, aiming to sort 

and compare different biological samples and then ultimately identify the metabolic changes 

or differences between groups. This does not require a pre-existing knowledge of the 

changes that may occur (that would be pre-requisite of a targeted metabolic study) and does 

allow for the generation of hypotheses regarding the variation between groups or 

perturbations (Patti et al. 2012). Although identification of these differences may be 

achieved, this method does not easily allow for the quantification of metabolites and despite 

considerable work in this area involving quantified spikes and stable isotope labelling, these 
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methods are often expensive and much better suited to confirmatory or follow up targeted 

experimentation (Paglia et al. 2018; Dumas and Davidoc, 2013; Patti et al. 2012). Another 

possible approach is to use metabolic fingerprinting thereby removing the need to identify 

large numbers of metabolites, although this limits the scope of the study to a mere 

classification tool.  

 

Table 1.4. The differences between untargeted and targeted metabolomics 
experiments.  

Untargeted Metabolomics Experiments Targeted Metabolomics Experiments 

Global detection of a wide range of 

metabolites. 

Quantification of small number of specific and 

related metabolites. 

Hypothesis generating experiment, measuring 

unexpected or unknown changes in known and 

unknown metabolites. 

Hypothesis testing experiment, measuring the 

expected changes of known metabolites. 

>1000s of metabolites measured with a small 

number identified 

Approximately 20 metabolites measured, all 

being identified with confidence. 

Data acquisition without prior knowledge of 

interesting metabolites, gunshot. 

Specific metabolites targeted, involving 

extensive specialisation of sample preparation 

and analytical collection technique. 

Explorative experimentation. Deterministic experimentation. 

Semi-quantitative/relative quantification via the 

addition of standards or isotopic internal 

standards. 

Absolute quantification via the addition of 

standards or isotopic internal standards. 

No chemical standards required. Chemical standards are required. 

Technically challenging. The amount of 

accessible information generated is based on 

appropriate experimental design and data 

analysis methods. 

Technically simple. Although experimental 

design and data analysis methods are still 

important, results are more robust and less 

subject to small changes in experimental 

design. 

Unbiased (relatively) as there is no 

preselection of metabolites. 

Limited scope due to preselection of 

metabolites. 

   

(Naz et al. 2014; Patti et al. 2012; Dunn et al. 2011).
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Figure 1.9. LC/MS analysis sequence in untargeted and targeted metabolomics. A) Shows the aims and typical LC/MS analysis 
sequence of untargeted metabolomics B) Shows the aims and typical LC/MS analysis sequence of targeted metabolomics (adapted from 
Patti et al. 2012).
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1.2.3. Measuring the metabolome (methods) 
Once a method of analysis has been established (targeted or untargeted), sample 

preparation and experimentation can be considered. Many unique and specific methods for 

the various steps involved in this process are available, even when considering a single 

model organism or cell culture type. As such, great emphasis has been put on reviewing the 

methods currently available (Riekeberg and Powers, 2017; Faijes et al. 2007; Rabinowitz, 

2007; Villas-Bôas et al. 2005). Sample preparation is understood to be a limiting factor within 

metabolomics, and acts as a large source of variability within metabolomic analysis. Sample 

preparation here refers to the release and collection of metabolites from cells at a known 

time point (Villas-Boas et al.  2006). Researchers aim to establish a sample preparation 

workflow that does not impact upon the number of metabolites obtained or affect the internal 

metabolite signature of a sample (Kapoore et al. 2017). Sample preparation can be broken 

down into four specific areas outlined in Figure 1.10. 

 

 

 
 
Figure 1.10. General steps involved in metabolite sample preparation. Solid black 
arrows represent the main sequence of events, light grey arrows indicate alternative/optional 
steps (adapted from Villas-Boas et al.  2006). 
 
 

Cell growth is normally considered routine with few researchers placing much emphasis on 

this and instead following whatever common practise is in place for their model or cell line 

of choice. However, recent investigation concerning mammalian cell line culture shows the 

choice of culture media can significantly impact on the ability to detect metabolite levels 

(Daskalaki et al.  2018; Huang et al.  2015). Within the microbial community, limited work 

has been done to assess growth conditions effects on subsequent metabolite analyses, 

although some groups have developed novel methods of cell growth. (Tang, 2011; 
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Rabinowitz, 2007; Brauer et al.  2006). Commonly, extracellular metabolites are measured 

alongside intracellular metabolites which arguably reduces the overall impact that the choice 

of cell growth may have to the overall detection of any given metabolite, although mis-

location may occur (Pinu and Villas-Boas, 2017). This methodology does not account though 

for the complexity caused by cell growth media creating additional hurdles for analysis, 

adding noise and influencing metabolite utilisation by cells (Creek et al. 2013). All of these 

factors cause complications to metabolite detection and hence more research area is 

required in this area.  

 

Quenching aims to halt the metabolism, thereby providing a snapshot of the in-vivo 

metabolic state of a cell or organism at a given point in time. Pertaining to the dynamic and 

fast turnover rate of metabolites, especially those within primary metabolism mentioned 

previously, sample quenching works to minimize the formation or degradation of metabolites 

by inactivation of cellular metabolism and enzymatic activity (Kapoore et al. 2017; 

Sasidharan et al. 2012; Canelas et al. 2010; Winder et al. 2008; Faijes et al. 2007; 

Rabinowitz, 2007; Villas-Boas et al. 2007). This process is usually conducted by placing 

cells in contact with a very cold (<-40°C) or a relatively hot (>80°C) solutions. Different cells 

require different treatments, with considerations regarding their cell wall make up crucial to 

ensuring this vital stage is conducted without negative consequence (Pinu et al. 2017). 

Without such consideration it is possible that leakage of metabolites will occur due to 

damage to cell wall structures resulting in intracellular metabolites (normally the target for 

collection) leaking into the extracellular medium (generally removed via centrifugation) 

leading to a loss of metabolites and thus effecting the estimation and detection of metabolite 

abundances (Pinu et al. 2017; Kim et al. 2013; Canelas et al. 2009). Often several cellular 

washing steps are employed during quenching in an effort to remove all extracellular 

metabolites and media that may contaminate readings. However, this process often adds 

considerable time to the intended rapid process of cellular quenching and is often subject of 

suspicion when discussing metabolite leakage. In mammalian studies Ser et al. (2015) 

suggest that no washing step should be used, stating that they appear to play a big role in 

interfering with metabolite signals detected. Kapoore et al. (2017) however reported that 

employing a single washing step was preferable, resulting in the minimum of intracellular 

leakage of the methodologies tested. In microbial cells, washing steps are now considered 

arbitrary, adding undesirable complexity, and lengthening the time of the quenching 

procedure thereby harbouring the maintenance of very low experimental temperatures 

(Canelas et al.  2010; Winder et al. 2008; Rabinowitz, 2007).   
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Regardless of which quenching methodology is used, metabolites are still required to be 

extracted from cells. Within sample preparation, extraction methods have disproportionally 

been the focus of many of the reviews within the field, and so a great number of methods 

are available. This can also be attributed to the large variety of metabolites present in cells, 

as many argue that no single extraction technique is capable of retrieving all types of 

metabolites simultaneously, whilst others argue that the use of multiple methods should be 

employed to ensure metabolome wide extraction (Riekeberg and Powers, 2017; Canelas et 

al. 2009; Oldiges and Takors 2005; Mashego et al. 2003). Extraction can be approached in 

either a chemical or mechanical fashion, or occasionally using a mixture of the two. The 

scope of extraction methods is so large it would be unrealistic to discuss the entirety. They 

range from solvent based solutions such as boiling ethanol and cold methanol to mechanical 

methods like ultra-sonification and microwave extractions. Some groups choose to extract 

after storage, however Fiehn (2002) argued that freeze drying samples can also lead to 

metabolites becoming irreversibly bound to cell walls and membranes and thus decrease 

the efficiency of subsequent extraction. To address this, extraction is now commonly carried 

out prior to storage removing or separating undesirable cellular components that may have 

negative consequence on experimentation (Tredwell et al.  2011).  

 

The last step in sample preparation is storage, two alternatives exist for this: freezing at very 

low temperatures (-80°C) or freeze drying. Both methods aim to limit or stop any cellular 

activity or change that may occur in between this stage and running samples on the 

analytical method of choice. Freezing is both fast and accessible for most laboratories, given 

that -80°C freezers are commonplace. This process maintains sample integrity as cellular 

metabolism and enzymatic activity cannot continue at these temperatures. Efforts to avoid 

partial thawing should be made and dependent on the size of the experiment may be limited 

by the availability of physical storage space (Villas-Boas et al. 2007). Recent findings also 

suggest that -80°C reduces the impact of the extraction method on the metabolites within 

samples, reducing the number of artefacts present (Sauerschnig et al.  2018). Freeze drying 

by contrast takes considerably longer and although low temperatures can be employed, they 

are not comparable to -80°C of freezing. Freeze drying can cause degradation of 

metabolites, as this process takes time due to the presence of water and degradative 

processes may still continue (Villas-Boas et al. 2007). However, freeze drying is extensively 

used in the field and is often a required process of many of the analytical techniques in use 

within metabolomics, owing to the necessity of removing water because of its ability to 

interfere with instrumentation.  
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1.2.4. Analytical variation in metabolomics studies 
The inherent features that make metabolites a desirable area of study are likewise the very 

same features that make metabolites difficult to obtain and measure. Sample preparation 

must be well designed in order to reliably determine metabolites of interest, but careful 

consideration should also be given to the choice of analytical method. Currently the most 

commonly used techniques are that of Nuclear Magnetic Resonance (NMR) and Mass 

Spectrometry (MS) (Caudy et al.  2017).  

 

1.2.5. Nuclear Magnetic Resonance (NMR) 
NMR is widely used within metabolism research, especially for clinical based application 

due largely to its rapid turnover, minimal sample preparation, excellent structural elucidation, 

and non-destructive nature. Allowing for the measurement of in vivo metabolites, NMR 

enables clinical studies to measure a cell’s response to specific stresses. Often this involves 

the measurement of biofluids dosed with pharmaceutical drugs, allowing for the metabolic 

turnover and cellular disruption to be estimated in real time (Caudy et al. 2017; Dunn et al. 

2005; Dunn and Ellis, 2005).   

 

There are a variety of NMR experimental techniques ranging from simple 1H or proton 

studies, to the more complex two-dimensional experiments such as HSQCs (Heteronuclear 

Single Quantum Coherence). All, however, rely on the use of strong magnetic fields and 

radio frequency pulses to the nuclei of isotopic elements, namely 1H, 13C, 15N, 19F, 31P. The 

surrounding magnetic field introduces nuclear spin to these isotopes and the absorption of 

radio frequency pulses then allows nuclei to be promoted from low energy to high energy 

spin states, inducing what is known as a magnetic moment. This alternation of low and high 

energy spin states emits measurable radiation, or resonance, during the relaxation process 

(from high to low energy). The precise resonance of this relaxation is dependent on the 

effective magnetic field experienced by the nucleus, thus the chemical environment and the 

electrons shielding the nucleus can affect this resonance, among other factors. This 

influence of shielding electrons on resonance is known as chemical shift, in order to produce 

readable spectra, information about the environment and shielding effect must be gathered 

in order to adjust for this. Common references are customary depending on the type of NMR 

being conducted, for instance in a 1H or proton studies the resonance of an observed proton 

is compared to that of tetramethyl silane (TMS). This information via Fourier transform is 
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then converted into readable spectra for molecular interpretation (Dunn and Ellis, 2005; 

Mitchell and Costisella, 2004).  

 

Two-dimensional experimentation aims to focus on the interactions between two of the 

observable features, so for instance HSQCs are used to determine the proton-carbon single 

bonds. Many other types of two-dimensional experimentations are possible all providing 

information about the bonds and atoms surrounding those isotopes which have been 

measured, this allows for considerable structural information to be obtained (Mitchell and 

Costisella, 2004).   

 

There are some notable disadvantages of NMR for use in metabolomics, the greatest of 

which being the limited sensitivity of NMR (typically µM to nM) when compared to MS 

(typically fM to aM), thus reporting only on high concentration metabolites (Tredwell et al.  

2011; Dunn et al. 2005; Dunn and Ellis, 2005). Also worthy of consideration is the relatively 

large amounts of sample that are needed to conduct NMR experimentations and the 

extensive cost of introducing isotopes to cells if the natural abundance of them does not 

suffice for experimentation (Dunn and Ellis, 2005; Griffin et al. 2002). Although it is possible 

to improve the sensitivity of experiments via the use of cryogenic probes and the application 

of higher magnetic fields (Keun et al. 2002).  

 

1.2.6. Mass spectrometry (MS) 
In contrast to the requirements of NMR spectroscopy, the wide variety of MS instruments 

available offer very high sensitivity, relatively small sample requirements and a variety of 

ionization approaches with which to streamline experimentation.  

 

GC-MS (Gas chromatography mass spectrometry), the standard for substance 

identification,  is a commonly used and well evidenced method in metabolomics and often 

coupled with NMR (Tredwell et al. 2011).  GC-MS offers many benefits: high 

chromatographic resolution, high sensitivity, fast turnover rate, small injection volumes and 

is capable of analysing highly volatile, thermo- and energetically stable low molecular weight 

compounds in the gas state. This makes GC-MS an excellent tool for the chemical analysis 

of pheromones, plant volatiles and molecules in breath; chemical compounds that would be 

incredibly difficult to resolve (Oleander et al. 2019; Deng et al.  2004; Perera et al.  2002). 

However, GC-MS has its limitations. Many polar molecules are poorly volatile and therefore 
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Support material 

Stationary phase  

require extensive two-stage derivatization to ionize. This process often requires the use of 

high temperatures (a concern regarding sample stability) and thus reduces the reliability of 

experimentation (Caudy et al. 2017; Dunn and Ellis, 2005). LC-MS (Liquid Chromatography 

mass spectrometry) however, allows for analysis at lower temperatures in a liquid state, 

removing the need for extensive sample preparation. This permits LC-MS to separate a 

broad range of metabolites and is the most widely used method within metabolomics (Caudy 

et al. 2017; Dunn and Ellis, 2005).  

 

UHPLC-QTOF-MS (Ultra High-Performance Liquid Chromatography – Quadrupole Time of 

Flight – Mass Spectroscopy) utilising electrospray ionisation (ESI) was the platform selected 

for this research. In the initial phases of this hyphenated technique, chromatography is 

employed to separate molecules within complex mixtures into single chromatographic 

peaks. This separation is achieved using a two-phase system, involving interactions 

between solute molecules (known as the mobile phase) and specific ligands bound to 

chromatography matrixes (known as the stationary phase) (Aguilar, 2004).  

 

Reversed phase chromatography (RPC) was the method employed throughout this 

research. RPC is capable of separating molecules that possess hydrophobic properties with 

excellent recovery and resolution. In addition, the use of ion pairing modifiers in the mobile 

phase can also allow for the separation of some charged solutes. In RPC the mobile phase 

is hydrophilic in nature and the stationary phase is hydrophobic (Moldoveanu and David, 

2013). To achieve a hydrophobic stationary phase, hydrophobic molecules are added to the 

hydrophilic silica particles of the column. One of the most common hydrophobic molecules 

used in this process is stearic acid (C18 group). These hydrophobic C18 groups coat the 

silica particles as shown in Figure 1.11 (Waters, 2021a). 

 

 
Figure 1.11. The attachment of hydrophobic molecules to the silica particles of the 
column. 
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Column 
outlet 

The retention of molecules in RPC is reliant upon the degree of interaction between the analytes in the hydrophilic mobile phase with the 

hydrophobic molecules of the stationary phase (Moldoveanu and David, 2013). As molecules flow through the chromatography column 

they partition between the stationary and mobile phases depending upon their degree of hydrophobicity (Figure 1.12.). The more 

hydrophobic a molecule is, the more interactions it will have with the stationary phase and the longer it will be retained on the column giving 

it a higher retention factor (k). Thus, less hydrophobic molecules will elute from the column first. (Figure 1.13.) (Stanbury et al. 2017; 

Jandera, 2005). 

 

 

 
 
 
Figure 1.12. RPC Column interactions of molecules varying in hydrophobicity. Entering from the left is the analyte solution containing 
three different molecules ranging in hydrophobicity. The orange molecule represents low hydrophobicity, the yellow molecule medium 
hydrophobicity and the blue molecule high hydrophobicity. Their time in transit and interactions with the hydrophobic attachment on the 
silica particles are shown, with each still representative of a single point in time. The column outlet, to the mass spectrometer is shown on 
the right, with the image showing which molecules will reach this end first.  
 
 

Column 
inlet 
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Figure 1.13. Cut through of a column operating in RPC. The attachment of 
hydrophobic molecules to the silica particles of the column. Entering from the left is the 
analyte solution containing three different molecules ranging in hydrophobicity. The orange 
molecule represents low hydrophobicity, the yellow molecule medium hydrophobicity and 
the blue molecule high hydrophobicity. Their time in transit and interactions with the 
hydrophobic attachment on the silica particles are shown. The column outlet, to the mass 
spectrometer is shown on the right, with the image showing that the orange molecules will 
reach this end first, then the yellow then the blue.  
 
 
In GC, the mobile phase plays no part in separation; however, in HPLC, the ability to change 

the mobile phase is considered one of its most powerful attributes. By adding organic 

modifiers (such as methanol or acetonitrile) to the mobile phase, the hydrophobicity of the 

mobile phase can be controlled. If the percentage of organic modifier in the mobile phase is 

decreased, the hydrophobic molecules in the solute will spend more time interacting with 

the stationary phase, increasing their retention time (Moldoveanu and David, 2013).  

 

The resolution of a molecule is determined by the amount of time it spends interacting with 

the stationary phase. If the concentration of the organic modifier present in the mobile phase 

is in such high concentrations that it fulfils the same hydrophobic interaction as the stationary 

phase, then all molecules will elute at the same time leading to poor resolution (Figure 1.14.) 

(Moldoveanu and David, 2013; Jandera, 2005). However, as the amount of organic modifier 

within the mobile phase is reduced, the hydrophobic interactions of the molecule with the 

stationary phase increase leading to an increase in interaction time and  subsequent elution 

time. This allows  for greater resolving power (Figure 1.14.) (Moldoveanu and David, 2013; 

Jandera, 2005).   
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Figure 1.14. The effect of organic modifier percentage on the peak resolution in RPC. 
The percentage of organic modifier is shown on the gradient bar at the bottom, with arrows 
indicating which percentage is being to produce the above chromatograms.  
 
 
The type of organic modifier used will significantly impact the hydrophobicity of the mobile 

phase due to the number of carbon atoms present. As the mobile phase become less 

hydrophobic, interactions with the stationary phase increase and therefore the retention time 

of molecules increase. In addition, other factors such as UV absorbance, viscosity, toxicity, 

and boiling point can affect the choice or modifier (Waters, 2021a; Nikitas et al. 2002; Valko 

et al. 1993).  

 

Organic modifier percentages can be used in two ways: either isocratic elution or gradient 

elution. Isocratic elution involves the continued use of the same percentage of water to 

organic modifier (known as a static ratio) throughout the duration of the experimentation. 

However, isocratic elution can lead to poor resolution of closely related molecules and 

lengthy analysis times. It is often therefore used alongside size exclusion chromatography 

(Waters, 2021a; Nikitas et al. 2002; Valko et al. 1993). More commonly used is gradient 

elution, whereby the percentage or ratio of the organic modifier is varied throughout the 

analysis. Generally increasing linearly overtime, the rate of this elution can be modified with 

a balance between compound retention and experimental run time being the desired 

outcome. Gradient elution greatly improves the run time of experimentation and allows for 

Time Time 

t0 t0 

Organic modifier %  100%  50%  
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greater resolution of closely related species (Nikitas et al. 2002). This increase in resolution 

is caused by changes in retention time due to the changing hydrophobicity of the mobile 

phase having varying effects on the interactions between then stationary phase and 

molecule. It will depend on the molecular nature of the analyte, and to a greater extent, 

because of the physical difference between the injector end and the detector end of the 

column. The molecules at the injector end interact with the higher organic modification 

percentage before those at the detector end. This causes the injector end molecules to be 

travelling at a slightly higher velocity as they partition from mobile to stationary phase, 

creating sharper peaks and a higher resolution / sensitivity (Nikitas et al. 2002).   

 

In contrast to RPC, Normal Phase Chromatography (NPC) and Hydrophilic Interaction Liquid 

Chromatography (HILIC) are capable of separating molecules that possess hydrophilic 

properties. Silica bound columns (without additions) create a hydrophilic stationary phase 

with hydrophobic molecules quickly eluting from the column. Hydrophilic molecules, 

however, have a range of interactions with the stationary phase and hence variable retention 

times, thus allowing for their resolution (Stanbury et al. 2017; Thermo Fisher Scientific, 2014; 

Jandera, 2005; Plumb et al. 2004). In NPC the mobile phase used is 100% organic; 

hydrophilic analytes interact strongly with the stationary phase and may not elute from the 

column. HILIC, often described as ‘reverse RPC’, employs a hydrophilic stationary phase 

(typically silica) alongside a miscible organic solvent (e.g. acetonitrile) with the aqueous 

portion varying in percentage, or used as a modifier (Thermo Fisher Scientific, 2014; 

Jandera, 2005). This exerts an opposite action to that of the organic modifier in RPC and 

makes HILIC’s selectivity complementary. Thus, HILIC and RPC are often run in tandem 

with each other (Caudy et al. 2017; Thermo Fisher Scientific, 2014; Dunn and Ellis, 2005). 
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Column efficiency is measured using theoretical plates, N, and is normalised using the 

length of the column, L, to give the height equivalent theoretical plate, HETP or H (Figure 

1.15a).  

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =
𝐿𝐿
𝑁𝑁

          

 

       𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑎𝑎(𝑑𝑑𝑝𝑝) +  
𝑏𝑏
𝑢𝑢

 +   𝑐𝑐�𝑑𝑑𝑝𝑝�
2𝑢𝑢 

 

Figure 1.15. Equations to determine HETP. A) Simplified equation to determine HETP. [L] 
is column length, [N] is plate count and [HETP] is height equivalent to a theoretical plate. B) 
van Deemter equation (The Van Deemter equation, 2021; Waters, 2021b). 
 

The van Deemter equation (Figure 1.15b) describes the various factors which can influence 

HETP, and is comprised of three terms:  

 

• The A term (eddy diffusion) is related to the particle size (dp) of the packing material, 

as well as the nature and quality of the packing itself. Eddy diffusion is the result of 

multiple flow paths through a packed column. As such, the uniformity or non-uni-

formity of the column is also an important consideration. Factors influencing this term 

include particle size (dp), particle shape, pore structure, quality of column packing, 

column wall material and column diameter (The Van Deemter equation, 2021; Wa-

ters, 2021b; Edge, 2003).   

 
• The B term (longitudinal diffusion) concerns the diffusion of the analytes in the mobile 

phase and on the stationary phase. This term decreases with increased linear velocity 

of the mobile phase. Factors influencing the B term include the linear velocity of the 

mobile phase (u), diffusion coefficient of the analyte, mobile phase viscosity, temper-

ature and the molecular mass of the analyte (The Van Deemter equation, 2021; Edge, 

2003).  

 

A) 

B) 
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• The C term (mass transfer) is related to both the linear velocity of the mobile phase 

and the particle size squared. Mass transfer is the interaction between analyte mole-

cules with the stationary phase and the diffusion distance in and out of packing ma-

terial pores. Factors influencing this term include particle size (dp), linear velocity of 

the mobile phase (u), diffusion coefficient of the analyte, porosity of the packing par-

ticles, mobile phase viscosity, temperature and retention factor (The Van Deemter 

equation, 2021; Edge, 2003).  

 

The lower the HETP value the greater the efficiency of the column. By selecting smaller 

particle sizes such as those present in UHPLC (<2 µm), a smaller H (larger N) can be 

achieved due to impacts on the A and C term of the van Deemter equation (Waters, 2021b; 

Henry, 2014). This is turn impacts the optimal operating range with respect to linear velocity 

which impacts the B term. Larger particles (ie.10 µm) have very narrow optimal operating 

ranges. If the speed of the mobile phase is too slow or too fast, an increase in HETP is seen 

(Waters, 2021b; Henry, 2014). Smaller particles have a larger linear velocity range, with 

much lower HETP at higher mobile phase velocities. For these reasons UHPLC offers 

advantages to the more traditional HPLC (High performance liquid Chromatography) via the 

use of columns packed with smaller particles that allow for higher mobile phase velocities 

(Waters, 2021b). This results in higher resolution chromatography that operates within a 

faster run time (Plumb et al. 2004).  

 

In addition, UHPLC have shorter column lengths than HPLC which has positive HETP 

effects on the equation shown in Figure 1.15a, as well as reducing band spreading. 

Specialised pumps within UHPLC are capable of dealing with higher pressure, again having 

positive effects on mobile phase velocity as well as having faster run time (without 

compromising performance) and considerably less solvent use than traditional HPLC. The 

narrower chromatographic peaks produced in UHPLC make the process of successfully 

analysing complex mixtures much more attainable, a very useful addition for metabolomics 

(Waters, 2021b; de Hoffmann and Stroobant, 2007).  

 

Following on from chromatographic separation fractionated eluates are then introduced into 

the ionisation chamber, where ionisation takes place. ESI is known as a ‘soft ionisation’ 

technique, owing to the production of intact ions related to analyte molecules and fewer 

fragment ions than vacuum ionisation techniques such as electron ionisation (Banerjee and 
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Mazumdar, 2011). In an ESI ion source, an analyte sample (often a chromatography eluent) 

is injected through a small metal needle or capillary (~0.1mm) at a low flow rate (1-

20uL/min). The tip the needle or capillary is held at very high voltage (2-6kV) relative to a 

counter electrode at the MS interface (located 1-3cm from the spray needle) (Banerjee and 

Mazumdar, 2011). Accompanying this needle is a flow of inert gas (usually nitrogen) at 

atmospheric pressure. The gas flow is used to more efficiently nebulise or break up the liquid 

stream into tiny droplets and helping to direct the stream toward the MS (Figure 1.16A). One 

of the benefits of this system is that ESI allows for both negative and positive ionisation 

mode permitting the acquisition of a greater range of ionised species. The sign of the 

potential difference between the capillary needle and the MS interface will determine which 

ion type is produced (Figure 1.16A) (Villas-Boas et al. 2007).   

 

This strong electric field (created due to the potential difference between the high voltage of 

the needle tip and the relatively low voltage of the MS interface) has a dispersion effect on 

the sample in solution and creating an aerosol of highly charged electrospray droplets. Ion 

formation in ESI must occur in solution prior to entering the gas phase (Konermann et al. 

2013; Banerjee and Mazumdar, 2011). It is thought that molecules undergo electrochemical 

redox reactions at the liquid metal interface of the capillary needle or acid-base reactions in 

solution. The exact mechanism by which ions desolve in the gas phase is still a matter of 

debate and research; however, it appears the nature of the analyte itself informs the choice 

of mechanism (Konermann et al. 2013). There are currently two mechanisms considered for 

this process, which include:  

 

• The Ion Evaporation mechanism (IEM), whereby the electric field at the surface of 

the highly charged droplets becomes so highly charged that larger droplets break 

down into smaller ones (Konermann et al. 2013). This happens sequentially until just 

the desolved ion remains (Figure 1.16B.). It is thought this is the favoured method for 

smaller ions (Konermann et al. 2013).  

 
• The Charged Residue Module (CRM), whereby ions eventually desolve as solvent 

molecules sequentially leave the surface of droplets until just desolved ions are left 

(Figure 1.16C.) (Konermann et al. 2013). This method is believed to be favoured by 

larger species with multiple charges (Konermann et al. 2013).  
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Figure 1.16. Schematic illustration of Ion desolvation. A) Schematic of ESI, with red circle indicating the area which has been enhanced 

in part b and c B) Ion Evaporation mechanism of desolvation, blue represents solvent and red represents ions C) Charged Residue Module  

of desolvation, blue represents solvent and red represents ions.

A) 

B) C) 
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The Waters SYNAPT G2-Si (Figure 1.17.) operates in two modes: HDMSTM mode (using 

Triwave ion mobility separation) and ToF mode. The operation mode used throughout this 

research was ToF mode (Waters, 2015). In ToF mode once the sample has eluted from 

UHPLC, it is injected into the ion source where the molecules are converted into ions. There 

are many types of ion source used within metabolomics, with ESI (the technique used 

throughout this research) being the most common (Dettmer et al. 2007).  

 

Desolved ions are then attracted into the mass analyser and are accelerated into the 

quadrupole. The quadrupole module consists of four quadrupoles (metal rods), arranged in 

parallel and connected to a radio frequency (RF) voltage supply where an alternating 

electrical field is created between the quadrupole rods. Once molecules reach the 

quadrupole they start to spin within an imaginary cylinder, the size of which is dependent on 

the m/z and the RF voltage (Villas-Boas et al. 2007). In MS and MS/MS mode the first 

quadrupole (Q1) can act as a mass filter for the selection of a specific range of ions based 

on their m/z. Alternatively it can act in RF-only mode allowing all ions to be transmitted (Allen 

and McWhinney, 2019). In MS mode the second quadrupole (Q2) acts in RF-only mode and 

so not inducing fragmentation and allowing accurate determination of the mass of 

unfragmented precursor ions to be detected. In MS/MS mode, Q2 acts as a collision cell. 

Ions are bombarded by a neutral gas such as nitrogen or argon, inducing fragmentation of 

the ions and allowing the acquisition of product or fragment ions (Allen and McWhinney, 

2019). The ToF then applies high voltage pulses to accelerate the ions into a high vacuum 

flight tube. Within the spectrometer (Figure 1.17.), a dual stage reflector is employed to 

separate out the ions based on m/z and reflect them back to the detector. The m/z is relative 

to the ToF with smaller m/z’s reaching the detector first (Allen and McWhinney, 2019; Waters, 

2015). Therefore, UHPLC-QTOF-MS’s high-resolution power, excellent sensitivity and high 

selectivity makes the use of a great candidate for untargeted metabolomics (Allen and 

McWhinney, 2019).  
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Figure 1.17. Schematic illustration of a Waters SYNAPT G2-Si. (adapted from Waters, 2005). 
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1.2.7. Data analysis 
Having acquired data by NMR or MS, converting the raw instrumental data into data that 

can be processed by the considerable number of statistical and metabolite identification 

tools is a challenging endeavour. Within LC-MS, pre-processing such as deconvolution, 

baseline drift, normalisation, noise, and peak detection needs to be carried out prior to data 

being analysed in a traditional discovery-based fashion (Hendriks et al. 2011). Fortunately, 

there are many freely available data processing programs for use with LC-MS, such as 

MzMine and XCMS (Ni et al. 2016; Benton et al. 2014; Gowda et al. 2014; Zhu et al. 2013; 

Tautenhahn et al. 2012a; Tautenhahn et al. 2012b; Pluskal et al. 2010). Within NMR and 

other methodologies, the same pre-processing steps must be performed however these are 

normally internally governed by the types of machines used to acquire the data, with 

programs and databases provided to users at a cost (Hendriks et al. 2011).  

 

Once pre-processing has been achieved, multivariate statistical analysis and metabolite 

identification are readily employed. Again, within LC-MS thanks to the advancement of 

bioinformatic tools, metabolite identification has become a largely automated process, with 

several programs offering peak picking, retention time alignment and statistical analysis 

(Chong et al.  2019a; Chong et al.  2019b; Ni et al.  2016; Benton et al.  2014; Gowda et al.  

2014; Zhu et al.  2013; Tautenhahn et al.  2012a; Tautenhahn et al.  2012b; Pluskal et al.  

2010). Metabolite identification is still often one of the main bottlenecks of metabolomics 

experimentation. In recent years, great effort has been made to increase the breadth of 

online compound databases, but many metabolites are left unidentified. Without 

confirmatory runs of expensive known standard compounds, any database matches that are 

achieved, even using retention time and MS/MS data, can only be considered punitive 

identifications.  

 

The most common type of statistical analysis within metabolomics is multivariate analysis, 

where the power of computational models is used to assess and compare a multitude of 

groups and establish the factors and strength of the factors on which those models are built. 

These include a PCA (principal component analysis) which is a separation method that uses 

linear transformation to preserve as much variation within the data as possible without taking 

account of the predefined groups. PCA provides an unbiased separation, only revealing 

group structure if enough variation is present within groups (Hendriks et al.  2011; Worley 

and Powers, 2016). By contrast PLS-DA (partial least squares discriminant analysis) (for 
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use in multiple group comparisons) and OPLS-DA (orthogonal partial least squares 

discriminant analysis) (for use in pairwise comparisons) force separation between groups, 

building models around the strongest sources of variation between groups (Worley and 

Powers, 2016).  

 

It is important to understand that these two modelling types are different, whilst they look 

similar and both aim to report on general trends within a data set. OPLS-DA and PLS-DA 

force separation between two pre-defined groups at the expense of model reliability, but 

PCA deals with data as if it exists as part of a single group and then subsequently labels 

groups. This forced separation of OPLS-DA/PLS-DA has led to this modelling method being 

commonly used, especially within metabolomics community and hence consideration of 

OPLS-DAs without subsequent PCA analysis is misguided (Worley and Powers, 2016). It 

must be conceded, therefore that OPLS-DA/PLS-DA models must be built using weaker 

sources of variation than their PCA counterparts (Worley and Powers, 2016). This being the 

case, visible separation in OPLS-DA/PLS-DA is expected, and so CV-ANOVA scores act as 

more reliable source of information with regards to the significance of the separation seen 

in OPLS-DAs/PLS-DAs.  

 

Once metabolites have been identified and subject to statistical analysis, significant features 

can then be mapped via pathway analysis. Once again there are many online programs 

capable of assisting with pathway analysis, the choice of the pathway analysis program used 

is often based on user preference and the organism which has been the subject of their 

studies as so pathway analysis tools offer larger databases for certain organisms than others 

(Chong et al.  2019a; Chong et al.  2019b; Karp et al.  2017; Hendriks et al.  2011; Caspi et 

al.  2007; Kanehisa and Goto, 2000).   

 

1.2.8. The application of metabolomics for disease research 
Given that proper metabolic functioning is vital for the health of an organism, the pivotal role 

that metabolomics is set to take in the future of medicine cannot be overstated. Studies are 

available that focus on almost every human disease, including diabetes, cancer, 

neurodegeneration, non-fatty liver disease, obesity, and cardiovascular health to name a 

few (Pinu et al.  2019; Zhang et al.  2017; He et al. 2015; Lewis et al.  2008).  
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Neurodegeneration has received some attention from the metabolomics community over the 

last decade, with the pathogenesis of the amyloid diseases (namely Alzheimer’s and 

Parkinson’s) chief among these studies (Bourgognon et al.  2018; Oresic et al. 2011). 

Metabolomics and neurodegeneration have risen from being virtually non-existent in the 

literature (0-2 papers per year from 2008 till 2012), to 33 per year in 2018 (Web resource at 

URL:http://dan.corlan.net/medline-trend.html). Utilising the power of metabolomics within 

neurodegeneration has the potential to aid progress toward the development of effective 

treatments, currently halted by a lack of understanding of the early pathology of disease 

(Wilkins and Trushina, 2018). In addition, it can provide reliable and disease specific 

biomarkers from minimally invasive samples (such as blood, saliva, or urine) capable of 

early or even pre-symptomatic diagnosis (Bamji-Stocke et al. 2018; Dong et al. 2018; Liang 

et al. 2016). This would end the qualitative assessments currently in use, many of which are 

subject to user manipulation, late stage diagnosis or at worst misdiagnosis. To date, 

definitive diagnosis of Alzheimer’s disease (AD) can only be achieved post-mortem via brain 

tissue examination (Galasko and Golde, 2013).  

 

Current findings from cerebrospinal fluid metabolomics suggest that the metabolic 

perturbations resulting from these conditions is significant and widescale, even in patients 

with mild cognitive impairment (Wilkins and Trushina, 2018). Lewitt et al. (2013) reports the 

formation of the 3-hydroxykynurenine and reductions of antioxidant glutathione signalling as 

disease relevant markers for Parkinson’s and Alzheimer’s. More commonly reported are 

changes in the biosynthesis and metabolism of lipids, cortisone, and amino acids, as well 

as disruption to energy, urea, and bile acid metabolism (Varma et al. 2018; Wilkins and 

Trushina, 2018; Laurens et al. 2015; Han et al. 2011; Oresic et al. 2011). Wilkins and 

Trushina (2018) reason that reduced glucose utilization is understandably problematic for 

the highly glucose-dependent brain, suggesting that compensatory mechanisms switch to 

alternative energy sources, including the catabolism of lipids, to maintain homeostasis within 

this vital organ. Bourgognon et al.  (2018) state that the most relevant disease alterations in 

neuronal metabolism for use as biomarkers are changes in glycolysis, pentose phosphate 

pathways, polyamines, ceramides, and prostaglandins. They claim that the perturbations to 

these pathways increase with increasing redox stress and advancing disease progression 

(Bourgognon et al.  2018). While metabolomic findings have provided significant insight into 

the mechanisms of protein misfolding, there is still an inconsistency and confliction in its 

results (Wilkins and Trushina, 2018). This is unaided by the common use of mouse models 

carrying known AD disease genes (such as APOE4), as although these models are helpful, 
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the vast majority of human cases of AD are sporadic with no direct genetic cause and so the 

amount of information that can be inferred is limiting (Eckert et al. 2009). However, the most 

promising and consistent hallmarks of AD studies appear within lipid metabolism (Varma et 

al. 2018; Toledo et al. 2017; Laurens et al. 2015; Han et al. 2011; Oresic et al. 2011). In one 

of the most significant and largest blood-based metabolomic studies Toledo et al. (2017) 

identified preclinical biomarkers of alterations in sphingomyelins and ether-containing 

phosphatidylcholines, associated and correlating with AD stage. This is supported by the 

findings that alterations in the metabolism of branched chain amino acids and bile acids 

impact directly on lipid metabolism (Pan et al. 2017).  

 

Prion focussed studies are rarer by comparison to amyloid studies, however their value for 

disease pathology and progression as well as increasing and validating biomarkers should 

not be overlooked. Bourgognon et al. (2018) states that until their experimentation, the 

metabolic profiles of prion-containing neuronal cells had not been examined. Despite large 

bottlenecks in the amounts of compounds they were able to identify, they conclusively found 

that mice with prion-infected brains displayed altered metabolic profiles to disease-free mice. 

As seen within the amyloid diseases, these changes included reduced glycolysis and energy 

production, changes to amino acid utilisation and enhanced metabolism of the sphingolipids 

in diseased cells (Bourgognon et al.  2018). Importantly, this study found these results prior 

to the establishment of the traditional symptoms of prion disease, indicating that key 

metabolic differences are apparent and measurable long before the disease appears to 

show any atypical symptoms. This is a vital piece of information for the translation of this 

into biomarker detection (Bourgognon et al.  2018). Using serum samples, Pushie et al. 

(2011) found several metabolites associated with chronic wasting disease (CWD), a prion 

disease effecting cervids (typically white-tail deer and elk). Pushie et al’s. (2011) NMR 

studies correlate well with those previously reported for BSE and Scrapie infected sheep, 

with disruption in degradation pathways and fatty acid synthesis (Pushie et al. 2011; Allison 

et al. 2008; Allison et al. 2007).  

 

The parallels between amyloid and prion metabolomics findings provide an encouraging 

level of similarity, suggesting that universal effects of as a result of protein misfolding disease 

are present within mammals.  However, the distinction between these diseases may 

therefore be difficult to obtain, or otherwise require a new approach to the atypical, disease 

free, controls used within metabolomics. For instance, many diseases result in increasing 

redox stress, including disruption to Ca2+ signalling, nitric oxide (NO) signalling and general 
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neuroinflammation (Varma et al. 2018; Wang et al. 2017; Nakamura and Lipton, 2017). It 

seems unreasonable to suggest that cells that are coping with any disease would not be 

presenting with signs of stress, perhaps this perceived overlap in biomarkers such as NO 

signalling are simply a demonstration of a diseased or stressed brain cell. For the findings 

to be specific to the disease in question it is arguably more appropriate to compare one 

disease state to another albeit different disease. Indeed, as studies and knowledge of 

metabolic perturbations of amyloid and prion disease increase, so too must comparison 

between findings, if this powerful and precise methodology is to deliver within the field of 

diagnosis, disease progression and therapeutic targets. Such effort and focus from the 

metabolomics community would be welcome news, as these are all areas that have made 

only limited progression over the last half century (Shao and Le, 2019; Paglia et al.  2016; 

Trushina and Mielke, 2014). 

 

1.2.9. Metabolomics in yeast 
An incredibly valuable and insightful model organism, Saccharomyces cerevisiae, has been 

extensively used to study of metabolism for many years. Currently the best eukaryotic model 

available, considerable time and effort has gone into developing and significantly expanding 

the YMDB (yeast metabolome database) which includes essential information about 

compounds, metabolic and signalling pathways and spectral data (Ramirez-Gaona et al.  

2017; Caudy et al.  2017). Although much improvement is still needed in order for the 

database to be as effective or to cover as broad a range as its human based counterpart 

HMDB (human metabolome database). Its value as a workhorse within metabolomics for 

biotechnology, fundamental discovery and food production however cannot be overstated 

(Caudy et al.  2017). 
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1.3 Aims and Objectives 
 

1.3.1. Overview of aims and objectives  
Despite knowing for many years, the link between amyloid formation and disease, the 

specific mechanisms underlying these events remain a mystery. Although it is understood 

that the journey to the amyloid state is a complex, multi-layered phenomenon involving many 

oligomeric intermediates, it is important to uncover the specific mechanism by which 

aggregation occurs and thus reveal the way in which amyloid disease induces pathogenicity 

(Knowles et al.  2014; Valastyan and Lindquist, 2014). 

 

Yeast prions share many of the molecular features of amyloid disease, including highly 

specific cellular responses to the toxicity of overexpression. This has illustrated how 

promiscuous prion protein interactions can elicit highly specific toxicities within the proteome 

(Liebman and Chernoff, 2012; Treusch and Lindquist, 2012). Here the use of the well-

documented model organism, S. cerevisiae, which can recapitulate the biochemistry of 

amyloidosis, is suggested as it may provide insights that are not currently identifiable within 

the complex biochemistry of the brain. 

 

Given that information regarding these promiscuous protein interactions has remained 

elusive and yet is key to the fundamental understanding of amyloidosis and the development 

of appropriate medical interventions, here a novel approach is proposed. Using 

metabolomics, the aim was to analyse the effect of the aberrant and promiscuous protein-

protein interactions of yeast prions in order better understand, isolate, and influence the 

effect that these rogue oligomers and amyloid proteins have on metabolic pathways. 

 

1.3.2. Specific aims and objectives 
The first aim of this project was to determine which metabolomic method was most suitable 

for use in S. cerevisiae. As discussed previously, little consensus exists regarding which 

methodology is or should be favoured, even when considering only one step in the multi-

step process that is metabolomics experimentation. Many research groups use a variety of 

methods for cell growth, quenching of the metabolism, metabolite extraction, detection, and 

computational analysis. This makes it difficult to draw parallels between the studies and their 

often-contradictory findings (Duportet et al.  2011; Canelas et al.  2009). Assessing the 

capability of any given methodology to reflect known metabolic changes should be key in 

determining its future use for biological interpretation. As such the aim was to use the simple, 
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predictable, and independent (of metabolomics findings) metabolic influencers of aerobic 

respiration, anaerobic respiration, and ammonium as sole nitrogen source to assess the 

suitability of the currently available sample preparation methodologies. These experiments 

involved exploration of suitable growth and extraction methodologies using Ultra High-

Performance Liquid Chromatography Mass Spectrometry (UHPLC-MS), to establish a 

sample preparation method which accurately revealed the metabolic state of S. cerevisiae. 

 

This justifiable and valid metabolomics methodology was then used to investigate the 

endogenous cellular role of the Rnq1 protein, using a strain of S. cerevisiae in which the 

RNQ1 gene had been deleted (∆rnq1). Understanding the endogenous role of the Rnq1 

protein (the facilitator of prions and one of the only wild prions known) may aid in our 

understanding of the mechanisms controlling this phenomenon. Halfmann et al. (2012) 

suggest that this aspect of fungal prions overshadows the traditional associations with 

mammalian amyloidosis; the researchers state that prion-driven phenotypic diversity 

increasing under stress provides evidence that fungal prions can create protein-based 

molecular memories. 

 

The previously established method was then used to measure the metabolic profiles of 

[RNQ+] and [rnq-] cells, comparing ‘disease’ vs ‘non-disease’ state in S. cerevisiae; 

biomarkers and metabolic pathways associated with the presence of Rnq1 protein protein 

and/or amyloidosis were identified.  An atypical stress response in S. cerevisiae was used 

as a control; the aim was to identify biomarkers or pathways which are specific for the 

presence of Rnq1 protein protein and/or amyloidosis rather than simply being indicative of 

a general stress phenotype. Previous stress response studies in S. cerevisiae suggest that 

a near universal metabolic stress response is seen in heat shock, oxidative stress, and high 

pH (Kang et al. 2012). Given that the other stress responses tested appear to give a variety 

of results and the known biochemical associations between heat/oxidative stress and 

amyloidosis, the decision to use a mild oxidative stress in our control [rnq-] was taken. The 

aim was to detract from atypical stress response influencers, ensuring that our results 

reflected the ‘disease state’ in question. 

 

Using the same methodologies, the toxicity of Rnq1 overexpression in a [RNQ+] background 

was also explored. Douglas et al. (2008) show that Rnq1 overexpression in [RNQ+] cells 

causes approximately 25% culture death four hours after induction.  The cellular changes 
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that occur over this time were monitored, with the aim to better understand why the formation 

of amyloids is often associated with cell death, without a known direct influence themselves. 

 

1.3.3. Summary 
Merging the fields of prion/amyloid biology and metabolomics promises to be an informative 

and enlightening endeavour. This project was subject specific providing information such as 

metabolomic methodology use in S. cerevisiae and the native role of Rnq1 protein. At the 

same time, the research shed light on fundamental questions regarding amyloid formation, 

addressing the current need for more detailed understanding of disease biology. The results 

revealed cellular perturbations caused by yeast prions, which can then be used to direct 

future studies and to identify homologous circuits in higher multi-cellular eukaryotic 

organisms. 
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Chapter Two - Materials and Methods 
 
2.1. Chemicals and reagents 
Appropriate risk assessments including COSHH and GMO where carried out for all protocols 

involving the use of hazardous chemicals or equipment, and suitable control measures 

employed. All laboratory work was carried out in an ACDP category two laboratory despite 

the quantity and nature of the organisms used only requiring level one. Prior to 

experimentation, any freshly sterilised glassware or media for use was left for 24 hours after 

preparation to check for contamination.  

 

Table 2.1. Chemicals and reagents.  
 

Materials Content Source 
Chemicals and 
reagents  

Ethanol, Chloroform, Methanol, Acetonitrile, 
Formic Acid, Tricine, Guanidine 
hydrochloride, Tris-HCL, EDTA, Lithium 
acetate, PEG 3350, glycerol, Potassium 
acetate, Calcium chloride dihydrate, 
Manganese (II) chloride tetrahydrate, 
Magnesium chloride hexahydrate 

Sigma Aldrich,  
Fisher Scientific 

Reaction kits QIAprep Spin Miniprep Kit QIAGEN 
Media and amino 
acid drop-outs  

Kaiser Complete SC mixture (SC); non 
drop-outs: SC Complete Supplement 
mixture (CSM); single drop-outs: SC -his, 
SC-Ura; double drop-outs: SC, -his, -ura 

Formedium, 
Fisher Scientific 

 
Chemicals, reagents, reaction kits and amino acid drop-outs are detailed, including their 
name and source. 
 
2.2. Growth media  
All components for buffers and media were weighed to three decimal places using an 

analytical balance. Buffers and media components were, where appropriate, dissolved in 

laboratory grade distilled water (Sartorious) and autoclaved at 121°C with a 15-minute cycle 

using a bench top autoclave (Astell). The autoclave was used to provide sterile media with 

which to work, eliminating the risk of contamination. Liquid media recipes are detailed in 

Table 2.2 and 2.3. Where solid media was required, granulated agar (Fisher Scientific) was 

added at a final concentration of 2% (w/v) prior to autoclaving. In the event an amino acid 

drop-out mix was used a single pellet of NaOH was also added to the media prior to 

autoclaving to aid pH balance and solidification of the agar. Solid media were prepared using 

standardised aseptic technique, with ≈ 20 mL of molten media in each petri dish.  
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2.2.1. Yeast media for the culture of S. cerevisiae  

 
Table 2.2. Yeast growth media used in this study.  
 

Media Recipe 
YEPD (Yeast extract, 
peptone, glucose) 
complete medium  

2% (w/v) glucose, 1 % (w/v) yeast extract, 2% (w/v) 
bactopeptone 
 

¼ YEPD (Yeast extract, 
peptone, glucose) 
complete medium 

2% (w/v) glucose, 0.25 % (w/v) yeast extract, 2% (w/v) 
bactopeptone 
 

SC (Synthetic complete) 
2% glucose drop-out 
medium (used in chapter 
3) 

2 % (w/v) glucose, 0.89% Yeast Nitrogen Base (with 
amino acids, with ammonium sulphate) 
 

SD (Synthetic defined) 2% 
glucose medium  
 

2 % (w/v) glucose, 0.67 % Yeast Nitrogen Base (without 
amino acids, with ammonium sulphate), the appropriate 
concentration of amino acid supplementation as per the 
individual strain’s requirements  

SC (Synthetic complete) 
2% glucose drop-out 
medium (used in chapters 
4,5 and 6*) 

2 % (w/v) glucose, 0.17 % Yeast Nitrogen Base (without 
amino acids, without ammonium sulphate), 0.5% 
ammonium sulphate, the appropriate concentration of 
yeast synthetic complete supplement mixture or synthetic 
complete drop-out media supplement 

SC (Synthetic complete) 
2% galactose drop-out 
medium 
 

2 % (w/v) galactose, 0.17 % Yeast Nitrogen Base (without 
amino acids, without ammonium sulphate), 0.5% 
ammonium sulphate, the appropriate concentration of 
yeast synthetic complete supplement mixture or synthetic 
complete drop-out media supplement 

 
Media name and recipe details given. *an alternative recipe for SC was employed for 
chapters 4, 5 and 6 to ensure that media components remained identical wherever 
possible 
 

The use of YEPD and ¼ YEPD although employed to grow up strains was not used 

throughout experimentation due the additional metabolite ‘noise’ which can be created by 

more traditional yeast media and SD, and versions of SC were considered preferable.  

 

Guanidine Hydrochloride (GdnHCl) was used as a curing agent in the media of S. cerevisiae 

cells that required a [prion-] status. Filter-sterilised GdnHCl was added to all the yeast 

medias when appropriate at a final concentration of 3mM after autoclaving and cooling to ≈ 

50°C. 
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2.2.2. Growth media for the culture of Escherichia coli   
 
Table 2.3. E. coli growth media in this study.  
 

Media Recipe 
LB (Luria Bertani) Medium  1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) 

sodium chloride 
SOB (Super Optimal 
Broth) medium 

2% (w/v) tryptone, 0.5 % (w/v) yeast extract, 10mM 
sodium chloride, 20mM magnesium sulphate, 2mM 
potassium chloride 

 
Media name and recipe details given.  
 

Ampicillin was used to select as a selection tool for E.coli cells that had been transformed 

with plasmids containing the AmpR gene. Filter-sterilised ampicillin was added to the Lb 

medium at a final concentration of 100 µg/ml, from a 100 mg/ml stock, after autoclaving and 

cooling to ≈ 50°C. 

 

2.3. Strains and plasmids  
All S. cerevisiae strains (Table 2.4.) were maintained on solid media in 30°C incubator. All 

strains were kept as glycerol stocks and stored in the -80°C freezer and streaked at least 

three times before use (Sherman, 2002).  

 

2.3.1. S. cerevisiae strains 
 

Table 2.4. S. cerevisiae strains.  
 

Strain Notes Genotype References 
74D-694 [pin-] MATa ade1-14(UGA) trp1-289(UAG) 

ura3-52 his3-∆200 leu2-3, 112 

Chernoff et al. 1993 

74D-694 [PIN+] MATa ade1-14(UGA) trp1-289(UAG) 

ura3-52 his3-∆200 leu2-3, 112 

Chernoff et al. 1993 

74D-694 RNQ1 

deleted  

MATa ade1-14(UGA) trp1-289(UAG) 

ura3-52 his3-∆200 leu2-3, 112 

G. L. Staniforth 

 
Strain, notes, genotype, and reference given (all strains were kindly supplied by Kent 
fungal group of the University of Kent). 
 



83 
 

2.3.2. Starter cultures  
Prior to the commencement of each experiment within this thesis, each yeast strain was 

initially grown as a starter culture. 50 mL of the appropriate media was added to a bunged 

and autoclaved 250 mL conical flask, inoculated with the strain and grown overnight at 30 °C 

with shaking at 180 rpm. Next morning, the culture was then diluted to an OD600 of ≈ 0.05 

in 50 mL of the appropriate minimal media added to a fresh bunged and autoclaved 250 mL 

conical flask and allowed to grow at 30°C with shaking at 180rpm until the desired OD600 

was obtained. 

 

2.3.3. Filter cultures for cell growth 
When the diluted starter culture had reached early exponential phase (OD600 of ≈ 0.1), 2 

mL of the culture was passed through a sterile nylon membrane filter (0.2 µm pore size, 

hydrophilic nylon membrane, 47 mm diameter, Sigma) using a Nalgene sterile filter unit 

(Fisher). This filter was then placed cell-side face up onto a corresponding synthetic media 

plate, placed in a 30°C incubator and grown to an OD600 of ≈ 0.6 (plate repeats allowed for 

OD600 assessment). (Yuan et al.   2008; Brauer et al. 2006; Rabinowitz 2007) 

 

2.3.4. Broth cultures for cell growth  
Typically, 50 mL liquid cultures were set up in 250 ml bunged and sterilised conical flasks, 

the appropriate volume of starter culture (as determined by OD assessment) was then 

added. Broths were then incubated at 30°C with shaking at 180rpm, until an OD600 of ≈ 0.6 

equivalent to mid-log phase growth was reached 

 

2.3.5. E.coli strain  
This E.coli strain (Table 2.5) was maintained on solid LB medium (0.5 % (w/v) NaCl, 0.5 % 

(w/v) yeast extract, 1.0 % (w/v) peptone, 2 % (w/v) agar) in a 37°C incubator. This strain was 

kept as glycerol stocks (LB media, 40% (v/v) glycerol) and stored in the -80°C freezer. When 

required for experimentation, the strain was streaked on to solid LB media and grown 

overnight at 370 C before being transferred to liquid LB cultures. Liquid cultures were grown 

in sterilised 1.5 mL Eppendorf microfuge tubes, 50 mL Falcon centrifuge tubes or 250 mL 

conical flasks containing the appropriate volume of LB broth (0.5 % (w/v) NaCl, 0.5 % (w/v) 

yeast extract, 1.0 % (w/v) peptone) at 30°C with shaking at 180rpm or on solid media in 

30°C incubator. 
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TOP10 strain given (kindly supplied by Kent fungal group of the University of Kent) with a 

genotype of F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 

Δ(ara leu) 7697 galU galKrpsL (StrR) endA1 nupG was used.  

 

2.3.6. Plasmid for the overexpression of Rnq1 protein 
 
Plasmid pYES2, with GAL1P, URA3, 2µ, AmpR characteristics and RNQ1 insert, was kindly 

supplied by Kent fungal group of the University of Kent. Present with GAL1P: promoter of 

the GAL1 gene; URA3: selective marker of uracil biosynthesis in S. cerevisiae.  

 
2.4. Recombinant DNA methods  

2.4.1. Preparation of competent E.coli cells  
A single colony of E.coli T10 strain was picked from a SOB plate (2% (w/v) tryptone, 0.5 % 

(w/v) yeast extract, 10mM sodium chloride, 20mM magnesium sulphate, 2mM potassium 

chloride, 2% (w/v) agar) and transferred to 5 mL of SOB media in a 25 mL falcon tube and 

placed at 37°C with shaking at 180 rpm overnight (≈ 12 -16 hours). 600 µl of glycerol was 

then added to the culture (15 % (v/v) final concentration), and 1.0 mL of these seed stocks 

were placed into 1.5 ml Eppendorf microfuge tubes and put in -80°C freezer. One of these 

1.0 mL seed stock aliquots was then added to 250 mL of SOB media in a 1 litre bunged and 

autoclaved conical flask. This culture was grown at 30° C with shaking at 180 rpm, until an 

OD600 of 0.3 was reached. Cells were then harvested by centrifugation in a benchtop 

centrifuge at 3000rpm and 4°C for 10 minutes. The spent-broth supernatant was discarded, 

and any residual liquid removed using a sterile Pasteur pipette. The cell pellet was then 

gently resuspended (swirled rather than shaking or pipetting) in 80 mL of ice-cold CCMB80 

buffer (10 mM KOAc, 80 mM CaCl2.2H2O, 20mM MnCl2.2H2O, 10mM MgCl2.6H2O, 10 % 

(v/v) glycerol) and incubated on ice for 20 minutes. Cells were then subject to further 

centrifugation in a benchtop centrifuge at 3000 rpm and 4° C for 10 minutes and the 

supernatant discarded as before. Cells where then resuspended in a further 10 mL of ice 

cold CCMB80. 50 µl of this resuspension was added to 200 µl of SOB and the OD600 

measured until 1.0 – 1.5 was reached (via further dilution of the resuspension with CCMB80 

if required). Once the desired OD600 was reached, 100 µl aliquots of cells were pipetted into 

ice-chilled 1.5 ml Eppendorf microfuge tubes and placed immediately into the -80°C freezer 

until required. 
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2.4.2. Transformation of plasmid DNA into competent E.coli cells  
In separate sterile 1.5 mL microfuge tubes, 5ng of miniprep-grade plasmid DNA of the 

desired plasmid and 5ng of miniprep-grade plasmid DNA of the control plasmid (usually pUC 

19) were added to each respective tube and placed on ice. Three 100 µl aliquots of TOP10 

competent E.coli were allowed to thaw on ice (≈ 10 minutes).  Once thawed, the plasmid 

DNA was added to the aliquoted cells. Nothing was added to the third aliquot of cells. Each 

tube containing cells was incubated on ice for 20-30 minutes. Cells were then subject to 

heat shock by quickly transferring the tubes to a heat block set to 420 C for between 30-60 

seconds. Cells were then immediately returned to ice for two minutes. After this time, 1.0 mL 

of SOB medium was added to each tube and incubated at 37°C for 30-60 minutes with 

gentle shaking. 100 µl of cells were then plated out onto appropriate antibiotic-based 

selective and non-selective media and incubated inverted at 37°C overnight.  

 

2.4.3. Transformation of plasmid DNA into S. cerevisiae 
A single yeast colony was used to inoculate 5 mL of YEPD media and grown over night at 

30º C with shaking at 180rpm. In the morning, 10 mL of fresh YEPD (pre-warmed at 30º C) 

was inoculated with 0.5 mL of stationary phase cells from the overnight culture and 

incubated at 30º C with shaking for ≈ 4.5 hours. When an OD600 of 0.5-0.6 was reached, the 

cells were harvested by transferring to a sterile 50 mL microfuge tube and centrifuged in a 

benchtop centrifuge at 3000 rpm, room temperature for 3 minutes. The spend broth 

supernatant was then discarded, and the cell pellet resuspended in 5 mL of LiAC solution 

(10 % (v/v) TE (10x pH 8.0), 10% (v/v) Lithium acetate (1M)). The resuspended cells were 

then re-centrifuged under the same conditions to wash them. The supernatant was 

discarded, and the cell pellet resuspended in 500 µl LiAC solution and transferred to a 1.5mL 

Eppendorf microfuge tube. Sheared salmon sperm DNA (ssDNA) was prepared by 

dissolving ssDNA in water at a concentration of 5 mg/ml, passing the solution through a 

narrow-gauge needle multiple times (≈ 50) and then boiling at 1000 C for 20-30 minutes 

before cooling on ice. 100 µl of the carrier ssDNA was then mixed with the competent cell 

solution, and 60 µl of the cell/ssDNA mix aliquoted into ten 1.5 mL Eppendorf microfuge 

tubes. 2 µl of miniprep plasmid DNA containing 10ng of DNA and 500 µl of PEG solution 

(10 % (v/v) TE (10x pH 8.0), 10% (v/v) lithium acetate (1 M) and 80 % (v/v) PEG 3350 

solution (50 % w/v), filter sterilised) was then added to each tube. Tubes were incubated at 

30º C with shaking at 180 rpm for 45 minutes, followed by heat shock at 42º C with shaking 

at 180 rpm for 15 minutes. The cell transformation mix was then aliquoted in 100 µl - 200 µl 
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amounts onto appropriate selective and non-selective solid media and incubated upside 

down at 30º C for 2-4 days.  

 

2.5. Growth conditions and analysis   
Throughout experimentation, every effort was made to ensure that cells were grown, 

extracted, and analysed together. When this was not possible due to the number of samples, 

all experimental classes were split across (up to) three weeks, with each week containing 

no less than two class replicates.  

 

2.5.1. Determination of cellular density in liquid or broth culture 

To measure the cell density of a culture rapidity, a UV- spectrophotometer was used to obtain 

an OD600 reading of a sample the culture. Routinely, 1.0 mL of the cell culture was aseptically 

removed from the culture and transferred to a 1.0 mL plastic cuvette. A separate cuvette was 

also prepared that contained 1.0 mL of  fresh growth medium to act as a ‘blank’ or reference 

for the spectrometer. The spectrophotometer was set to a wavelength of 600 nm and the 

reading used as to estimate the cell density of liquid broths. It was assumed that an OD600 

= 1.0 is approximately 1.0 x 107 cells/mL (Sherman, 2002). If the initial OD600 reading 

obtained was above 1.0, then the sample was diluted before reading to ensure the 

measurement was within the linear range of the spectrophotometer.  

 

2.5.2. Determination of cellular density on solid or filter culture 
 
This method is used to determine the cell density of cells growing on solid filters using a 

modified protocol of that stated in section 2.5.1. Filters that have had cells grown on their 

surface were placed inside 50 mL falcon tubes and 2 mL of fresh liquid media added. The 

Falcon tubes containing the filters and media were then vortexed for 2 minutes to wash the 

cells from the filter surface into the media. 1.0 ml of media now containing the cells was 

pipetted into a 1.0 ml plastic cuvette and the OD600 measured against a 1.0 mL fresh media 

reference. For filter cultures, additional plates were prepared to enable this estimation of 

OD600 and so determine the rate of growth of the cultures within an experiment.  
 

2.5.3. Determination of aerobic growth condition  
Yeast cell cultures, whether filter or liquid broth grown, were provided with fresh synthetic 

complete media and incubated at 30º C in the as detailed in section 2.2. (250 mL foam 
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bunged conical flasks for broth and unsealed lidded petri dishes in large incubator for filters) 

in the presence of air.  

 

2.5.4. Determination of anaerobic growth condition  
Yeast cell cultures, whether filter or liquid broth grown, were provided with fresh synthetic 

complete media, and incubated at 30º C. Liquid cultures were grown in closed 50 mL Falcon 

centrifuge tubes, sealed with parafilm and wrapped in parafilm. Filter grown cells were grown 

as detailed in section 2.3.2. but with the petri dish lids sealed with parafilm and placed inside 

an air-tight box. All cultures were incubated at 30º C. 

 

2.5.5. Determination of ammonium as a sole nitrogen source growth condition  
Yeast cultures whether as a filter format or liquid broth culture were provided with synthetic 

defined (SD) media that was appropriate to the genotype of the yeast strain being 

investigated. The synthetic defined media contained only the amino acids required by the 

strain used for survival (auxotrophic), all other amino acid would need to be synthesised 

(autotrophic). Cultures were incubated at 30ºC in the as stated previously (Section 2.3.) (250 

mL foam bunged conical flasks for broth and unsealed lidded petri dishes in large incubator 

for filters) in air. 

 

2.5.6. Determination of mild oxidative stress condition   
To introduce a mild oxidative stress to the culture, this was achieved by the addition of H2O2 

(final concentration 0.2 mM) to the culture medium.  

 

2.5.7. Induction of the GAL1 promoter in pYES2 plasmid 
Cells on nylon membrane filters (see section 2.3.) were allowed to grow to an OD600 of 0.5 

on SC (synthetic complete) 2% glucose drop-out medium (used in chapters 4,5 and 6*) 

(section 2.2.1.), at which point nylon membrane filters were transferred onto solid media (in 

line with filter growth methodology) in which glucose was replaced, in equal proportion 

(20%), with Galactose (section 2.2.1.). Throughout the experiment and irrespective of media 

cells were incubated at 30º C.  
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2.5.8. Determination of timed sample collection   
The transfer of the cultures to galactose media was considered to be the initial starting point 

of induction (T0). Cultures were subsequently incubated for various times from this point as 

shown in the Table 2.7 below.  

 

Table 2.5. Details of timed groups post galactose induction. 

Group name Experimental description 
T1 Samples acquired one hour after being placed on galactose media 
T2 Samples acquired two hours after being placed on galactose media 
T3 Samples acquired three hours after being placed on galactose media 
T4 Samples acquired four hours after being placed on galactose media 

 

Describes and names the group breakdown, with reference to their experimental handling 
regarding the time of sample collection. 

 

2.5.9. Prion status, plasmids, growth conditions and media used within each 
experimental chapter 
In line with the objectives of this thesis, outlined in section 1.3., a variety of prion status, 

plasmids, growth conditions and medias were used throughout this research. As a point of 

reference, Table 2.8. provides an overview of each of the particular conditions and strains 

used within the following experimental chapters.  
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Table 2.6. Details the prion status, plasmids, growth condition and media used in each 
experimental chapter.  

 

Chapter Prion Status Growth 
Condition Media 

3 

[rnq-] 
 

[rnq-] 
 

[rnq-] 

Aerobic 
 

Anaerobic 
 

Ammonium 
only 

SC 2% glucose medium 
 
SC 2% glucose medium 
 
SD 2% glucose medium 

4 Δrnq 
[rnq-] 

- 
- 

SC 2% glucose medium -his 
SC 2% glucose medium with GdnHCl 

5 
[rnq-] 
[rnq-] 

[RNQ+] 
[RNQ+] 

- 
H2O2 

- 
H2O2 

SC 2% glucose medium with GdnHCl 
SC 2% glucose medium with GdnHCl 
SC 2% glucose medium 
SC 2% glucose medium 

6 

[rnq-] 
 

[rnq-] with 
overexpression 

of Rnq1 
[RNQ+] 

 
[RNQ+] with 

overexpression 
of Rnq1 

- 
 
- 
 
 
- 
 
- 

SC 2% glucose medium with GdnHCl followed 
by SC 2% galactose medium with GdnHCl 
SC 2% glucose medium -ura with GdnHCl 
followed by SC 2% galactose medium -ura 
with GdnHCl 
SC 2% glucose medium followed by SC 2% 
galactose medium 
SC 2% glucose medium -ura followed by SC 
2% galactose medium -ura 

 

Chapter number, prion status, plasmid details, growth condition and media used are shown, 
further details pertaining to these are available in sections 2.2, 2.3, 2.5. and 2.10. 

 
2.6. Metabolite quenching 

2.6.1. Cold methanol quenching protocol 
Using a 50 mL falcon tube, 2 mL samples from a liquid batch culture or 1 membrane filter 

containing cells grown on its surface was plunged into 5 mL of pure methanol at -60° C. The 

mixture was quickly vortexed and placed back at -60°C (filters removed). Extracellular 

medium was separated by centrifugation (5000 x g, 5 minutes, -20° C pre-cooled). The 

supernatants were discarded, and the cell pellets were then subjected to the appropriate 

extraction methodology (Canelas et al. 2008). 
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2.7. Metabolite extraction method 

2.7.1. Boiling ethanol (BE) 
Tubes containing 5 mL of 75% (v/v) ethanol, 0.1 M tricine (pH 7) were pre-heated in a water 

bath at 80° C for 5 minutes. Cell pellets/filters were removed from cold storage at -800 C and 

the boiling ethanol quickly poured over the cell pellet and re-placed into the 80° C water bath 

for 3 minutes. The solution was then cooled on ice for 3 minutes, followed by centrifugation 

(5000xg, 5 minutes, -20°C, precooled). Extracts were then stored at -80°C until further use 

(Tredwell et al.  2011; Canelas et al. 2009; Gonzalez et al. 1999). 
 

2.7.2. Chloroform: Methanol (CM) 
Throughout the procedure, the temperature of samples and solutions was maintained as 

close as possible to -60° C. Each cell pellet/filter was suspended in 2.5 mL of pre-cooled 

50 % (v/v) aqueous methanol, after which 2.5 mL of precooled chloroform was added. All 

samples were then placed inside a -80° C freezer, removed and vigorously shaken for every 

five minutes, the temperature was monitored throughout, never above -50° C or below              

-65° C). The samples were then centrifuged (5000 x g, 5 min, -20° C, precooled); the upper 

water/methanol phases were collected separately, and the lower layers were re-extracted 

with 2.5 mL precooled 50 % (v/v) methanol by vortexing for 30 s. After centrifugation, the 

upper phases were pooled with the first extracts, and the combined extracts were then 

stored a -80° C until further use (Canelas et al.  2009; Villas-Bôas et al.  2005; de Koning 

and van Dam 1992). 
 

2.7.3. Pure methanol (PM) 
Cell pellets/filters were quickly vortexed in the presence of 5 mL of pure methanol (<-50°C), 

the mixture was then placed at -80° C for 3 minutes. The frozen suspension was then thawed 

in an ice bath for 15 minutes and centrifuged (5000 x g, 5 min, -20° C, precooled). Extracts 

were then stored a -80° C until further use (Tredwell et al.  2011; Villas-Bôas et al.  2005; 

Prasad Maharjan and Ferenci 2003). 
 

2.7.4. Acetonitrile: water (ACN:water) 
Cell pellets/filters were quickly mixed with 5 mL of acetonitrile/water mixture (1:1 v/v) at <-

50° C, the mixture was then then placed at -80° C for 3 minutes. The frozen suspension was 

then thawed in an ice bath for 15 minutes and centrifuged (5000g, 5 min, -20°C, pre-cooled). 

Extracts were then stored a -80° C until further use (Kim et al.  2013; Boer et al.  2010).
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2.7. Mass Spectrometry 

2.7.1. Overview of mass spectrometry methodology employed 
Several techniques were employed to enable UHPLC-MS experimentation throughout this thesis (Table 2.9).  

 

Table 2.7. Overview of mass spectrometry techniques employed in this study.  

Chapter 
No. of 

Biological 
classes  

n of 
each 
class 

Total 
samples Sample Preparation Ionisation 

mode UHPLC-MS run details Data analysis 

3 24 6 144 

Multiple alternative 
sample preparation 
was employed as 

shown in Figure 2.1. 

Positive only 

Two samples from each 
class were grown, 

extracted and analysed 
each week, over the 

course of three weeks to 
eliminate experimental 

and machine bias 

All data were analysed, 
normalised, and pre-

processed collectively in 
Mzmine2. 

4 2 6 12 
Cells were grown 
using filter growth 

(section X), 
quenched using cold 
methanol (section x) 

and metabolites 
were extracted using 
the BE (section x) in 

line with original 
Chapter 3 analysis. 

Positive and 
Negative All samples were grown, 

extracted, and analysed 
together in a single run to 

eliminate experimental 
and machine bias 

All data were analysed, 
normalised, and pre-

processed collectively in 
Mzmine2, XCMS and 
MZmine2 and XMCS 

comparatively. 

5 4 6 24 Positive and 
Negative 

All data were analysed, 
normalised, and pre-

processed collectively in 
MZmine2 and XCMS 
comparatively in line 

with chapter 4 analysis. 
6 16 6 96 Positive only 

Chapter number, number of biological classes, n number of each class, total number of samples, sample preparation, ionisation mode, 
UHPLC-MS run details and data analysis details are shown. Further information is available throughout section 2.7, 2.8 and 2.10. 
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2.7.2. UHPLC-MS sample preparation 
2.0 mL samples were delicately concentrated using an SPD 111V Thermo Scientific Savant 

speed vacuum at 35° C for ≈ 3 hours (1.5 hours for chloroform: methanol extraction 

samples), samples were then resuspended in 500µL of LC/MS grade water and lyophilised 

overnight. Lyophilised samples were then resuspended in 200µL of 0.1M formic acid and 

vortexed to ensure they were well mixed prior to 100 µL being loaded into vials for LC/MS.  

 

2.7.3. UHPLC-MS conditions 
Each sample (10 µL) was injected into the UHPLC equipped with a 1.7 µm C18  BEH column 

(Waters Corporation, Wilmslow, UK), heated to 35° C and operated with a 10-minute 

gradient from 0 % to 50 % acetonitrile (0.1% formic acid) at a flow rate of at 500 nL/min. The 

eluate was analysed as determined by randomisation detailed in section 2.7.4. using an 

ACQUITY SYNAPT G2-Si Mass Spectrometer (Waters Corporation, Wilmslow, UK). The 

UHPLC was directly interfaced to a Waters ACQUITY SYNAPT G2-Si Mass 

Spectrometer operating in electrospray resolution mode. Both positive and negative ion 

data were collected; positive ion data was collected first followed by negative ion data. A 

capillary voltage of 2.5 kV and a cone voltage of 40 V were used. Nitrogen, the desolvation 

gas, was set to 800 L/hr at a temperature of 400 °C. MSE continuum mode was used for 

data acquisition over the mass range of 50-1200 m/z, with a scan time of 1 second, which 

was programmed to step between low (10 eV) and elevated ramp collision energies (20-35 

eV) with Argon was used as the collision gas. The data was collected in Data Independent 

Acquisition (DIA) MS/MS mode. Water blanks were also analysed every 50 samples to 

check for contamination. 

 

2.7.4. Randomisation and quality controls 
Microsoft Excel was used to list samples, random numbers were then generated and 

associated with each sample. Random numbers and hence samples were the sorted by 

ascending number, allocating them a numbered position for loading the LC/MS. For quality 

control were stated, 25 µL of each sample was pooled to create a quality control sample, 

these were run ≈ every 10 samples.  

 

  



93 
 

2.8. Data Analysis  
 

2.8.1 Data acquisition and preparation  
The Masslynx (Waters, Version 4.1, Waters, Milford, MA, USA) software collected 

centroided mass spectra in real time using leucine-enkephalin (556.2771 m/z) as a lock-

spray standard injected every 10 seconds for 1 second to calibrate mass accuracy. The raw 

data (.raw) files were automatic peak detected via Masslynx (Waters, Version 4.1, Waters, 

Milford, MA, USA) and then converted to .mzML format using Proteowizards MSConvert, at 

which point high energy scans (function 002) were removed due to lack of subsequent 

programs capable of analysing them (Chambers et al. 2012). Lock Mass correction based 

on the mass of Leucine enkephalin (556.2771 m/z) was applied within Proteowizards 

MSConvert.    
 

2.8.2. XCMS independent 
XCMS Online was accessed via https://xcmsonline.scripps.edu, (various versions of 3rd 

edition), mzML. files were uploaded as biological classes and pairwise and multigroup jobs 

were created using the modified parameters, positive ionisation parameters as detailed in 

Table 2.10. and negative ionisation parameters as detailed in Tables 2.11. Data files were 

then downloaded locally (Benton et al. 2014; Gowda et al. 2014; Zhu et al. 2013; Tautenhahn 

et al.  2012a; Tautenhahn et al.  2012b).  
 

2.8.3. MzMine2 independent  
Various versions of MZmine2 ranging from 2.32 to 2.37, alongside R and Java were loaded 

onto Canterbury Christ Church Universities Linux server, and accessed remotely. mzML files 

were uploaded to the server as biological classes, and imported into MZmine2, in most 

cases this was achieved using all negative or positive ionisation data chapter by chapter, 

the only variance being for chapter 6, where data was separated by time stamp. All data was 

then analysed using MZmine2 batch modes with parameters as detailed in Table 2.12. Data 

was then exported as csv. files and stored locally (Pluskal et al.  2010; Ni et al.  2016).  
 

2.8.4. XCMS and MzMine2 collaborative  
VBA programming was used to compare the exported m/z. values between resultant XCMS-

diffreport-multiclass .xlsx files and MZmine2 .csv files. Allowing for variation between the two 

m/z. values of 0.0001. Overlapping values were then considered for subsequent analysis.  
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Table 2.8. Positive ionisation data parameter settings used in 
XCMS.  
 

General 
Polarity  Positive  
Retention time format  Minutes 
Feature Detection  
Method  centwave 
ppm 15 
peak width  2 - 30 seconds 
S/N threshold 10 
mzdiff 0.01 
Prefilter peaks  3 
Prefilter Intensity  100 
Noise Filter  0 
EIC width  200 
Retention time correction  
Method  obiwarp 
profStep 0.5 
Annotation and Putative Identification  
Biosource  S. cerevisiae 
Camera Annotation 
Isotopes and Adducts 

M+H, M+NH4, M+Na, 
M+K, M+2H, M+2Na 

Identification  METLIN  
Pathway mapping  Mummichog 
Statistics  
Statistical Tests Unpaired parametric t-

test (Welch t-test)  
Fold Change  1.5 
p-value  0.01 

Shows positive ion data analysis parameter settings for general, 
feature detection, retention time correction, annotation and 
putative identification and statistics, XP1, as used in XCMS online 

Table 2.9. Negative ionisation data parameter settings used in 
XCMS.  
 

General 
Polarity  Negative 
Retention time format  Minutes 
Feature Detection  
Method  centwave 
Ppm 15 
peak width  2 - 30 seconds 
S/N threshold 10 
Mzdiff 0.01 
Prefilter peaks  3 
Prefilter Intensity  100 
Noise Filter  0 
EIC width  200 
Retention time correction  
Method  obiwarp 
profStep 0.5 
Annotation and Putative Identification  
Biosource  S. cerevisiae 
Camera Annotation 
Isotopes and Adducts 

M-H, M+Cl 

Identification  METLIN  
Pathway mapping  Mummichog 
Statistics  
Statistical Tests Unpaired parametric t-

test (Welch t-test)  
Fold Change  1.5 
p-value  0.01 

Shows negative ion data analysis parameter settings for general, 
feature detection, retention time correction, annotation and 
putative identification and statistics, XN1, as used in XCMS online. 
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Table 2.10. Parameter settings used in MZmine2.  
 

Mass detection 
mass detector Centroid 
noise  0 
Chromatogram builder ADAP 
min group size 0.01 
group intensity 100 
min height  100 
ppm 15 
Retention time normalization  
ppm 15 
retention time tolerance  0.5 
min standard intensity  100 
Chromatogram deconvolution 
algorithm Wavelets (ADAP) 
s/n 10 
min 10 
ceo thres 110 
peak duration 0-0.5 
RT wavelet range  0-0.1 
RANSAC Peak Alignment  
mz tolerance 15 
RT tol 0.02 
RT tol after 0.05 
RANSAC iterations 10000 
min no of points 30 
threshold value 0.03 
Filtering – Rows filter 
no. of rows  3 
Gap filling - Peak finder 
mz tolerance 15 
RT tolerance 0.5 

 
Shows MZmine2 parameter settings for mass detection, chromatogram builder ADAP, 
retention time normalization, chromatogram deconvolution, RANSAC peak alignment, 
row filtering and gap filling used for both positive and negative ionisation data  
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2.9. Multivariate Statistical and Pathway Analysis  
 

2.9.1. SIMCA analysis  
After pre-processing and (when relevant) comparative analysis, data was then 

exported to SIMCA 14.1, a commercial multivariate statistical analysis software owned 

by Umetrics and commonly used within metabolomics studies. In SIMCA 14.1, the 

Omics package was employed using relative intensities labelled with their m/z. values, 

pareto scaling (which improves medium weight features without increasing unrequired 

noise, stated as the preferred method for use with metabolomics and mass 

spectrometry) was applied. Selected group comparisons were then processed 

producing unsupervised PCA models using a 95% confidence interval. PCAs were 

then observed and OPLS-DA (for pairwise comparisons) or PLS-DA (for groups 

comparisons) models were, if appropriate, then constructed to identify and highlight 

the differences between distinct sample groups.  

 
The use of the Omics package allowed for models to be created by way of an 

autofitting routine, which helpfully avoids overfitting of the data. The models were 

assessed for quality and reliability via R2 (representative of the variance within a data 

set) and Q2 (representative of the variation within the training set) scores, with a good 

model considered to have a score of greater than 0.5 and an excellent model 

considered to have a score of greater than 0.9 for both parameters (ideally both values 

are relatively similar). The critical p-value used was <0.05 for CV-ANOVA when 

performed on OPLS-DA models. Whilst continued analysis within SIMCA is possible 

by way of S-plots and VIP scores, the lack of punitive identifications presented issues 

and so the decision was made to move to Metaboanalyst.  

 

2.9.2. Metaboanalyst and Mummichogg analysis  
Similar models were built via Metaboanalyst 4.0, another commonly used opensource 

metabolomics analysis program accessed via www.metaboanalyst.ca (Chong et al.  

2019a; Chong et al.  2019b; Chong and Xia, 2018; Chong et al.  2018; Xia and Wishart, 

2016; Xia et al. 2015; Xia et al. 2013; Xia et al.  2012; Xia et al.  2011; Xia and Wishart, 

2011a; Xia and Wishart, 2011b; Xia et al. 2009; Xia and Wishart, 2010a; Xia and 

Wishart, 2010b; Xia et al. 2009) 

 



97 
 

Initially within Metaboanalyst 4.0, Statistical analysis was achieved using interquartile 

range filtering and normalization, using quantile normalization, log transformation and 

pareto scaling, the results of this normalization were viewed and visually assessed. 

Some of these models are shown, however the stringency of SIMCA autofitting and 

the overall modifiable nature and appearance of SIMCA models were the preferred 

multivariate models. Metaboanalyst 4.0 however provided valuable univariate tests 

with Bonferroni correction, such as T-tests (for pairwise comparisons), and multivariate 

tests such as ANOVAs (for group comparisons), available in a program transferable 

way, and so these T-tests or ANOVAs were then used to move into Metaboanalysts 

Mummichogg function MS Peaks to Pathways. MS peaks to pathways function now 

offers multiple versions of the algorithm and the algorithms selected are detailed in the 

appropriate chapter. Likewise, two S. cerevisiae pathway libraries are available, and 

the details of the pathway library used is detailed within the chapters. Resultant 

punitive compound and pathways identities were then downloaded as csv. files. In 

addition, it is possible via Metaboanalyst 4.0 statistical function to perform additional 

cluster analysis including heatmaps and dendrograms although I have used this 

function none of these Figures are presented in this thesis, simply due to personal 

preference. 

 

2.9.3. Pathway analysis  
Within Chapter 3 punitive compounds were then overlaid onto KEGG biosynthetic 

pathways, imaged and interpreted (Kanehisa and Goto, 2000). Within all other 

chapters BioCyc’s omics dashboard was used to compare relative abundances of the 

most significantly altered metabolites between groups. BioCycs cellular overview was 

then used, with the same relative abundance data, to create a pathway Table and 

pathway collages of the most significantly altered metabolic pathways. These 

pathways were then overlaid with standardized data. This was achieved via Microsoft 

Excels STANDARDIZE function, using the raw relative abundance of the sample in 

question, the average mean of all data, the standard deviation of all data. This provided 

a normalized value known as a z-score or standard score, which represents the 

number of standard deviations a given data point is from the mean. Positive z-scores 

indicate a value greater than the mean and negative scores indicate a value less than 

the mean, this allowed for a visually accessible directionality that would have otherwise 

been unobtainable, given the large range of values that were present among the 
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relative abundances. These overlaid pathways were then explored via their 

connections and surrounding pathways via BioCycs online interactive framework 

(Karp et al.  2017; Caspi et al.  2007). Images were exported via png files and Tables 

were copied into excel. 

 
2.10. Chapter specific experimental workflow  
 
Detailed visualisations of the workflows used throughout subsequent chapters have 

been produced (Figure 2.1, 2.2, 2.3 and 2.4).  To effectively communicate the complex 

testing of multiple biological classes. As well as the detail the programs used in 

incremental stages throughout analysis.  
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Figure 2.1. Visual representation of experimental workflow used in chapter three. Depicted is how the three cellular conditions, 
our control aerobic respiration, anaerobic respiration, and ammonium as a sole nitrogen source (shown in yellow) each feed into the 
two cell culture conditions, broth cell culture or filter cell culture. Experimental flow is indicated by the grey arrows. Both cell cultures 
then continue show the experimental fate of those groupings, via grey arrows, through to the single quenching method (shown in 
blue) and onto one of the four extraction methods tested, boiling ethanol, pure methanol, chloroform methanol and 50:50 acetonitrile 
and water (shown in green).   
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Figure 2.2. Visual representation of the workflow of data analysis in chapter three. From data acquisition within Masslynx, pre-
processing in MZmine2 (shown in blue), statistical analysis in SIMCA and Metaboanalyst (shown in green) and Identification and 
Pathway analysis conducted in Metaboanalyst and KEGG pathway (shown in purple). Black arrows indicate the direction of workflow. 



101 
 

 

Figure 2.3. Visual representation of the workflow of data analysis in chapter four. From acquisition within Masslynx, pre-pro-
cessing in MZmine2 and XCMS, and the comparative analysis (shown in blue), statistical analysis in SIMCA and Metaboanalyst 
(shown in green) and Identification and Pathway analysis conducted in Metaboanalyst and BioCyc (shown in purple).  Red arrows 
depict the events of section 4.3., green arrows the events of 4.4.  and blue arrows the events of 4.5., black arrows are used by all 
workflows. 
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Figure 2.4. Visual representation of the workflow of data analysis in chapters five and six. (indicated via black arrows) within this 
chapter from acquisition within Masslynx, pre-processing in MZmine2 and XCMS, and the subsequent comparative analysis (shown in 
blue), statistical analysis in SIMCA and Metaboanalyst (shown in green) and Identification and Pathway analysis conducted in Metaboan-
alyst and BioCyc (shown in purple).  Black arrows indicate workflow.
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Chapter Three - Developing a reliable metabolomic 
methodology in S. cerevisiae  
 
 
This chapter focuses on the testing and development of an appropriate metabolomic 

method for use in S.cerevisiae. Three cellular conditions (aerobic, anaerobic and 

ammonium as a sole nitrogen source), two types of cell culture (broth and filter), one 

quenching method and four extraction protocols (boiling ethanol, chloroform methanol, 

50:50 acetonitrile and pure methanol) were studied. Detailed methods are described 

in chapter two.  

 
 
3.1 Introduction 
 

Given its many benefits, outlined in chapter one, the use of S. cerevisiae has led the 

way in the field of systems biology, especially within the field of metabolomics 

(Roessner and Bowne, 2018; Sanchez and Neilsen, 2015; Mathew and Padmanaban 

2013; Kim et al. 2013). Botstein and Fink (2011) state that this model organism 

appears to be at the forefront of a new frontier, by expanding our understanding of the 

functions of genes and protein networks and how they partake in the maintenance of 

metabolism. Promising such insight and biological advancement, it is no surprise that 

metabolomics is becoming an ever more popular field. Within protein-based research, 

the prevalence of metabolomics as a method to approach protein-misfolding questions 

and gain insight into the underlying cellular disturbances has increased in recent times. 

However, Paglia et al.  (2018) argue that among Alzheimer’s disease studies, despite 

growing interest in proteomic analysis, insufficient dedication has been given to small 

molecule ‘omics’.  

 

It is known that small molecules (metabolites) play fundamental roles in brain 

chemistry and despite low-level interest within the field, studies of human disease have 

found significant perturbations (Paglia et al. 2018; Dumas and Davidoc, 2013),  

including changes in central metabolism occurring in the presence of known protein 

misfolding diseases, cancers and metabolic conditions (Dumas and Davidoc, 2013; 

Liesenfeld et al. 2013). By using metabolic profiles correlated with next generation 

sequencing methods researchers have been able to describe links between genotype 
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and phenotype, and by mapping metabolic findings, identify key biomarkers linked to 

perturbation and (it is hoped) diagnosis (Riekeberg and Powers, 2017; Sanchez and 

Neilsen, 2015; Dumas and Davidoc, 2013; Smolinska et al. 2012; Patti et al. 2012). It 

is, however, important to consider that metabolomics is a discipline in the early stages 

of development and thus its full potential has yet to be achieved (Paglia et al. 2018; 

Patti et al. 2012). 

 

One of the key and most pertinent limiting factors regarding this technique’s potential 

is the different experimental, laboratory and computational requirements for proper 

analysis (Riekeberg and Powers, 2017). This, combined with a lack of consensus 

within the metabolomic community regarding appropriate protocols, has questioned 

the biological implications of current methodologies and thereby the biological 

significance of the subsequent findings (Riekeberg and Powers, 2017; Duportet et al. 

2011; Canelas et al. 2009; Castrillo et al. 2003). 

 

When considering the overall aims of the research reported within this thesis, it was 

clear that the desire to monitor the global metabolic changes that occur in response to 

a variety of proteins (misfolded or otherwise), presented conditions that were suited to 

untargeted metabolomic investigation. By providing large scale analysis of the ‘entire’ 

complement of small molecules produced by a cell, untargeted metabolomic 

investigation allows for profile comparisons of cellular states via multivariate analysis 

(Paglia et al.  2018; Dumas and Davidoc, 2013; Patti et al.  2012). Paglia et al.  (2018) 

state that this method provides information regarding profound biochemical alterations 

without the bias view of targeted metabolomics. However, it does not easily allow for 

the quantification of metabolites and although work regarding this is ongoing the 

experimental requirements are often expensive and much better suited to its 

counterpart, targeted metabolomics (Paglia et al. 2018; Dumas and Davidoc, 2013; 

Patti et al. 2012). Given that by way of comparison, untargeted metabolomics seeks 

to generate hypotheses for variation between groups or perturbations, this appeared 

to represent our aims well and so it was concluded that any methodologies tested 

should also use this type of investigation (Patti et al. 2012).  

 

Experimental variations within metabolomics investigations can be loosely divided into 

two groups: the analytical method and sample preparation. The analytical methods 
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available for use within metabolomics have been outlined (Section 1.2.4. to 1.2.6). 

Based on this knowledge and our intended untargeted metabolic approach, the 

decision was taken to use mass spectrometry (MS), largely due to MS’s high levels of 

sensitivity, the variety of ionization approaches, the relatively large online databases 

streamlined to MS data and the fact that this methodology is the most widely used 

within the field (Patti et al. 2012).  By coupling this with complementary UHPLC, it is 

widely accepted that the largest separation of small molecules within a wide range of 

polarities can be achieved, thereby improving MS sensitivity and reproducibility and 

alleviating the effect of background noise and matrix interferences.  

 

Regardless of the analytical methodology used, metabolites need to be released from 

cells prior to analysis (Faijes et al.  2007; Rabinowitz, 2007; Villas-Bôas et al. 2005). 

As a result, great emphasis has been placed on reviewing the effectiveness and 

reliability of sample preparation methodology (Riekeberg and Powers, 2017).  

 

There are three main components of sample preparation: 

 

 

• Cell growth 

• Quenching of the metabolism (in an effort to halt metabolism and thereby 

provide a clear snapshot of the sampled time point) 

• Extraction of metabolites 

 

 

A detailed review of sample preparation methods present in the literature appeared to 

offer no clear and definitive methodology and little consensus exists regarding which 

methodology should be favoured; even when considering a single model organism, 

such as S. cerevisiae (Liesenfeld et al. 2013; Sasidharan et al. 2012; Villas-Bôas et 

al. 2005). Different research groups use different methods for cell growth, quenching 

of the metabolism, metabolite extraction, detection and assessment of extraction 

methods, making it difficult to draw parallels between the studies and their often-

contradictory findings (Liesenfeld et al. 2013; Smolinska et al. 2012; Duportet et al.  

2011; Canelas et al. 2009; Rabinowitz, 2007; Villas-Bôas et al. 2005). Some attribute 

this variance in results to a methodology’s exclusion of particular metabolite classes 
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(Duportet et al. 2011). Some posit that the notion of an extraction method which could 

extract the full complement of compounds from cells is an impossible task, whilst 

others suggest that using two very different extraction techniques has the potential to 

achieve metabolome-wide extraction (Riekeberg and Powers, 2017; Canelas et al. 

2009; Oldiges and Takors 2005; Goodacre et al. 2004; Mashego et al. 2003). Clearly, 

opinion is divided and, at the time of writing, appears to be no closer to reaching a 

reliable and satisfactory conclusion. 

 

When selecting methods to be tested, the three primary experimental components that 

have been shown to affect metabolomics results, namely cell growth, quenching and 

metabolite extraction, were considered independently of each other. Selection of an 

appropriate quenching methodology appeared on initial inspection to be fraught with 

a multitude of very similar protocols, each critical of another. Hence, deciding which 

methodologies to use required an extensive literature review. Among the most popular 

methods employed when studying single celled organisms, including S. cerevisiae, 

are techniques involving ethanol, methanol, perchloric acid and/or chloroform, at a 

variety of temperatures (ranging from 4°C to -80°C), including or excluding a cell 

washing step (Liesenfeld et al.   2013; Duportet et al. 2011; Sasidharan et al. 2012; 

Canelas et al. 2009; Villas-Bôas et al.   2005).  

 

Maintaining very low temperatures (<-40°C) is critical to the success of cellular 

quenching, allowing high efficiency and minimal sample decomposition (Smolinska et 

al. 2012; Sasidharan et al. 2012; Tredwell et al.  2011; Canelas et al. 2010; Winder et 

al.  2008; Faijes et al. 2007; Rabinowitz, 2007). The inclusion of washing steps, 

introduce an undesirable complexity to experimental procedures and can rapidly inhibit 

the necessity to maintain the low temperatures required for effective cellular quenching 

to take place (Tredwell et al.  2011; Canelas et al.  2010; Winder et al.  2008; 

Rabinowitz, 2007). Pinu et al. (2017) state that the 60% (v/v) cold methanol-based 

extraction protocol originally proposed by de Koning and van Dam (1992) is 

considered the “gold standard” despite controversial evidence suggesting intracellular 

metabolite leakage into the extracellular medium during its use. Canelas et al. (2009 

and 2008) offered evidence that their 100 % cold methanol quenching procedure that 

employed rapid/sub-second sampling, avoided metabolite changes during harvesting. 

However, Kim et al. (2013) state that this method also resulted in large levels of 
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metabolite leakage from S. cerevisiae cells.  Upon further inspection, this critique 

seemed unjust given that Kim et al. (2013) failed to follow Canelas et al. (2009) strict 

guidelines regarding temperature (between -20°C and -80°C), instead choosing to 

conduct their centrifugation and other experimentation at a much higher 4°C. 

Therefore, cold-methanol quenching was accepted as the quenching methodology to 

be employed in this study based upon Canelas et al.  (2009 and 2008) rigorous 

analysis, the speed of use and its popularity, alongside methanol’s miscible nature with 

water, lack of viscosity (allowing for easy centrifugation) and very low freezing point. 

 

In contrast to the considerable experimental scrutiny of quenching methods, cellular 

growth conditions have received very little attention with most choosing to use the 

atypical liquid broth growth considered standard for S. cerevisiae (Kang et al. 2012; 

Canelas et al. 2009; Faijes et al. 2007; Villas-Bôas et al. 2005). A novel approach to 

cell growth, the filter method, first used by Brauer et al. (2006), makes use of filter-

based culture to allow exponential growth, fast and effective transfer of cells from one 

media type to another and fast quenching of the metabolism. Rabinowitz (2007) 

argues that this method of cell growth in both E. coli and S. cerevisiae allows for a 

reliable and broad-spectrum overview of analytes, resulting in a net loss in the 

artefacts and contamination commonly associated with ‘atypical’ broth growth and 

subsequent washing steps (Yuan et al.  2008; Brauer et al. 2006). This method was 

included alongside traditional liquid media-based growth in an attempt to identify the 

most suitable cellular growth method protocol for obtaining S. cerevisiae metabolites.  

 

When considering metabolite extraction methods, the large number of methods 

available created considerable choice (Riekeberg and Powers, 2017). To narrow the 

possible methodologies commonly cited methods in papers using S. cerevisiae were 

examined and their metabolite-based findings compared (Citation numbers between 

330 and 477 each (Google Scholar)). This selection process included consideration of 

the practical restrictions of this research, including access to instrumentation and time 

scales of experiments. Canelas et al. (2009), Villas-Bôas et al. (2005) Gonzalez et al.   

(1999) and de Koning and van Dam (1992) were most often cited among this group, 

each proposing an alternative protocol as the most effective, with each considering 

the number of metabolites or a fixed recovery rate as their measurement of success 

(see Table 3.1.). 
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Table 3.1. Comparison of metabolite extraction methodologies.  
 

Source Measurement of success  Extraction method  

Canelas et al.  
(2009)  

C13 labelling on half of the samples to 
determine recovery rate of 19 amino 
acids, 19 sugars and 8 other 
metabolites.  

Boiling Ethanol and 
Chloroform/Methanol  

de Koning 
and van Dam 
(1992) 

Spiking recovery rate of up to 13 
metabolites  

Chloroform/Methanol  

Villas-Bôas et 
al.  (2005)  

Number of peaks and spiking 
recovery rate of up to 27 metabolites  

Pure Methanol  

Gonzalez et 
al.  (1999) 

Spiking recovery rate of 7 
metabolites  

Boiling Ethanol  

 

The tables display an overview of findings from the selected metabolomics extraction 

methods employed by each author group, including how each group have determined 

the success of the methods tests and which extraction method their results indicate is 

the most effective. 

 

Some of the most often cited methodologies (between 330 and 477 citations each 

(Google Scholar)), it seemed reasonable to use the methods utilised by these authors 

in our preliminary investigations to identify the methodology most suitable for use in 

our subsequent experiments. The extraction methods selected included the boiling 

ethanol method, the chloroform/methanol and the pure methanol method. However, 

given that all of these methods measured success of any given protocol in a way that 

appeared questionable, as outlined above, a method using a less selective technique 

to rate protocol success was needed so as to not narrow our field of enquiry.  

 

Most method review papers have tested another commonly used extraction protocol, 

acetonitrile/water (1:1, v/v), and found it to be less effective. However, Kim et al.   

(2013) using peak intensity and hierarchical clustering of 110 identified metabolites 

found this method to be the most effective at capturing the largest proportion of 

metabolic change across a cell. Tambellini et al. (2013) used similar data interpretation 

techniques, arguing that this type of analysis of extraction protocol for any given 
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biological system is fundamentally important for experimental design and the 

continuation of a given protocols use, hence it was decided that acetonitrile/water (1:1, 

(v/v)), should be included in the preliminary investigation too.  

 

Given that the purpose of this complex field of study is to gain insight into the biological 

implications of cellular conditions (both genetic and environmental) assessing the 

capability of any given methodology to reflect known metabolic changes should be key 

in determining its future use for biological interpretation. Despite this, protocols are 

often judged based on the maximum number of certain metabolites detected, with little 

regard as to the original source of these metabolites and whether they are an artefact 

or a true interpretation of cellular conditions (Canelas et al. 2009; Villas-Bôas et al.  

2005; Gonzalez et al. 1999; de Koning and van Dam,1992). 

  

To address the issues discussed throughout this introduction within S. cerevisiae, the 

aim was to use simple, predictable, and independent (of metabolomics findings) 

metabolic influencers to assess the suitability of the most widely used sample 

preparation techniques. During experimental design, priority was given to the simplicity 

of these metabolic influencers, in terms of the understanding of the metabolic 

pathways involved and the technical or lab-based requirements of the particular 

protocol. This led to the selection of three separate test conditions: yeast respiring 

aerobically with an appropriate supply of amino acids would be treated as a control 

group and our two test groups would consist of yeast respiring anaerobically and yeast 

with ammonium as their sole nitrogen source (Table 3.2.). 
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Table 3.2. Details of growth conditions that would result in clear, known and 
measurable metabolic changes for use within the preliminary investigation.   
 

Condition one (1) Condition two (2) Condition three (3) 
Aerobic respiration Anaerobic respiration Ammonium as sole 

nitrogen source 

Grown until the point of 
quenching in the presence 
of oxygen on/in a synthetic 
complete media 

Grown until the point of 
quenching in an anaerobic 
chamber on/in a synthetic 
complete media 

Grown until the point of 
quenching in synthetic 
defined media (with the 
addition of adenine, 
tryptophan, histidine, 
leucine, and uracil, as per 
this strains requirements) 

 
By causing fundamental changes to growth conditions that produce clear and well-
understood changes to metabolism, the resulting changes in the metabolome obtained 
by each of the methodologies under investigation can be compared.  
 
It was proposed that this approach would allow for an assessment of the respective, 

respiration or amino acid biosynthetic pathways to be made, providing a biochemical, 

metabolically relevant assessment of the protocols tested ensuring their validity for 

future use. For further details of the methodology used within this chapter please see 

Figure 2.1. and 2.2. in section 2.10.   
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3.2. Results  
 

3.2.1. MZMine2 results  
Data mining in MZmine2, following the parameters outlined in section 2.8., revealed 

over 22,000 aligned features in positive ionisation mode. It was determined that data 

analysis and subsequent results would need to be broken down into a few main 

objectives.  

 

1) Are widescale statistical differences present between the two different culture 

conditions? 

2) Are there widescale statistical differences between the two experimental growth 

conditions and the control growth condition?  

3) If so, between individual groups (i.e. 1aBE and 2aBE) how well do the changes 

detected reflect the biochemical pathway known to have been disturbed?  

 

3.2.2. Preliminary multivariate modelling in MZmine2  
 

 
 
Figure 3.1. Preliminary PCA models of MZmine2 analysis of filter and broth cell 
culture. Preliminary PCA models via MZmine2 reveals separation between peak lists 
obtained via filter cell culture (shown in red) and peak lists obtained via broth cell 
culture (shown in blue). Quality controls (shown in green).  
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Preliminary MZmine2 PCA analysis revealed strong separation between culture 

conditions, irrespective of the growth or extraction method used (Figure 3.1.). Quality 

controls (shown in Figure 3.1.) show three distinct clusters, this is less than desirable 

and will need to be further examined via SIMCA analysis to establish data quality.  

 

3.2.3. Quality control assessment via SIMCA 
Upon further inspection, QCs clusters appear to be separated by the date on which 

the sample was run. Examining Figure 3.2. reveals that within sample dates little 

variance and machine drift exists for two of the three experimental runs (Figure 3.2. 

(B + D)). However, one of the runs shows two clusters as opposed to one within QCs 

(Figure 3.2. (C)). Laboratory notes elucidate that at about a third of the way through 

this run, one of the sample buffers ran out and so the experiment was restarted the 

following day on the remaining samples.  

 

The MS in use was subject to routine maintenance shortly after the first and second 

run, contributing to the unavoidable variances that may exist within the data. Having 

examined the PCA and OPLS-DAs that are discussed within this chapter in some 

detail, these variances factor into the 1st component of analysis. However, confirmatory 

data analysis that considers each week as an individual data set for each of the factors 

tested was performed and showed no significant difference between the findings 

shown below. It was therefore determined that the observed changes or machine 

influence had had an equal effect on all findings, given that the n of 6 was comprised 

of 2 samples run each week, it was concluded that whilst this may have negatively 

affected the reported R2 and Q2 values of our models, the maintenance of our n of 6 

was preferable to splitting up the data by weeks, simply to reach the same conclusions.  
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A) 

 
C) 

 
 

B) 

 
D) 

 

Figure 3.2. PCA models of MZmine2 analysis comparing growth conditions and QC validity. PCAs showing QC relationship 
between data sets and groupings, yellow circles represent quality controls, red represents growth condition one, blue represents 
growth condition two, green represents growth condition three, triangles represent samples cultured using the filter cell culture method 
and inverted triangle show samples cultured using the broth cell culture method (A) All data collected PCA scores plot a model with 
R2 = 0.593 Q2 = 0.397 values. (B) Data collected from MS run one PCA scores plot a model with R2 = 0.0457 Q2 = 0.258 values. (C) 
Data collected from MS run two PCA scores plot a model with R2 = 0.493 Q2 = 0.266 values. (D) Data collected from MS run three 
PCA scores plot a model with R2 = 0.488 Q2 = 0.252 value
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3.2.4. Multivariate modelling differentiates between culture conditions 
To address objective one (are widescale statistical differences present between the 

two different culture conditions?), comparison of the culture conditions of all 144 

samples present was made possible by considering samples as belonging to one of 

two groups: filter cell culture or broth cell culture, irrespective of their extraction method 

or growth condition. PCA modelling in SIMCA revealed visible separation and 

clustering between the two culture conditions. The PCA score plot gave relatively good 

confidence levels of the model with the R2 and Q2 values falling within acceptable limits 

for biological relevance, R2 = 0.765 and Q2 = 0.644. A few scattered outliers were seen 

in this model, but these were considered acceptable given that the spread of the 

results may well be indicative of the other potentially influencing factors known to be 

present here, namely the extraction method and growth condition (Figure 3.3. (A)). An 

OPLS-DA model was built in a similar vein, including all 144 samples that focused on 

comparing filter cell culture conditions to broth cell culture conditions and revealed 

strong significant separation of culture conditions with R2(X) = 0.494, R2(Y) = 0.975, 

Q2 = 0.959 and a CV-ANOVA p-value = 0.00 x 10-7 (Figure 3.3. (B)). 

 

This information revealed little about which cell culture condition should be favoured, 

simply that they were in fact different from each other. To establish which one was 

preferable, more information about the growth conditions, (outlined in objective two) 

was needed. To achieve this, the metabolic profile of each growth condition was 

analysed in a similar manner.  All 144 samples, irrespective of their extraction method 

or culture condition, were considered as belonging to either growth condition one 

(aerobic growth), growth condition two (anaerobic growth) or growth condition three 

(ammonium as a sole nitrogen source). Data from growth condition one was used as 

a standard control with which to compare the data from the other two growth 

conditions.  
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A) 
 

 

 
 
B) 
 

 
 
Figure 3.3. PCA (A) and OPLS-DA (B) models of MZmine2 analysis comparing filter and broth cell culture. Overview of the 
data shows up to 4 outlying samples within the 95% confidence range in each model. Purple triangles represent samples cultured 
using the filter cell culture method and Pink inverted triangles show samples cultured using the broth cell culture method. (A) PCA 
scores plot a model with R2 = 0.765 Q2 = 0.644 values. (B) OPLS-DA scores plot a model with R2(X) = 0.494, R2(Y) = 0.975, Q2 = 
0.959 and a CV-ANOVA p-value = 0.00 x 10-7. 
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3.2.5. PCA model reveals no difference between growth condition one and 
growth condition two 
When comparing data from growth condition two (anaerobic respiration) to data from 

control growth condition one (aerobic respiration), PCA modelling of the 96 samples 

shown in Figure 3.4. revealed that growth condition two, could not be separated from 

the control, growth condition one, irrespective of the culture or extraction method used. 

The PCA model gave values of R2 = 0.779 Q2 = 0.635 indicative of good confidence 

levels in the model, leading to the conclusion that a lack of distinguishing features 

between sample groups was responsible for the lack of separation seen. An OPLS-

DA model was attempted to see if separation could be achieved, however a reliable 

model could not be obtained, validating our initial PCA model results. This experiment 

therefore provided relatively little information about which methods were most 

appropriate for use with S. cerevisiae and suggested that that the anaerobic conditions 

of growth condition two must not have been maintained successfully throughout the 

duration of the experiment.  

 

This was not unexpected given the rudimentary way that growth condition two was 

maintained, which in principle, should have been sufficient to maintain anaerobic 

respiration, but evidently in practice was not. Some effort was made to measure 

ethanol content via specific gravity to check the maintenance of this condition but in 

practise the growth stage and ethanol content would have been too low to detect via 

this method, even if conditions had been maintained well. It may also have been 

possible, on reflection, that the differences between aerobic and anaerobic respiration 

are not biochemically different enough to be distinguishable by such test, given that 

this was an untargeted experiment and there are only a handful of small molecules 

that would be changed between the two conditions. Hence, it may be possible that 

such findings may be lost in within such a large number of small molecule data.  
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Figure 3.4. PCA model of MZmine2 analysis comparing aerobic and anaerobic 
growth conditions. Overview of the data shows only a 3 outlying samples within the 
95% confidence range. PCA scores plot a model with R2 = 0.779 Q2 = 0.635 values. 
Red circles represent all samples subjected to aerobic growth condition one (control 
group) and Blue circles represent all samples subjected to anaerobic growth condition 
two. 
 

3.2.6. Multivariate modelling of shows significant difference between growth 
condition one and growth condition three 
PCA modelling of the 96 samples shown in Figure 3.5. revealed that growth condition 

three (ammonium as a sole nitrogen source), showed some separation of the data 

from growth condition one (aerobic respiration) and good confidence levels in the 

model were achieved R2 = 0.729 Q2 = 0.575. Although separation could be observed, 

it was not distinct; it was considered that this may have been due the variety of 

underlying variables, such as extraction method and culture conditions. Further OPLS-

DA modelling of these two growth conditions were attempted to see if more clearly 

defined separation could be achieved. This model showed strong, significant 

separation of growth condition one and growth condition three with R2(X) = 0.595, 

R2(Y) = 0.982, Q2 = 0.933, evidence of excellent confidence in the model. A CV-
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ANOVA p-value = 0.00 x 10-7 showed a strong, significant difference between the 

groups. Together, this provided evidence for objective two (Are there widescale 

statistical differences between the two experimental growth conditions and the control 

growth condition?) and allowed us to conclude that experimental growth condition 

three (ammonium as a sole nitrogen source) results in a widescale statistical 

difference in metabolic profile between this condition and our control growth condition 

(aerobic respiration).  

 

This work established that the use of alternative cell culture methods can produce 

statistically different results. The attempt at growing cultures under anaerobic 

conditions (growth condition two) was unsuccessful and this was revealed under 

statistical examination where results could not be separated from the control. This data 

was no longer considered relevant for further methodological examination. However, 

data obtained from cultures grown on an alternate nitrogen source (growth condition 

three) had been shown to be significantly different from our control and subjected to 

further testing, in the pursuit of answers for objective three (how well do the changes 

detected reflect the biochemical pathway known to have been disturbed?).  
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Figure 3.5. PCA (A) and OPLS-DA (B) models of MZmine2 analysis comparing aerobic and ammonium as a sole nitrogen 
source growth condition. Overview of the data shows only a 4 outlying samples within the 95% confidence range within each 
model. (A) PCA scores plot a model with R2 = 0.729 Q2 = 0.575 values. Red circles represent all samples subjected to aerobic growth 
condition one (control group) and green circles represent all samples subjected to ammonium as a sole nitrogen source, growth 
condition three. (B) OPLS-DA scores plot a model with R2(X) = 0.595, R2(Y) = 0.982, Q2 = 0.933 and a CV-ANOVA p-value = 0.00 x 
10-7. Once again, red circles represent all samples subjected to aerobic growth condition one (control group) and green circles 
represent all samples subjected to ammonium as a sole nitrogen source, growth condition three. 

A) B) 
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Figure 3.6. Visual representation of the pairwise comparisons made between the culture and extraction conditions of 
aerobic growth and ammonium as a sole nitrogen source. Depicts the pairwise comparisons made, green arrows show which 
groups were compared to each other, red boxes denote samples grown using growth condition one, red arrows indicate the flow of  
experimental methodology from cell culture to extraction method, likewise blue boxes denote samples grown using growth condition 
three, blue arrows indicate the flow of  experimental methodology from cell culture to extraction method. 

Growth Condition One (Control) 
Aerobic Respiration 

Growth Condition Three 
Ammonium as a sole nitrogen source 

50:50 Acetonitrile/water 

Boiling Ethanol 

Chloroform/Methanol 

Pure Methanol 

50:50 Acetonitrile/water 

Boiling Ethanol 

Chloroform/Methanol 

Pure Methanol 

50:50 Acetonitrile/water 

Boiling Ethanol 

Chloroform/Methanol 

Pure Methanol 

50:50 Acetonitrile/water 

Boiling Ethanol 

Chloroform/Methanol 

Pure Methanol 
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Figure 3.7. PCA and OPLSDA of pairwise comparisons made between the 
culture and extraction conditions of aerobic growth and ammonium as a sole 
nitrogen source.  Metaboanalyst multivariate statistics of pairwise comparisons 
between growth condition one (red circles) and ammonium as a sole nitrogen source, 
growth condition three (green circles), extraction methods are separated by row and 
indicated on the left of the Figure, cell culture conditions are separated by column and 
labelled at the top of the Figure. All score plots show 95% confidence regions around 
each individual group with no overlap (A) All eight PCA scores plots (B) All eight OPLS-
DA scores plots, (C) Shows the relative R2(X), R2(Y) and Q2 values for OPLS-DAs. 
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3.2.7. Metaboanalyst finds significant differences between growth condition 
one and growth condition three irrespective of extraction or cell culture 
method 
Group data from the 96 samples contained within growth condition one and growth 

condition three were initially divided into distinct cell culture and extraction method 

groups (shown in Figure 3.6.). Pairwise comparison was then conducted in 

Metaboanalyst, using settings described in section 2.9. Resultant PCA’s and OPLS-

DAs score plots respective R2(X), R2(Y) and Q2 values were then assessed for validity, 

revealing strong confidence in all group models. Visual assessment of the 

comparisons showed significant clustering and separation with no overlap (shown in 

Figure 3.7.). This suggested that all of the cell culture and extraction methods used 

had permitted the ability to statistically distinguish between the two growth conditions: 

encouraging given the prevalence of these methodologies with the literature.  

 

3.2.8. Pathway analysis of individual extraction and cell culture methods 
confirms their ability to detect perturbations 
Continued statistical analysis on individual groups in the form of T-tests with the 

adjusted p-values of =>0.01 were then performed. To establish the identity of these 

increased and decreased features and run pathway analysis, these T-tests were then 

processed via Metaboanalyst’s, Mummichog, Peaks to Pathways function, as 

indicated by Figure 2.1., a p-value of 1.0 𝑥𝑥 10−5 allowed for the acquisition of between 

300 and 700 results (as required for algorithm functioning). KEGG’s Fungi pathway 

library for Saccharomyces cerevisiae (yeast) was selected. This provided details of 

the most significant pathway hits and most significantly contributing compounds within 

said pathways. Encouragingly, the top pathway hits (as determined by 

Metaboanalyst’s Mummichogg) were biochemical pathways involved in amino acid 

biosynthesis, which was expected given the nature of the difference between growth 

condition three (ammonium and a sole nitrogen source) and the control, growth 

condition one (aerobic respiration). These findings demonstrate that all methods 

tested here are capable of reflecting the biochemical pathways perturbed in this 

experiment.  

 



123 
 

3.2.9. KEGG pathway analysis of MZmine2 metabolomic data reveals most 
predicted change reported by culture condition b and extraction method AC 
A key requirement of objective three (if so, between individual groups (i.e. 1aBE and 

2aBE) how well do the changes detected reflect the biochemical pathway known to 

have been disturbed?), was to determine which method most accurately reported on 

the expected metabolic changes caused by a known disturbance.  To achieve this, the 

resultant compound hits were then measured in relation to the amino acid biosynthetic 

pathways of S. cerevisiae, as described by KEGG pathways. Pathways were aligned 

to suit the genetic background of the strain in question and the most significant 

compounds, as determined by Metaboanalyst’s Mummichog, were then overlaid onto 

these pathways. The number of metabolite hits within these pathways were then 

manually assessed and the number of hits declared (shown in Table 3.3.). 

 

Given that the number of pathway hits within the relevant amino acid biosynthetic 

pathways were highest when cultures were grown using broth cell culture and 

metabolite extraction was performed using 50:50 acetonitrile/water, it was concluded 

that these were the methods that best reflected the expected metabolic changes from 

the perturbation present in condition three (ammonium as a sole nitrogen source) 

(Figure 3.8.).  

 

 

  



124 
 

 
 
Table 3.3.  The number of relevant pathway hits for each of the eight identified candidate methodologies.  
 
 
 

KEGG Pathway Name  1aAC 
vs 

3aAC 

1aBE 
vs 

3aBE 

1aPM 
vs 

3aPM 

1aCM 
vs 

3aCM 

1bAC 
vs 

3bAC 

1bBE 
vs 

3bBE 

1bPM 
vs 

3bPM 

1bCM 
vs 

3bCM 
Serine and threonine metabolism  1 1 1 1 1 1 2 1 
Cysteine and methionine 
metabolism  

1 1 2 1 4 3 3 3 

Branched chain amino acid 
metabolism  

2 2 1 2 2 1 2 1 

Lysine metabolism  3 3 1 1 3 3 3 3 
Arginine and proline metabolism  3 2 2 2 3 3 3 3 
Aromatic amino acid metabolism  4 2 5 4 6 4 5 7 
Biosynthesis of amino acids  29 25 25 24 42 32 37 38 

 
 
 
Details the number of metabolite hits for each of the eight individual group comparisons, for six named metabolic KEGG pathways 
within the amino acid biosynthetic pathways, alongside the total number of hits with the super pathway as a whole (inclusive of hits 
within individual pathways named and those not named). The highest number of metabolite hits within the eight individual groups 
tested is indicated via the green column.  
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Figure 3.8. KEGG metabolic pathway of amino acid biosynthesis highlighting all 
of the features detected using broth cell culture and acetonitrile extraction. Red 
indicates metabolites detected within samples grown using growth condition three, 
ammonium as a sole nitrogen source, when applying a broth cell culture method and 
acetonitrile extraction protocol. A larger version of this Figure is available in Appendix 
F.  
  



126 
 

A)                                                                                                 B) 

 
 
 
Figure 3.9. KEGG metabolic pathway of amino acid biosynthesis, overlaid with ranked metabolic hits for samples grown 
using growth condition three, ammonium as a sole nitrogen source, when applying a broth cell culture method. A) 50:50 
Acetonitrile/water extraction B) Boiling ethanol extraction. Green circles indicate metabolites hit by all pathways, Fuchsia circles 
indicate metabolites hit by three methods, Blue circles indicate metabolites hit by two methods and Red circles indicate metabolites 
detected by only one method. A larger version of this Figure is available in Appendix F.  
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C)                                                                                                 D) 

 
 
Figure 3.9. (Continued) KEGG metabolic pathway of amino acid biosynthesis, overlaid with ranked metabolic hits for 
samples grown using growth condition three, ammonium as a sole nitrogen source, when applying a broth cell culture 
method. C) Chloroform/methanol extraction and D) Pure Methanol extraction. Green circles indicate metabolites hit by all pathways, 
Fuchsia circles indicate metabolites hit by three methods, Blue circles indicate metabolites hit by two methods and Red circles indicate 
metabolites detected by only one method. A larger version of this Figure is available in Appendix F. 
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3.3. Discussion  
 
The results of this study demonstrate that the choice of culturing technique as well as 

the metabolite extraction methodology can influence the quantity of the data observed 

within a metabolomics study and that this can be reflected in the quality of subsequent 

pathway analysis. Encouragingly, it is found that all prevalent methodologies do reflect 

true biological conditions. All methods tested were able to detect the most perturbed 

pathways, with variance existing only in the completeness or number of metabolite hits 

with which pathway intermediates were detected. However, as shown in Table 3.3., 

culturing S. cerevisiae  in liquid broths rather than on solid media and by extracting 

metabolites using a 50:50 acetonitrile/water procedure returned the most predicted 

pathway hits, solidifying confidence in this methodology’s ability to implicate the 

biologically relevant metabolic pathways tested in this study (Figure 3.8.).  

 

3.3.1. Growth condition two: anaerobic respiration 
Growth condition two failed to separate from our control leading us to concede that 

our method of establishing this growth condition was not efficiently maintained. 

However, the reflection of this in the statistical analysis of the data validates the 

robustness of the statistical analysis method employed and thus allows for greater 

confidence in the findings of subsequent studies. As previously mentioned, it could not 

be ruled out that the biochemical differences between the two conditions may not be 

sufficient to elicit a measurable response amongst the ‘noise’ of an untargeted 

metabolomic experiment. This would be possible to test using more advanced 

laboratory techniques for maintaining anaerobic growth conditions, such as CO2 

incubation, however such facilities were not available when this experiment was 

conducted.  

 

3.3.2. Broth and filter cell culture 
Results from Table 3.3. report that broth cell culture outperformed filter cell culture, 

with broth cell culture returning approximately 30% more relevant hits than filter 

growth. This highlights the importance of considering both cell culture and extraction 

methodology when undertaking metabolomics experimentation, highlighting the 

capability of cell culture to influence subsequent metabolic findings. As cells from each 
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culture format were collected at a time of active growth (OD600 = 0.6), had these cells 

been unable to synthesize the compounds identified on the minimal media provided, 

they would have failed to survive. These expected compounds, therefore, must have 

been present and yet remained undetected within filter cell culture.  

 

This suggests that the growth of cells using a filter cell culture method acted as a 

limiting factor here, with respect to the metabolites detected. Although it may be that 

cellular trafficking behaviour have influenced results for filter culture. As despite much 

being known about the uptake of amino acids on alternative media sources, much less 

is known about cellular responses of amino acid excretion and cellular trafficking on 

alternative media types (Velasco et al. 2004). This highlights a limitation of the study, 

given that only a single predictable growth condition was achieved, conclusions 

formed on this basis are indicative as opposed to truly conclusive.  

 

3.3.3. Establishing a methodology for use in S. cerevisiae  
The premise of using predictable metabolic changes to assess the capability of any 

given methodology has sound scientific reasoning, although practically these known 

changes, irrespective of findings within the metabolomics field, are difficult to establish. 

Growth condition three (ammonium as a sole nitrogen source) allowed for valid 

assessment in this study. However, it is possible that the method favoured here is one 

that favours those metabolites involved in amino acid biosynthesis and their 

intermediates, as opposed to being a general method that represents global 

metabolome-wide perturbations. Given our criticism of method comparison papers to 

reach widescale conclusions off of the back of less stringent gradation and 

assessment of their results, it seems only appropriate to suggest that this, broth cell 

culture and 50:50 acetonitrile/water method, be adopted when conducting targeted 

metabolomic experiments aimed at detecting changes within the biosynthetic 

pathways of the amino acids.  

 

Given the drastically different biochemical conditions present within cellular 

architecture, multiple methods may be advisable dependent upon which metabolic 

area is of interest. When examining results here it is evident that maximisation of 

pathway hits could be achieved by using not one but two extraction methods, as some 
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researchers currently argue (Riekeberg and Powers, 2017; Canelas et al. 2009; 

Oldiges and Takors 2005; Goodacre et al.  2004; Mashego et al.  2003). By closely 

examining Figure 3.9. and focussing on red and blue highlighted metabolites in 

particular, 50:50 acetonitrile/water extraction method (A) reveals 6 unique (to that 

method) red hits and 5 shared (by two of the methods) blue hits. The next most 

successful grouping is that of the chloroform/methanol extraction (C), with 4 unique 

red hits and 2 shared (by two of the methods) blue hits. The other two extraction 

methods (B and D) each have 1 unique hit only and 3 shared (by two) between them. 

This strongly implicates the use of both 50:50 acetonitrile/water and 

chloroform/methanol extraction for maximum coverage within amino acid 

biosynthesis.   

 

3.3.4. Limitations and future research  
The results within this chapter, whilst encouraging regarding the premise used 

throughout, will have been restricted by the LC-MS conditions and data analysis. 

Results were only acquired in positive ionisation mode, using reversed phase 

chromatography. It would have been preferable to acquire data in both positive and 

negative ionisation mode, using both reversed phase and HILIC chromatography. 

However, experiments of this magnitude were not possible for this study. Whilst this 

will have had an impact on the number and nature of metabolites detected, this effect 

should have been a constant and present among all samples. Within the context of 

amino acid detection, reversed phase LC-MS is known to have a high selectivity and 

detection of amino acids and their intermediates and able to resolve most amino acids 

(Dahl-Lassen et al. 2018; Aviram et al. 2016; Jander et al. 2004) There can be 

unwanted signal suppression when using reversed phase due to buffers being added 

to the eluent, which the use of HILIC can aid in avoiding, allowing for enough sensitivity 

to quantify metabolites reliably (Kambhampati et al. 2019). However, quantification 

was never an aim of these experiments.  

 

The use of a single data analysis program and the impact that this has on pathway 

analysis will be explored in chapter four. However, Li et al. (2019) and Myers et al. 

(2017) results indicate that the effect of this may be considerable and that using 



131 
 

multiple programmes may be preferable. This is not however currently common 

practise within the field.  

 

Together, these factors may well have impacted the findings of this chapter. 

Metabolites that were undetected, would have remained undetected in all samples. 

Adopting all the suggestions above may indicate another sample methodology as 

being the most effective at reflecting biological change; however, this will only be the 

case if the LC-MS conditions and data analysis employed are the same. If research is 

to be conducted using the same LC-MS conditions and data analysis employed here, 

then culturing S. cerevisiae in liquid broths and extracting metabolites using a 50:50 

acetonitrile/water is the most effective methodology.   

 

The most valuable contribution of these experiments is testing for biological 

interpretation permitting the ranking of the effectiveness of a metabolomics 

methodology. Future research elaborating on this experimental design and aimed at 

detecting predictable changes within multiple areas of the cell, would produce clear 

metabolic protocols for use in targeted metabolomics experimentation. Although this 

would only be relevant for the organism in question, it would be possible to conduct 

similar studies in a variety of organisms. In addition, by investigating particular cellular 

networks present within all cells, a universality that is not currently available may be 

achieved. Combining and comparing these ‘metabolic area’ results would then provide 

guidance for those conducting untargeted metabolomics, as well as giving further 

insight into the ‘blind spots’ of such experimentation.  

 

3.3.5. Data analysis issues and the method use in subsequent chapters 
The analysis as presented here was previously not in as presented here. Upon 

analysing this data and reaching, what appeared to be a satisfactory solution, 

experimental work begun for the subsequent chapters within this thesis. However, 

upon collection and comparison of the data for subsequent chapters, it became 

evident that during the original data acquisition stage of our original metabolomics 

experiments, the data files had been corrupted in a way that was unclear without 

comparison. This made all subsequent analysis and hence subsequence conclusions 

about preferred methodology, incorrect (defined as original chapter three analysis in 
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chapter two). The data presented within this chapter is due to subsequent re-analysis 

of the original data files and is, to the best of our knowledge, a correct interpretation 

of the data. The decision was made to keep this chapter in its current position within 

the thesis so as to prevent unnecessary confusion. The methods used in subsequent 

chapters are regrettable, although it is important to note that all of the comparisons 

(outlined in objective three of this chapter) showed significant differences and 

identified the most perturbed pathways to be within amino acid biosynthesis. Whilst 

the experiments in explained in subsequent chapters may have limited the number of 

hits per pathway, there is no evidence to suggest that the pathways identified are 

incorrect and, as explained within the introduction to this chapter, all of these methods 

are routinely used within the field.  
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Chapter Four - The native role of  Rnq1p  
 
This chapter attempts to elucidate the native role of Rnq1p in and provide details of 

the ‘loss of function’ effects on metabolism caused by Rnq1p in its prion form. 

Identification of metabolites perturbed solely by the loss of function of Rnq1p can then 

be subtracted from subsequent metabolomic studies identifying prion-specific 

perturbations. These experiments will be achieved by determining the metabolic 

differences between cells that no longer possess a working copy of the RNQ1 gene 

(Δrnq1) cells and cells that possess the RNQ1 gene but the resulting protein is present 

in its non-prion form [rnq-]. In addition, a more thorough evaluation of the data analysis 

methods employed was investigated to ensure robustness of the results obtained. This 

involved the use of two separate data analysis programmes, MZmine2 and XCMS, 

and a comparative analysis using overlapping features of the two programmes. 

Experiments were conducted as detailed in chapter two.  

 
4.1. Introduction  
 

Rnq1p in its misfolded prion form acts as a facilitator to prion formation. The most well 

described of these so-called heterologous prion interactions is in its role as a cross 

seeding mechanism. This is the process by which any one of several novel [RNQ+] 

variants allow for de novo [PSI+] or other prion formation. Determining the strength of 

the [RNQ+] variant in use is laborious experimentally, although Bardill and True (2010) 

have offered an alternative to the typical SDD-AGE / Western Blot procedure of 

Kryndushkin et al. (2003), but this is not without issue (discussed in Section 1.1.11). 

[RNQ+] variants form in vivo at a spontaneous rate approximately five times more 

frequently than the estimated formation rate of [PSI+] and differ greatly in their [PSI+] 

induction abilities (Stein and True, 2011; Bradley et al. 2002; Derkatch et al. 2001). 

Huang et al.  (2013) suggest that this demonstrates the extensive variability of the 

structures that Rnq1p can assume and strongly indicates, by lack of correlation 

between [RNQ+] number and the role of variants, that Rnq1p has a functional role 

within the cell independent of cross seeding. Despite investigation in this area, very 

little is known about the native role of Rnq1p (Liebman and Chernoff, 2012).  
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RNQ1 deletant strains (Δrnq1, strains that do not contain the entire open reading 

frame of the RNQ1 gene) are viable and have been investigated to determine the loss 

of function phenotype to little avail. Sondhiemer and Lindquist (2000) show Δrnq1 

strains to have comparable growth rates to wild-type strains on a variety of carbon and 

nitrogen source medias, with similar sensitivity to a number of metal assays (cadmium, 

cobalt, copper). They argue that the absence of a clear phenotype associated with a 

loss of function of Rnq1p is not as surprising as it would first appear. Although the 

cellular role of the native conformations of many of the other well-described prions are 

known, this is largely due to the significant amount of experimentation conducted on 

the role of the native protein itself. Whilst it is true to say that the particular genetic 

backgrounds that support the expected phenotypic changes of any of the known prions 

are now common place in many laboratories, it should not be underestimated that 

these are phenotypic assays that only function under an unusual set of circumstances, 

often relying on very specific genetic mutations (Liebman and Chernoff, 2012; 

Sondhiemer and Lindquist, 2000).  

 

For example, the interaction between the regulator of nitrogen catabolism Ure2p and 

the transcriptional activators Gln3p and Gat1p within cells containing the prion form of 

the Ure2 protein ([URE3]) leads to these transcriptional activators being free to engage 

in their transcriptional programme, thus allowing poor nitrogen sources to be used by 

prion carrying cells. A simple growth assay can therefore be used to determine if the 

[URE3] prion is present in cells by their ability to grow on media containing 

ureidosuccinate (USA) (Cunningham et al. 2000; Courchesne and Magasnik, 1988). 

This method only works in Ure2 mutant cells that cannot ordinarily synthesize USA. 

Similarly, the atypical colour assay used to determine the presence of the [PSI+] prion, 

is only functional in cells that possess particular mutations within the adenine 

biosynthetic pathway as discussed in section 1.1.10. (Hong et al.  2011; Cunningham 

et al.  2000; Courchesne and Magasnik, 1988). The native conformations of the most 

well-described yeast prions often play key cellular roles in DNA binding, RNA binding 

and cell signalling functions (Chernova et al.  2014; Liebman and Chernoff, 2012; Tuite 

and Serio, 2010), suggesting an important role for these native proteins within the 

information flow and architecture of the cell. 
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A metabolomics analysis could provide a fresh insight into the cellular function of 

Rnq1p. Representing the ultimate functional read out of the state of a cell and 

providing a direct link between the mechanics of the cellular architecture/biochemistry 

and the phenotype of cells, metabolomics has the potential to act as a fundamental 

tool in uncovering the unknown function of genes and proteins as well as discovering 

new ones (Patti et al.  2012; Prosser et al.  2014). When applied to studying proteins 

this has largely involved enzyme annotation, using isotopic labelling to determine 

molecule fate and allowing for the assignment of a mechanistic class and function to 

enzymes which had yet to be defined due to lack of sequence homology with class 

members (Prosser et al. 2014; Borodovsky et al. 2002).  

 

Enzymes act as good examples of the investigative power of metabolomics. They are 

often poor candidates for in vitro studies due their inability to function in isolation, 

whereas in vivo metabolomics studies allow for observations of the complex and 

dynamic interactions key to their functions within the cell (Zhang et al.  2011). Aiming 

to report on the relative metabolite concentrations within a cell at any given time, the 

sensitive and powerful technique of metabolomics enables the mapping of metabolites 

within a cell and analysis into any metabolic pathways that have been significantly 

perturbed by this relative change. This relative or comparable nature of metabolomics 

alongside the use of delicate analytical machinery and strong statistical modelling 

software enables both small and large changes to be monitored simultaneously (Misra, 

2018; Paglia et al. 2018; Patti et al, 2012). Therefore, due to the inherent sensitivity 

and yet global reporting on subtle cellular changes that metabolomics offers,  the aim 

of these studies was to compare the metabolic profiles of Δrnq1 and [rnq-] cells, given 

that the only difference between these two cell types is the presence or absence of 

Rnq1p. Key metabolic upregulation and downregulation events that present between 

the two groups would allow for the identification of significantly altered metabolic 

pathways and reveal the functional consequences of loss of Rnq1p. 

 

When considering this experimental strategy, the delicate nature of our query was best 

suited to LC-MS, known to be a cornerstone of metabolomics by virtue of its 

chromatographic resolution, high sensitivity, unparalleled throughput and good 

metabolite coverage (Misra, 2018; Myers et al. 2017; Li et al. 2013). However, given 

that our LC-MS data was to be acquired without the spiking of expensive internal 
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standards and  the high false discovery rate (FDR) reported for LC-MS studies (Jeong 

et al. 2012), it seemed reasonable to consider alternate ways with which to streamline 

our data analysis.  

 

Recent literature within the field suggests that stringent consideration of the data 

analysis programs used are capable of controlling for these undesirable variables (Li 

et al. 2019; Myers et al. 2017). The increasing size and complexity of metabolomics 

(especially untargeted metabolomics) experimental data sets have created a need for 

faster, more accurate and reliable computational pre-processing. This has led to the 

availability of a wide variety of programmes used to construct extracted ion 

chromatograms (EIC), detect and annotate EIC peaks, align samples, identify and 

relatively quantify analytes (Myers et al. 2017). Many of these bioinformatic processing 

tools are open-source software such as XCMS, MZmine2, MS-Dial including several 

python and R packages. In addition, there are also commercial software available such 

as MarkerLynx, Progenesis etc. With a variety of algorithm processes now 

underpinning data analysis via any of these methods, concerns have arisen about the 

capabilities and performance of these programmes relative to each other (Misra, 2018; 

Li et al.  2019; Myers et al. 2017).  

 

Myers et al. (2017) demonstrate that the variance in the results between one 

programme to the another can be large. Having identified this challenge, Li et al.  

(2019) in direct response to the criticisms outlined by Myers et al. (2017) suggest the 

use of a multiprogram comparative analysis, with their study indicating that this method 

removes a large proportion of false positives from any given data set. This would allow 

for the mining of true features and increasing confidence in biomarker investigation. 

The most effective method of comparative analysis tested was achieved by cross 

correlating detected m/z values of the two most widely used programmes, XCMS and 

MZmine2. To evidence these findings, here both XCMS and MZmine2 independent 

analysis and an XCMS/MZmine2 comparative analysis will be performed. Combined 

with our current biological understanding of Rnq1p this approach will address our FDR 

and LC-MS concerns and will provide key information about the role of Rnq1p in its 

native state, as well as key information pertinent to our understanding of prion 

formation and interaction. 
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4.2. XCMS results  
 

4.2.1. Feature detection and normalisation 
Data mining, following the parameters outlined in section 2.8.4., revealed 4454 aligned 

features in positive ionisation mode (PIM) with negligible retention time deviation 

(Figure 4.1. (A)). Total Ion Chromatograms (TIC) revealed very little variance between 

samples, and automated normalization of the data was conducted (using XCMS) to 

ensure feature alignment and allow comparison of the two sample groups to take place 

(Figure.4.1. (C + E)).  

Similar treatment of the negative ionisation mode (NIM) data, following the parameters 

outlined in section 2.8.4., revealed 3228 aligned features with very little retention time 

deviation with the exception of two of the samples very early on in the run (Figure 4.1. 

(B)). Fortunately, despite this early variation in retention time, automated normalisation 

of the TICs, visually assessed, suggest that these features had little bearing on either 

the original or corrected TIC (Figure 4.1. (D + F)).  

 

4.2.2. Multivariate modelling of XCMS metabolomic data differentiates Δrnq1 
and [rnq-] samples  
To assess if significant differences could be seen between the two groups, Δrnq1 and 

[rnq-], PCA modelling in SIMCA was conducted using all 12 samples. This revealed 

visible separation between the two groups, both for positive and negative ionisation 

mode with no visible outliers. Upon closer examination, however, the score plots 

respective R2 and Q2 values were less than ideal, but are considered biologically 

relevant, with values R2 = 0.560 Q2 = 0.308 and R2 = 0.729, Q2 = 0.149 (Figure 4.2. (A 

+ B)). R2 values were considered to be acceptable but the Q2 values were the more 

disconcerting, suggesting that the ability of the model to predict new data may be 

hampered and that the data set itself may contain too much noise. Loadings were 

assessed but with no outliers, little could be done to improve these scores.  

 

To address this OPLS-DAs were built, again including all 12 samples, and focused on 

comparing Δrnq1 to [rnq-]. PIM data produced models showing strong significant 

separation of Δrnq1 and [rnq-] sample groupings with excellent R2 and Q2 values, R2(X) 

= 0.55, R2(Y) = 0.992, Q2 = 0.953 (Figure 4.2. C). In addition, CV-ANOVA gave a p-
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value = 9.41 x 10-5 giving confidence that within this data existed metabolic differences 

pertinent to the two groups and thus the function of Rnq1p. NIM data was found to 

support this, itself too having excellent R2 and Q2, R2(X) = 0.662, R2(Y) = 0.996, Q2 = 

0.951 and a CV-ANOVA p-value = 7.35 x 10-4, indicating excellent model predictability 

(Figure 4.2. D).  

 

4.2.3. Statistical analysis of XCMS metabolomic data in Metaboanalyst finds 
significantly altered features 
Group XCMS data from the 12 samples were then subjected to pairwise comparison 

within Metaboanalyst, using the settings described in section 2.9. Resultant T-tests 

with the adjusted p-value of =>0.01 found 2427 positive and 1439 negative features 

that had been significantly altered (p-value=>0.01) when comparing Δrnq1 samples to 

[rnq-] samples.   

 

4.2.4. Tentative feature ID and pathway analysis of XCMS metabolomic data via 
Metaboanalyst  
To establish the identity of the increased and decreased features present within the 

respective 2427 and 1439 features and to identify this within particular metabolic 

pathways, Metaboanalyst’s Mummichog Peaks to Pathways function was used, as 

indicated by Figure 4.1. A p-value of 1.0 𝑥𝑥 10−4 allowed for the acquisition of 589 PIM 

results and 458 NIM results (closest possible to the required between 300~700 for 

algorithm functioning). BioCyc’s Fungi pathway library for Saccharomyces cerevisiae 

(yeast) was selected. This provided details of the most significantly altered 

metabolites, the directionality of their perturbation (whether they were up- or down-

regulated) and the most significantly disrupted pathways, including the total number 

of hits within stated pathways (Tables 4.1., 4.2., 4.3. and 4.4.). It would have been 

possible given these results to move into more in depth pathway analysis, however 

given that one of the purposes of this chapter, discussed in the introduction, was to 

perform comparative analysis between the two programmes and so findings past this 

point ceased to be accurate information available and hence were excluded.   
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Figure 4.1. Retention time deviation, uncorrected and corrected total ion 
chromatograms from XCMS of Δrnq1 and [rnq-] samples. XCMS online generated 
processing information regarding all of the detected LC-MS peaks observed within all 
6 Δrnq1 (samples 03, 16, 21, 23, 27 and 29) and all 6 [rnq-] (samples 11, 14, 18, 19, 
22 and 28) samples uploaded for analysis and peak detection. Δrnq1 are shown as 
solid lines and [rnq-] are shown as dashed lines. X axis in all graphs is retention time 
in minutes A) PIM observed retention time deviation B) NIM observed retention time 
deviation C) PIM original total ion chromatogram D) NIM original total ion 
chromatogram E) PIM retention time corrected total ion chromatogram F) NIM 
retention time corrected total ion chromatogram. 
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A) 

 
C) 

 

B) 

 
D) 

 
Figure 4.2. PCA (A and C) and OPLS-DA (B and D) models of XCMS comparison of Δrnq1 and [rnq-] samples. Green circles 
represent Δrnq1 samples and blue circles represent [rnq-] samples. Overview of the data shows no outlying samples within the 95% 
confidence range within each model. (A) XCMS analysed PIM data PCA scores with R2 = 0.560 Q2 = 0.308 values. (B) XCMS analysed 
PIM data OPLS-DA scores with R2(X) = 0.55, R2(Y) = 0.992, Q2 = 0.953 and CV-ANOVA p-value = 9.41 x 10-5. (C) XCMS analysed 
NIM data PCA scores with R2 = 0.729, Q2 = 0.149 values. (D) XCMS analysed NIM data OPLS-DA scores with R2(X) = 0.662, R2(Y) 
= 0.996, Q2 = 0.951 and a CV-ANOVA p-value = 7.35 x 10-4. 
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Table 4.1. The top twenty unique and available proposed identities of the most 
significant PIM XCMS features identified by Metaboanalyst’s T-test.  
 

m/z RT (min) Proposed Identity Fold Change p-value FDR Mass 
difference 

355.2250 5.00 all-trans-retinol -0.98  2.86E-15 4.25E-12 0.0006 

369.2370 5.01 (9S,10S)-10-hydroxy-9-
(phosphooxy) octadecanoate 

-0.98  4.38E-14 1.87E-11 0.0027 

234.0780 1.90 N2-succinyl-L-glutamate 5-
semialdehyde 

96.42  1.93E-13 4.79E-11 0.0007 

292.1010 1.28 canavaninosuccinate 98.87  7.57E-13 1.05E-10 0.0006 

213.1030 5.00 geraniol -0.89  8.25E-13 1.11E-10 0.0010 

270.1170 1.28 S-(hydroxymethyl)glutathione 559.76  1.31E-12 1.54E-10 0.0023 

111.0470 2.42 O-succinyl-L-homoserine 5.44  2.08E-12 2.11E-10 0.0005 

399.1210 2.74 S-adenosyl-4-methylthio-2-
oxobutanoate 

188.65  3.07E-12 2.58E-10 0.0001 

251.1040 1.29 5'-deoxyadenosine 166.71  3.38E-12 2.76E-10 0.0018 

183.0810 6.16 coniferyl alcohol 20.49  4.31E-12 3.11E-10 0.0012 

289.1400 0.89 hypoglycin B 107.75  5.24E-12 3.43E-10 0.0006 

237.0860 0.90 pyridoxamine 147.56  6.58E-12 4.10E-10 0.0012 

253.0920 2.49 2'-deoxyinosine 16.8  6.80E-12 4.10E-10 0.0008 

252.0870 2.50 S-acetyldihydrolipoamide 45.6  7.69E-12 4.51E-10 0.0022 

149.0110 1.50 imidazole acetol-phosphate 12.52  8.22E-12 4.69E-10 0.0000 

267.0980 0.67 adenosine 109.98  8.80E-12 4.87E-10 0.0012 

256.0590 2.36 N-acetyl-α-D-glucosamine 1-
phosphate 

25.1  1.11E-11 5.79E-10 0.0007 

273.0870 3.22 L-tryptophan 3.91  1.31E-11 6.42E-10 0.0025 

137.0710 0.90 L-canaline 154.2  1.80E-11 8.25E-10 0.0013 

440.2270 5.96 sphinganine 1-phosphate -0.86  2.10E-11 9.26E-10 0.0033 

m/z values, retention times, fold change ((B-A)/A), log2 fold change, the p-value, false 
discovery rate and mass difference as calculated by Metaboanalyst.  
 
Table 4.2. PIM pathway hits via Metaboanalyst’s Mummichog using XCMS data 
with three or more significant hits.  
 

Pathway Name  Pathway 
total 

Hits 
total 

Hits sig EASE FET Gamma 

tryptophan degradation to 2-amino-3-
carboxymuconate semialdehyde 

13 6 5 0.09457 0.016791 0.001701 

tryptophan degradation I (via anthranilate) 9 5 4 0.20286 0.043635 0.002779 
<i>trans, trans</i>-farnesyl diphosphate 
biosynthesis 

5 4 3 0.40064 0.109 0.007017 

biotin biosynthesis from 7-keto-8-
aminopelargonate 

15 7 4 0.42055 0.16963 0.007724 

isoleucine biosynthesis 15 5 3 0.5325 0.20705 0.013436 
hexaprenyl diphosphate biosynthesis 6 5 3 0.5325 0.20705 0.013436 
salvage pathways of pyrimidine 
deoxyribonucleotides 

17 5 3 0.5325 0.20705 0.013436 

The name of the pathway, the total number of metabolites known within the pathway, 
the total number of hits, the total number of significant hits, and the significance scores 
EASE, FET and Gamma as calculated by Metaboanalyst. All top ten hits are available 
in appendix A. 
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Table 4.3. The top twenty unique and available proposed identities of the most 
significant NIM XCMS features identified by Metaboanalyst’s T-test.  
 

m/z RT (min) Proposed Identity  Fold Change  p-value FDR Mass 
difference 

181.0700 7.02 coniferyl alcohol -0.9  4.07E-14 2.63E-11 0.0018 

611.3840 5.80 3-methoxy-4-hydroxy-5-all-
trans-hexaprenylbenzoate 

-0.98  5.20E-14 2.80E-11 0.0024 

515.1770 5.00 5,10-methenyltetrahydrofolate 
mono-L-glutamate 

-0.96  1.81E-13 4.51E-11 0.0002 

267.0880 1.28 coniferyl acetate 476.22  8.44E-13 1.23E-10 0.0006 

172.0350 2.50 3-dehydroshikimate 10.76  1.26E-12 1.63E-10 0.0012 

233.0540 4.26 geraniol 51.85  3.32E-12 2.82E-10 0.0000 

218.0410 2.49 L-tyrosine 18.89  1.00E-11 6.23E-10 0.0007 

231.0710 1.84 N2-succinyl-L-glutamate 5-
semialdehyde 

429.97  1.39E-11 7.86E-10 0.0008 

190.0420 2.49 3-dehydroquinate 12.13  1.60E-11 8.76E-10 0.0015 

268.0950 1.28 2'-deoxyuridine 361.2  1.70E-11 9.01E-10 0.0011 

234.0350 2.49 monodehydroascorbate 
radical 

12.18  1.82E-11 9.19E-10 0.0022 

158.0540 4.55 2-isopropylmaleate 57.2  1.98E-11 9.69E-10 0.0003 

205.0630 2.90 3-hydroxy-L-kynurenine 7.57  2.02E-11 9.74E-10 0.0007 

202.0460 2.50 L-phenylalanine 9.11  4.02E-11 1.58E-09 0.0015 

214.0410 3.02 O-ureido-L-homoserine 6.74  4.32E-11 1.68E-09 0.0001 

234.0420 4.07 kynurenate 58.83  6.05E-11 2.10E-09 0.0018 

220.0510 2.50 L-histidinol phosphate 16.36  8.40E-11 2.77E-09 0.0017 

838.5450 6.27 trehalose-cis-methoxy-mono-
mycolate 

-0.94  1.22E-10 3.79E-09 0.0024 

327.9830 3.38 N2-succinylglutamate -0.78  1.32E-10 4.01E-09 0.0024 

303.9800 2.50 4-amino-4-deoxychorismate 10.78  1.48E-10 4.33E-09 0.0022 

m/z values, retention times, fold change ((B-A)/A), log2 fold change, the p-value, false 
discovery rate and mass difference as calculated by Metaboanalyst. 
 
Table 4.4. NIM pathway hits via Metaboanalyst’s Mummichog using XCMS data 
with three or more significant hits.   
 

Pathway Name  Pathway 
total 

Hits 
total 

Hits sig EASE FET Gamma 

phosphopantothenate biosynthesis I 16 5 4 0.52968 0.21092 0.010671 
leucine biosynthesis 16 4 3 0.71247 0.34181 0.022197 
pyridoxal 5'-phosphate salvage pathway 13 4 3 0.71247 0.34181 0.022197 
ubiquinol-6 biosynthesis (eukaryotic) 21 5 3 0.83433 0.53814 0.039989 

The name of the pathway, the total number of metabolites known within the pathway, 
the total number of hits, the total number of significant hits, and the significance scores 
EASE, FET and Gamma as calculated by Metaboanalyst. All top ten hits are available 
in appendix A. 
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4.3. MZMine2 results  
 

4.3.1. Feature detection and normalisation 
MZmine2 data analysis of the same 12 samples previously analysed in XCMS was 

conducted following the parameters outlined in section 2.8. This revealed 8295 aligned 

features in PIM with very little retention time deviation. The TICs produced in MZmine2 

showed very little variance between samples and bear a striking resemblance to those 

produced in XCMS (Figures 4.3. A). In contrast to XCMS more features were found in 

NIM data, revealing 12672 aligned features with very little retention time deviation. The 

TICs produced in MZmine2 showed very little variance between samples and align 

with those produced in XCMS well (Figures 4.3. B). 

 
A) 

 
 
B) 

 
 
 
 
Figure 4.3. Total ion chromatograms from MZmine2 of Δrnq1 and [rnq-] samples. 
MZmine2 processing information regarding all of the detected LC-MS peaks observed within 
all 6 Δrnq1 (samples 03, 16, 21, 23, 27 and 29) and all 6 [rnq-] (samples 11, 14, 18, 19, 22 
and 28) samples imported for analysis and peak detection. A) PIM original total ion 
chromatogram B) NIM original total ion chromatogram  
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4.3.2. Multivariate modelling of MZmine2 metabolomic data reveals some 
differences between Δrnq1 and [rnq-] samples  
To assess if significant differences could be seen between the two groups, Δrnq1 and [rnq-], 

PCA modelling in SIMCA was conducted, this time using all 12 samples of MZmine2 pre-

processed data. This showed some tentative, observable separation between the two 

groups both for PIM and NIM. However, the spatial separation of the NIM model was 

arguably questionable, existing as a single large cluster as opposed to two individual 

clusters. Model scores were poor, giving low levels of confidence with their respective R2 

and Q2 values less than acceptable for biological relevance, R2 = 0.323 Q2 = 0.156 and R2 

= 0.512, Q2 = 0.067 (Figure 4.4. A + C). When examining such variability between XCMS 

and MZmine2 findings, it was is evident that the number of detected features was larger 

within MZmine2 than XCMS and may introduce additional levels of noise to the MZmine2 

models hindering model quality and predictability within SIMCA.  

 

OPLS-DAs were built in an effort to improve on these poor models including all 12 samples 

and focusing on comparing Δrnq1 to [rnq-]. With PIM these showed strong significant 

separation of Δrnq1 and [rnq-] samples with R2(X) = 0.708, R2(Y) = 1, Q2 = 0.933 and a CV-

ANOVA p-value = 3.23 x 10-2 (Figure 4.4. B). This demonstrates that metabolic changes 

between the two groups were significantly different from each other. However, in NIM 

although the R2(X) = 0.624, R2(Y) = 0.999, Q2 = 0.847 were acceptable (evidence that the 

model itself was of good quality), the CV-ANOVA p-value showed no significant difference 

at 0.0576 despite the appearance of the model to show clear separation (Figure 4.4. D). 

Although relatively weak PCA models were produced here, some degree of separation is 

seen, and so OPLS-DA models were appropriate. It was recognised, that these models have 

been built using weaker sources of variation than their PCA counterparts (Worley and 

Powers, 2016). Visible separation in OPLS-DA is expected and so CV-ANOVA scores will 

better represent the significance of these separations. Despite what was found in XCMS 

data and working off MZmine2 NIM data alone, the clear conclusion is that there is no 

significant difference seen among the two groups. However, it is known that OPLS-DA 

statistics are rapidly decreased with added noise within a data set, with this having been a 

concern during PCA analysis it is possible that this could be a limiting factor here. Due to 

the presence of a known “noise factor”, the decision to continue into Metaboanalyst with this 

data set, despite these ‘insignificant’ findings was taken.  
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A)                                             
 
 
 
 
 
 
 
 
 
 
 
 
C) 

 
 

B) 

 
D) 

 
 
Figure 4.4. PCA (A and C) and OPLS-DA (B and D) models of MZmine2 comparison of Δrnq1 and [rnq-] samples. Overview of the 
data shows no outlying samples within the 95% confidence range within each model. Green circles represent Δrnq1 samples and blue 
circles represent [rnq-] samples (A) MZmine2 analysed PIM data 3D PCA scores with R2 = 0.323 Q2 = 0.156 values. (B) MZmine2 analysed 
PIM data OPLS-DA scores with R2(X) = 0.708, R2(Y) = 1, Q2 = 0.933 and a CV-ANOVA p-value = 3.23 x 10-2. (C) MZmine2 analysed NIM 
data 3D PCA scores with R2 = 0.512, Q2 = 0.067 values. (D) MZmine2 analysed NIM data OPLS-DA scores with R2(X) = 0.624, R2(Y) = 
0.999, Q2 = 0.847 and a CV-ANOVA p-value = 0.0576. 
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4.3.3. Statistical analysis of MZmine2 metabolomic data in Metaboanalyst finds 
significantly altered features  
Much like XCMS data, group MZmine2 data of all 12 samples was subjected to pairwise 

comparison within Metaboanalyst, using the settings described in section 2.9. Resultant T-

tests with the adjusted p-value of =>0.01 found 1807 positive and 3676 negative features 

that had been significantly altered (p-value=>0.01) when comparing Δrnq1 samples to [rnq-] 

samples.   

 

4.3.4. Tentative feature ID and pathway analysis of MZmine2 metabolomic data via 
Metaboanalyst  
In order to establish the identity of these increased and decreased features detected within 

the respective 1807 and 3676 features and run pathway analysis, Metaboanalyst’s, 

Mummichog, Peaks to Pathways function was used, as indicated by Figure 4.1. A p-value 

of 1.0 x 10-5 allowed for the acquisition of 293 PIM results and 916 NIM results (closest 

possible to the required between 300~700 for algorithm functioning). BioCyc’s Fungi 

pathway library for S. cerevisiae (yeast) was selected. This provided details of the most 

significantly different metabolites, the direction of the disturbance (whether they were up or 

down regulated), and the most significantly disrupted pathways including the total number 

of hits within specified pathways (Tables 4.5., 4.6., 4.7. and 4.8.). For reasons outlined 

previously in section 4.2.4., the decision was taken to progress onto comparative analysis.  
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Table 4.5. The top twenty unique and available proposed identities of the most 
significant PIM MZmine2 features identified by Metaboanalyst’s T-test.  
 

m/z RT (min) Proposed Identity Fold Change  p-value FDR Mass 
difference 

258.0760 2.80 5'-chloro-5'-deoxyadenosine 2.23  6.44E-11 1.34E-07 0.0006 

252.0880 1.80 S-acetyldihydrolipoamide 6.45  1.39E-10 1.68E-07 0.0004 

151.0880 1.70 pyridoxamine 10.28  1.41E-09 5.33E-07 0.0010 

235.1090 1.70 hypoglycin B 10.66  1.59E-09 5.73E-07 0.0016 

293.0660 1.93 5-amino-1-(5-phospho-D-
ribosyl)imidazole-4-carboxamide 

2.64  
2.73E-09 8.40E-07 0.0013 

369.2390 5.08 (9S,10S)-10-hydroxy-9-
(phosphooxy) octadecanoate 

0.12  
4.96E-09 1.25E-06 0.0013 

199.0580 3.04 (2R,3S)-3-isopropylmalate 0.82  6.29E-09 1.49E-06 0.0001 

161.0630 5.57 2-isopropylmaleate 12.7  1.18E-08 2.33E-06 0.0004 

213.0760 1.98 L-arginine 0.26  1.58E-08 2.91E-06 0.0012 

369.2410 5.06 stearate 0.98  1.66E-08 3.00E-06 0.0000 

355.2250 4.14 all-trans-retinol 0.98  1.96E-08 3.46E-06 0.0004 

241.0610 1.98 dUMP 7.78  2.07E-08 3.54E-06 0.0001 

179.0820 1.71 3-hydroxy-L-kynurenine 9.94  2.09E-08 3.54E-06 0.0008 

193.1000 2.00 geraniol 0.73  2.32E-08 3.83E-06 0.0018 

175.0850 4.59 (indol-3-yl)acetamide 0.95  2.36E-08 3.83E-06 0.0013 

253.1200 1.64 hypoglycin B 3.34  2.99E-08 4.43E-06 0.0016 

125.0710 1.38 histidinol 13.88  3.29E-08 4.70E-06 0.0003 

251.1010 1.75 5'-deoxyadenosine 14.32  3.36E-08 4.72E-06 0.0011 

179.0820 1.71 3-hydroxy-L-kynurenine 9.94  3.42E-08 4.72E-06 0.0002 

248.1100 5.05 thiamine 1.23  3.61E-08 4.91E-06 0.0012 

m/z values, retention times, fold change ((B-A)/A), log2 fold change, the p-value, false 
discovery rate and mass difference as calculated by Metaboanalyst.  
 
Table 4.6. PIM pathway hits via Metaboanalyst’s Mummichog using MZmine2 data with 
three or more significant hits.   
 

Pathway Name Pathway 
total 

Hits 
total 

Hits 
sig EASE FET Gamma 

salvage pathways of pyrimidine deoxyribonucleotides 17 6 4 0.26337 0.075142 0.001591 

tryptophan biosynthesis 17 9 5 0.27948 0.10584 0.00173 
4-amino-2-methyl-5-diphosphomethylpyrimidine 
biosynthesis 11 4 3 0.35673 0.088631 0.002596 

thiamin diphosphate biosynthesis IV (eukaryotes) 11 4 3 0.35673 0.088631 0.002596 

pyridoxal 5'-phosphate salvage pathway 13 4 3 0.35673 0.088631 0.002596 
tryptophan degradation to 2-amino-3-carboxymuconate 
semialdehyde 13 4 3 0.35673 0.088631 0.002596 

tryptophan degradation I (via anthranilate) 9 4 3 0.35673 0.088631 0.002596 

methionine biosynthesis 18 8 4 0.46127 0.2066 0.004561 

The name of the pathway, the total number of metabolites known within the pathway, the 
total number of hits, the total number of significant hits, and the significance scores EASE, 
FET and Gamma as calculated by Metaboanalyst. All top ten hits are available in appendix 
A. 
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Table 4.7. The top twenty unique and available proposed identities of the most 
significant NIM MZmine2 features identified by Metaboanalyst’s T-test.  
 

m/z RT (min) Proposed Identity Fold Change  p-value FDR Mass 
difference 

268.0940 1.31 2'-deoxyuridine 0.09  2.33E-14 2.88E-11 0.0003 

231.0700 1.32 N2-succinyl-L-glutamate 5-
semialdehyde 

-0.16  
6.74E-14 4.74E-11 0.0001 

218.0400 2.49 L-tyrosine 16.98  1.33E-13 7.66E-11 0.0000 

611.3840 5.80 3-methoxy-4-hydroxy-5-all-trans-
hexaprenylbenzoate 

-0.98  
2.03E-13 1.03E-10 0.0024 

267.0870 1.38 coniferyl acetate -0.01  4.57E-13 1.81E-10 0.0003 

515.1750 5.01 5,10-methenyltetrahydrofolate 
mono-L-glutamate 

-0.35  
4.93E-13 1.86E-10 0.0013 

165.0600 0.75 2-deoxy-D-glucose 6-phosphate 0.45  1.39E-12 3.92E-10 0.0012 

195.0730 1.14 6-(hydroxymethyl)-7,8-
dihydropterin 

-0.06  1.90E-12 4.92E-10 0.0015 

221.9790 4.24 (1E)-4-oxobut-1-ene-1,2,4-
tricarboxylate 

-0.57  
3.52E-12 7.97E-10 0.0003 

202.0430 2.49 L-phenylalanine 11.96  5.08E-12 1.04E-09 0.0016 

335.0720 1.38 S-formylglutathione -0.02  1.01E-11 1.91E-09 0.0026 

214.0420 3.04 O-ureido-L-homoserine 0.05  1.20E-11 2.18E-09 0.0007 

176.0270 3.19 L-ascorbate 0.08  1.33E-11 2.26E-09 0.0008 

219.0420 2.49 phosphocholine -0.16  1.35E-11 2.26E-09 0.0005 

268.0730 2.73 1,2-dibutyrin -0.59  1.61E-11 2.58E-09 0.0008 

359.0860 3.92 4'-phosphopantetheine -0.06  2.06E-11 3.15E-09 0.0009 

193.0710 2.95 (R)-2,3-dihydroxy-3-
methylpentanoate 

1.86  2.06E-11 3.15E-09 0.0001 

237.0310 2.58 4-hydroxy-2-nonenal 40.08  2.11E-11 3.15E-09 0.0000 

334.0140 2.41 7,8-dihydroneopterin -0.54  3.37E-11 4.55E-09 0.0010 

493.1100 4.21 5,10-methylenetetrahydropteroyl 
mono-L-glutamate 

-0.9  
3.75E-11 5.00E-09 0.0023 

m/z values, retention times, fold change ((B-A)/A), log2 fold change, the p-value, false 
discovery rate and mass difference as calculated by Metaboanalyst. 
 
Table 4.8. NIM pathway hits via Metaboanalyst’s Mummichog using MZmine2 data 
with three or more significant hits.   
 

Pathway Name  Pathway 
total 

Hits 
total 

Hits 
sig EASE FET Gamma 

6-hydroxymethyl-dihydropterin diphosphate 
biosynthesis I 14 4 3 0.14625 0.019586 0.000531 

folate transformations 26 7 3 0.36067 0.11365 0.001703 

phosphopantothenate biosynthesis I 16 7 3 0.36067 0.11365 0.001703 

folate interconversions 22 8 3 0.4297 0.15899 0.002512 

The name of the pathway, the total number of metabolites known within the pathway, the 
total number of hits, the total number of significant hits, and the significance scores EASE, 
FET and Gamma as calculated by Metaboanalyst. All top ten hits are available in appendix 
A. 
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4.4. Comparative data analysis results 
 
The top twenty proposed variable features identified by T-tests and the subsequent pathway 

analyses reveal that much discrepancy exists between the two analysis programmes. As 

discussed earlier (Section 4.1.), it has been suggested by Li et al. (2019) that cross 

comparison of the overlapping m/z values from a variety of programmes, specifically XCMS 

and MZmine2, provides a level of confidence in analysis that cannot be achieved via a single 

analysis method. This approach has been taken here correlating both our positive and 

negative ionisation mode data sets in an attempt to provide a level of confidence in our 

findings that could not be achieved via single analysis programme.  

 

4.4.1. Feature detection and normalisation 
As instructed via Myers et al. (2017), cross correlation of m/z values from XCMS and 

MZmine2 was achieved via the methods outlined in section 2.8.4. Within PIM data 2748 m/z 

values were found to have been reported by both programmes and within NIM data 2769 

overlapping features were found (Figure 4.5.(A+B)). 

 
 
 
 
A) 

 
 
 

 
 
B) 

 
 

 
Figure 4.5. Venn diagrams showing the total number of overlapping features reported 
by MZmine2 and the total number of features reported by XCMS when comparing 
Δrnq1 and [rnq-] data. Mzmine2 features are shown in blue and XCMS features are shown 
in green, the overlapping section in the centre of the two depicts the total number of m/z 
values reported by both analysis programmes in bold A) Venn diagram of PIM m/z values of 
MZmine2 and XCMS B) Venn diagram of NIM m/z values of MZmine2 and XCMS 
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4.4.2. Multivariate modelling of XCMS/MZmine2 comparative metabolomic data in 
SIMCA differentiates Δrnq1 and [rnq-] samples  
Statistical models were built in SIMCA to see if clustering and separation between the two 

groups, Δrnq1 and [rnq-], could be seen between the newly established 2748 PIM m/z 

features and the 2769 NIM m/z features. Visible group separation and group clustering was 

observed, although model confidence was only moderate due to the respective PIM and 

NIM, R2 = 0.451 Q2 = 0.312 and R2 = 0.622, Q2 = 0.316 (Figure 4.6. (A + C)). R2 values 

however were considered acceptable but Q2 values were slightly less than ideal, suggesting 

that the model’s capability to predict traits would have been unreliable. When examining Q2 

values, it was considered that this may have been as a result of a limited n number. More 

repeats are always preferable but given the hypothesis generating nature of the research, it 

was decided to restrict the n number of all sample groups to six. This decision was based 

on personal communication suggesting that an n of five was considered valid for this type 

of experimentation, the prevalence of an n of five in the literature and the financial 

implications of increasing the number of samples, with respect to machine time (Personal 

communication with Dr Jake Bundy, 2016).  

  

Encouragingly, despite some trepidation after evaluating our PCAs, OPLS-DAs gave great 

scores, with PIM showing R2(X) = 0.544, R2(Y) = 0.994, Q2 = 0.959 and NIM showing R2(X) 

= 0.685, R2(Y) = 0.998, Q2 = 0.953. Giving great confidence in the models and their 

respective excellent CV-ANOVA p-values of 5.85 x 10-5 and 6.61 x 10-4 respectively (Figure 

4.6. (B+D)). It seemed as though comparative analysis or ‘data trimming’ had removed a 

large amount of the noise from the system, hence strengthening our OPLS-DA models, 

allowing confidence in the data set and subsequent models, and therefore allowing for the 

conclusions that significant metabolic differences were present between Δrnq1 and [rnq-] 

samples.  
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A) 

 
 
C) 

 
 

B) 

 
 
D) 

 
Figure 4.6. PCA (A and C) and OPLS-DA (B and D) models of XCMS/MZmine2 comparative data of Δrnq1 and [rnq-] samples. 
Overview of the data shows no outlying samples within the 95% confidence range within each model. Green circles represent Δrnq1 
samples and blue circles represent [rnq-] samples (A) Comparative analysis PIM data 3D PCA scores with R2 = 0.451 Q2 = 0.312 values. 
(B) Comparative analysis PIM data OPLS-DA scores with R2(X) = 0.544, R2(Y) = 0.994, Q2 = 0.959 and a CV-ANOVA p-value = 5.85 x 10-

5. (C) Comparative analysis NIM data 3D PCA scores with R2 = 0.622, Q2 = 0.316 values. (D) Comparative analysis NIM data OPLS-DA 
scores with R2(X) = 0.685, R2(Y) = 0.998, Q2 = 0.953, and a CV-ANOVA p-value = 6.61 x 10-4. 
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4.4.3. Statistical analysis of XCMS/MZmine2 comparative metabolomic data in 
Metaboanalyst finds significant differences between Δrnq1 and [rnq-] samples  
Comparative data were treated in an identical manner to single data analysis, with all 12 

samples being subjected to pairwise comparison within Metaboanalyst, using the settings 

described in section 2.9. The resultant T-tests, with the adjusted p-value of =>0.01, found 

1620 positive and 1349 negative features that had been significantly altered (p-value=>0.01) 

when comparing Δrnq1 samples to [rnq-] samples. This was encouraging given the reduction 

in overall number of features caused by m/z value comparison, suggesting that this ‘data 

trimming’ exercise had little effect on the significantly altered metabolites.   

 

4.4.4. Tentative feature ID and pathway analysis of XCMS/MZmine2 comparative 
metabolomic data via Metaboanalyst  
To establish the identity and run pathway analyses on the increased and decreased features 

detected by both XCMS and MZmine2, the 1620 PIM features and 1349 NIM features where 

subject to Metaboanalyst’s, Mummichog, Peaks to Pathways function, as indicated by 

Figure 4.1. A p-value of 1.0 𝑥𝑥 10−7 allowed for the acquisition of 368 PIM results and 456 

NIM results (closest possible to the required between 300~700 for algorithm functioning). 

BioCyc’s Fungi pathway library for Saccharomyces cerevisiae (yeast) was selected, 

providing details of the most significantly different metabolites, the direction of the 

disturbance (whether they were up or down regulated), and the most significantly disrupted 

pathways including the total number of hits within specified pathways (Tables 4.9., 4.10., 

4.11. and 4.12.).  

 

From examining Tables 4.9. and 4.11. it is evident that approximately 80% of the changes 

observed were due to individual metabolites being upregulated in strains with the native 

Rnq1p conformation with only 7 PIM and 6 NIM down regulation events. In isolation, these 

individual results are only indicative, and conclusions based on single changes unreliable. 

However, taken within the context of pathway analysis, if one metabolite is known to change 

considerably more or in a more accessible or measurable way, this may reveal areas of 

interest regarding the function of  Rnq1p. When considered as part of a pathway analysis, 

the only significantly disturbed pathway is that of tryptophan degradation. It was considered 

that the limitations of Metaboanalyst with regard to the individual treatment of both PIM and 

NIM results may be providing the weak EASE results seen within pathway analysis and so 

the decision was made to continue analysis within BioCyc to enable PIM and NIM results to 

be combined and subsequent pathways further examined.  
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Table 4.9. The top twenty-five unique and available proposed identities of the most 
significant PIM comparative features identified by Metaboanalyst’s T-test.  
 

 
m/z RT (min) Proposed Identity Fold Change  p-value FDR Mass 

difference 
355.2250 5.00 all-trans-retinol -0.98  2.38E-15 4.91E-12 0.0006 

369.2373 5.01 (9S,10S)-10-hydroxy-9-
(phosphooxy) octadecanoate 

-0.98  9.14E-14 1.93E-11 0.0027 

234.0780 1.90 N2-succinyl-L-glutamate 5-
semialdehyde 

96.42  2.54E-13 3.70E-11 0.0007 

270.1165 1.28 S-(hydroxymethyl)glutathione 559.76  6.87E-13 7.02E-11 0.0023 
336.2296 5.81 leukotriene B4 -0.91  6.89E-13 7.02E-11 0.0005 
111.0466 2.42 O-succinyl-L-homoserine 5.44  8.60E-13 8.15E-11 0.0005 
213.1026 5.00 geraniol -0.89  1.16E-12 9.94E-11 0.0010 

399.1206 2.74 S-adenosyl-4-methylthio-2-
oxobutanoate 

188.65  2.95E-12 2.06E-10 0.0001 

251.1036 1.29 5'-deoxyadenosine 166.71  3.41E-12 2.06E-10 0.0018 
253.0924 2.49 2'-deoxyinosine 16.8  3.53E-12 2.06E-10 0.0008 
237.0858 0.90 pyridoxamine 147.56  4.61E-12 2.48E-10 0.0012 
252.0866 2.50 S-acetyldihydrolipoamide 45.6  4.75E-12 2.51E-10 0.0022 
81.0334 1.50 3-methyl-2-oxobutanoate 22.06  1.29E-11 5.28E-10 0.0001 

273.0871 3.22 L-tryptophan 3.91  1.49E-11 5.79E-10 0.0025 
149.0111 1.50 imidazole acetol-phosphate 12.52  1.83E-11 6.63E-10 0.0000 

311.0775 1.91 5-amino-1-(5-phospho-D-
ribosyl)imidazole-4-carboxamide 

341.54  2.33E-11 7.54E-10 0.0025 

167.0825 0.66 1-octanal 41.17  2.52E-11 7.86E-10 0.0004 
440.2270 5.96 sphinganine 1-phosphate -0.86  3.15E-11 9.42E-10 0.0033 
258.0741 2.90 5'-chloro-5'-deoxyadenosine 15.72  3.40E-11 9.83E-10 0.0010 
210.9926 1.50 dimethylallyl diphosphate 18.81  6.41E-11 1.63E-09 0.0007 
197.0923 0.90 3-hydroxy-L-kynurenine 201.1  8.39E-11 2.01E-09 0.0003 
108.0456 1.84 D-serine 22.83  8.52E-11 2.02E-09 0.0001 
613.4265 5.81 ubiquinone-6 -0.97  9.86E-11 2.28E-09 0.0037 
166.0180 5.01 dUMP -0.96  1.93E-10 3.96E-09 0.0007 
287.1250 0.68 7,8-dihydropteroate 78.04  2.00E-10 4.01E-09 0.0000 

m/z values, retention times, fold change ((B-A)/A), log2 fold change, the p-value, false 
discovery rate and mass difference as calculated by Metaboanalyst.  
 
Table 4.10. PIM pathway hits via Metaboanalyst’s Mummichog using comparative data 
with three or more significant hits.   
  

Pathway Name Pathway 
total Hits total Hits sig EASE FET Gamma 

tryptophan degradation to 2-amino-3-
carboxymuconate semialdehyde 13 6 6 0.035235 0.0034343 0.0006108 

UDP-N-acetylglucosamine biosynthesis 12 5 5 0.078028 0.0089517 0.0007525 
UDP-<i>N</i>-acetyl-D-glucosamine 
biosynthesis II 12 5 5 0.078028 0.0089517 0.0007525 

tryptophan degradation I (via anthranilate) 9 5 5 0.078028 0.0089517 0.0007525 
phenylalanine biosynthesis 11 6 5 0.16361 0.036539 0.0011471 
tyrosine biosynthesis 11 6 5 0.16361 0.036539 0.0011471 
hexaprenyl diphosphate biosynthesis 6 4 4 0.16654 0.023216 0.0011639 
<i>trans, trans</i>-farnesyl diphosphate 
biosynthesis 5 4 4 0.16654 0.023216 0.0011639 

leucine biosynthesis 16 9 6 0.24341 0.088884 0.0017097 
biotin biosynthesis from 7-keto-8-
aminopelargonate 15 7 5 0.26891 0.087449 0.0019449 

The name of the pathway, the total number of metabolites known within the pathway, the 
total number of hits, the total number of significant hits, and the significance scores EASE, 
FET and Gamma as calculated by Metaboanalyst. 
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Table 4.11. The top twenty-five unique and available proposed identities of the most 
significant NIM comparative features identified by Metaboanalyst’s T-test.  
 

m/z RT (min) Proposed Identity Fold Change  p-value FDR Mass 
difference 

181.0704 7.02 coniferyl alcohol -0.9  2.11E-14 1.17E-11 0.0018 

611.3844 5.80 3-methoxy-4-hydroxy-5-all-trans-
hexaprenylbenzoate 

-0.98  6.51E-14 2.89E-11 0.0024 

515.1766 5.00 5,10-methenyltetrahydrofolate 
mono-L-glutamate 

-0.96  4.83E-13 9.55E-11 0.0002 

267.0875 1.28 coniferyl acetate 476.22  1.03E-12 1.51E-10 0.0006 
172.0345 2.50 3-dehydroshikimate 10.76  1.75E-12 2.02E-10 0.0012 

613.3840 5.80 3-methoxy-4-hydroxy-5-all-trans-
hexaprenylbenzoate 

-0.97  2.62E-12 2.51E-10 0.0003 

233.0541 4.26 geraniol 51.85  5.64E-12 4.23E-10 0.0000 
218.0405 2.49 L-tyrosine 18.89  9.93E-12 6.79E-10 0.0007 
190.0423 2.49 3-dehydroquinate 12.13  1.32E-11 7.92E-10 0.0015 

231.0712 1.84 N2-succinyl-L-glutamate 5-
semialdehyde 

429.97  2.45E-11 1.18E-09 0.0008 

158.0538 4.55 2-isopropylmaleate 57.2  2.46E-11 1.18E-09 0.0003 
205.0626 2.90 3-hydroxy-L-kynurenine 7.57  2.79E-11 1.25E-09 0.0007 
234.0353 2.49 monodehydroascorbate radical 12.18  2.94E-11 1.29E-09 0.0022 
268.0950 1.28 2'-deoxyuridine 361.2  3.43E-11 1.46E-09 0.0011 
214.0408 3.02 O-ureido-L-homoserine 6.74  4.18E-11 1.73E-09 0.0001 
202.0464 2.50 L-phenylalanine 9.11  5.59E-11 2.15E-09 0.0015 
838.5454 6.27 α, α'-trehalose 6-α-mycolate -0.94  6.74E-11 2.46E-09 0.0024 
220.0510 2.50 L-histidinol phosphate 16.36  9.07E-11 3.04E-09 0.0017 
234.0420 4.07 kynurenate 58.83  9.12E-11 3.04E-09 0.0018 
327.9831 3.38 N2-succinylglutamate -0.78  9.41E-11 3.07E-09 0.0024 
303.9799 2.50 4-amino-4-deoxychorismate 10.78  9.57E-11 3.07E-09 0.0022 
174.0513 2.90 (S)-ureidoglycolate 1.98  1.34E-10 4.08E-09 0.0007 
165.0598 1.17 2-deoxy-D-glucose 6-phosphate 16.1  3.05E-10 7.98E-09 0.0014 
237.0318 2.58 4-hydroxy-2-nonenal 183.18  4.25E-10 1.03E-08 0.0005 
219.0414 2.49 phosphocholine 18.63  1.96E-10 5.54E-09 0.0014 

m/z values, retention times, fold change ((B-A)/A), log2 fold change, the p-value, false 
discovery rate and mass difference as calculated by Metaboanalyst. 
 
Table 4.12. NIM pathway hits via Metaboanalyst’s Mummichog using comparative data 
with three or more significant hits.   
 

Pathway Name Pathway 
total Hits total Hits sig EASE FET Gamma 

ubiquinol-6 biosynthesis (eukaryotic) 21 6 4 0.51914 0.22761 0.0068221 
leucine biosynthesis 16 4 3 0.57758 0.21942 0.0088931 
pyridoxal 5'-phosphate salvage pathway 13 4 3 0.57758 0.21942 0.0088931 
phosphopantothenate biosynthesis I 16 5 3 0.71593 0.37775 0.017462 
salvage pathways of pyrimidine 
deoxyribonucleotides 17 7 3 0.88128 0.65561 0.046963 

The name of the pathway, the total number of metabolites known within the pathway, the 
total number of hits, the total number of significant hits, and the significance scores EASE, 
FET and Gamma as calculated by Metaboanalyst. All top ten hits are available in appendix 
A. 
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4.4.5. BioCyc ‘omics dashboard and cellular overview enables mapping of most 
significant metabolic changes indicating key metabolic pathways of interest 
To prepare for pathway analysis within BioCyc, all significant punitively identified metabolites 

(as established by Metaboanalyst’s Mummichog), their relative abundances and average 

relative abundances (within groupings) were collated (this included all PIM and NIM omics 

data). Relative abundances of the most significantly altered metabolites (established via 

Metaboanalyst’s Mummichogg) from the six Δrnq1 samples and the six [rnq-] samples were 

then uploaded to BioCyc’s omics dashboard. This allowed for an overall assessment of the 

key metabolic regions influenced by this change (Figure 4.7) and visualisation of the scale 

of specific metabolic regions altered between groups, shown in Figure 4.8.  

 

As shown by Figure 4.7. the most significantly perturbed metabolic pathways identified were 

involved in biosynthesis, with cofactor and amino acid biosynthesis being the largest 

effected groups. It was noted that these results correlated well with previous Mummichog 

observations. Given these changes in biosynthesis, it was a surprise to see how little the 

metabolic pathways involved in energy metabolism had been perturbed, although changes 

in this metabolic area may result in a knockout mutant such as the Δrnq1 strain being 

inviable. The second largest perturbation was shown to be within pathways and of 

compounds (Cpd) that are yeast specific. Relating this result to the lack of an identifiable 

homolog of Rnq1p other organisms suggests the role of this protein is likely to be yeast 

specific and changes in the presence or absence of Rnq1p are likely to influence yeast 

specific mechanisms. The identification of perturbations in both degradation pathways and 

in amino acid synthesis pathways on loss of Rnq1p suggests that either the use of amino 

acids or amino acid preference within the cells may have changed or that the communication 

mechanisms within the cell that regulate amino acid production or degradation has been 

altered.  

 

Upon interpretation of Figure 4.7 it was considered difficult to form solid conclusions as the 

data provides a far more global overview of cellular metabolic perturbations than that 

required to understand the implications of the presence or absence of Rnq1p. Given the 

complexity of cellular metabolism, a slow, step by step analysis would allow for better 

interpretation and understanding of the results.  

 

Figure 4.7. gives an overview of metabolic regions that had been perturbed but lacks 

information about the direction of these changes. Results were then visualised within their 
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samples groups, Δrnq1 and [rnq-], in Figure 4.8 and are shown by metabolic area. By way 

of comparison, both average relative abundance and logarithmic scales have been used to 

visualise the relationship of these changes. Generally, it appears that [rnq-] samples have 

higher levels of activity in most metabolic regions (in all but cofactor biosynthesis) with 

activation/inactivation and interaction giving higher readings in this sample group. Again, the 

lack of fine detail regarding these changes and the large error bars presented on these 

graphs suggests that deeper mining of the data is needed to unpick the metabolic regions 

influenced.  

  

This same data was subsequently uploaded to BioCyc’s specific S. cerevisiae cellular 

overview and pathway hits can be seen in Table 4.13. Considerable overlap is seen between 

the pathways observed and those indicated via Mummichogg are shown in Table 4.10. and 

4.12. This consolidation of the PIM and NIM data strengthened the argument for the 

pathways indicated, allowing for greater confidence in these findings. Pathways are ranked 

by DPPS score (a measure of the pathway perturbation within multiple data sets), and all of 

the pathways listed gave scores over 100,000 strongly indicating their perturbation.  

 

Table 4.13. Top Ten most perturbed pathways between Δrnq1 and [rnq-].   
 

 Pathway Name 
ubiquinol-6 biosynthesis from 4-hydroxybenzoate (eukaryotic) 

ubiquinol-6 bypass biosynthesis 
superpathway of chorismate metabolism 

superpathway of ubiquinol-6 biosynthesis 
inosine-5'-phosphate biosynthesis II 

tryptophan biosynthesis 
formaldehyde oxidation II (glutathione-dependent) 

phospholipids degradation 
urea degradation 

histidine biosynthesis 
 
 
When comparing the most significant Δrnq1 relative abundances to the most significant 
[rnq-] relative abundance, via BioCyc’s specific S. cerevisiae cellular overview. 
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Figure 4.7. Graphical representation of the metabolic perturbations detailed by region when comparing Δrnq1 and [rnq-] samples.  
The largest pie chart shows a general overview of the key areas detected as changed between groups and the percentage of the change 
assigned to those areas, as determined via BioCyc’s omics dashboard. The smaller pie charts are colour coded with the small blue pie 
chart showing the detailed metabolic regions (by percentage) that are contributing to the overall biosynthesis percentage seen in the largest 
pie chart. The orange pie chart provides these details for the degradation percentage, the grey pie chart provides these details for the 
energy percentage and the yellow pie chart provides these details for the other pathway’s percentage.     
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Figure 4.8. Graphical comparisons of the average relative abundances between Δrnq1 
and [rnq-] samples within key metabolic regions. A) Charts average comparisons of the 
relative abundances between Δrnq1 samples (shown in blue) and [rnq-] (shown in red), data 
is first separated by key metabolic region (shown as a graph title) and then by specific 
metabolic area (shown on the x axis). The Y axis is set to a linear scale, appropriate to the 
relative abundances. Individual data points are shown as small circles within the larger 
summated bars. B) Shows the same information with a logarithmic scale on the Y axis.     

A) 

B) 



159 
 

4.4.6. Data overlay onto implicated pathways, via BioCycs pathway collage, reveals 
the direction of the up and down regulation between groups 
The information provided by Table 4.13. gave specific areas of inquiry to investigate and the 

decision was made to overlay the raw data from each of the samples onto the specific 

pathways, to further visualize and interpret findings. To overlay LC-MS data onto highlighted 

pathways within BioCyc, relative abundances were subject to standardization in order to 

adjust the scale of the changes relative to the metabolite in question. This was achieved via 

Microsoft Excels STANDARDIZE function, using the raw relative abundance of the sample 

in question, the average mean of all data, and the standard deviation of all data. This 

provided a normalized value known as a z-score (or standard score) which represents the 

number of standard deviations a given data point is from the mean. Positive z-scores 

indicate a value greater than the mean and negative scores indicate a value less than the 

mean. This allowed for a visually accessible directionality that would have otherwise been 

unobtainable, given the large range of values that were present among the relative 

abundances. It is imperative when engaging in this type of pathway analysis, that there is a 

continuous relation of our findings to existing biological knowledge and the conditions tested 

and that caution is implemented given the opportunity for misinterpretation at this level of 

cellular analysis.  

 

All of the ubiquinol pathways shown on Table 4.13 were grouped together with standardized 

data overlaid onto them (shown in Figure 4.9.). Here a consistent upregulation of these 

pathways in Δrnq1 samples, and/or a downregulation in [rnq-] samples is seen. This pattern 

can be seen throughout the entirety of the super-pathway of ubiquinol-6 biosynthesis, the 

ubiquinol-6 biosynthesis from 4-hydroxybenzoate (eukaryotic) and the ubiquinol-6 bypass 

biosynthesis.  

 

The overlay of the other pathways listed in Table 4.13 do not make for such simple analysis. 

The chorismate biosynthesis pathway feeds directly into the tryptophan pathway and so 

finding both identified is encouraging. However, the linking metabolites occurring at the end 

and start of these pathways respectively appear to give variable results (shown in Figure 

4.10.). Initially the chorismate pathway begins upregulated (in the absence of Rnq1p) but 

this quickly shifts to a relative downregulation. As stated, the pattern is somewhat lost during 

the connecting nodes of these pathways but appears to be steadily downregulated (in the 

absence of Rnq1p) throughout the remainder of the tryptophan pathway. It is possible that 

the overall measure of chorismate within the cell (the measure used here) is highly variable, 
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given that chorismate is involved in a range of other metabolic pathways and may obscure 

the true value for this single metabolite in this particular pathway. It is also possible that any 

one m/z value may be misappropriated and so assessing the trends present across 

pathways and among their connections should be considered a more reliable source of 

information when addressing our aims than individual metabolite identities alone. Focusing 

on a single metabolite change, is ill advised, as the likelihood of a single mislabelled 

metabolite is high, whereas the likelihood of the unbiased labelling of all of the metabolites 

within a single pathway all showing the same directionality is low.  

 

The urea degradation and formaldehyde oxidation II pathways (shown in Figure 4.10.) both 

show clear indications of down regulation (in the absence of Rnq1p). Much like the inosine 

pathway (shown in Figure 4.10.) it must be acknowledged that these pathways are small 

and so without further targeted experiments aimed at these metabolites’ conclusions drawn 

on this basis alone would be prone to error. Likewise, the same is true of the phospholipid 

degradation pathway (shown in Figure 4.11.) where clear evidence for the downregulation 

of choline and phosphocholine is seen. Although inherently linked to this pathway, there is 

not a metabolite within it and so it is entirely possible that this pathway has been considered 

significant due to its relative size and that the influence of the choline and phosphocholine 

changes have been misappropriated. Early in the histidine pathway (shown in Figure 4.10.) 

there is a clear trend in downregulation in the absence of Rnq1p. This trend becomes more 

convoluted at the branches of this pathway and may be due to further mitigating connections 

that dilute or counteract the overall trend observed. Further targeted investigation is needed 

to elucidate on this finding.   
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Figure 4.9. Pathway collage of three of the top 10 implicated pathways. (via BioCycs cellular overview) with standardised omics 
Δrnq1 and [rnq-] data of individual metabolites overlaid. A colour legend is shown in the top left-hand corner to signify the direction of 
the change indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black writing names individual 
metabolites, blue arrows depict reactions, pink arrows depict spontaneous reactions, faded grey circles show metabolites for which no data 
is present, coloured ‘heat blocks’ represent omics data. The first six boxes in any ‘heat block’ belong to Δrnq1 samples and the last six 
boxes belong to [rnq-] samples. A larger version of this Figure is available in Appendix G.
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Figure 4.10. Pathway collage of three of the top 10 implicated pathways (via BioCycs 
cellular overview) with standardised omics Δrnq1 and [rnq-] data of individual 
metabolites overlaid. A colour legend is shown in the top left-hand corner to signify the 
direction of the change indicated by colour. Dark blue labels at the top of the pathway state 
the pathway name, black writing names individual metabolites, blue arrows depict reactions, 
pink arrows depict spontaneous reactions, faded grey circles show metabolites for which no 
data is present, coloured ‘heat blocks’ represent omics data. The first six boxes in any ‘heat 
block’ belong to Δrnq1 samples and the last six boxes belong to [rnq-] samples. A larger 
version of this Figure is available in Appendix G. 
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Figure 4.11. Pathway collage of three of the top 10 implicated pathways (via BioCycs 
cellular overview) with standardised omics Δrnq1 and [rnq-] data of individual 
metabolites overlaid. A colour legend is shown in the middle left to signify the direction of 
the change indicated by colour. Dark blue labels at the top of the pathway state the pathway 
name, black writing names individual metabolites, blue arrows depict reactions, pink arrows 
depict spontaneous reactions, faded grey circles show metabolites for which no data is 
present, coloured ‘heat blocks’ represent omics data. The first six boxes in any ‘heat block’ 
belong to Δrnq1 samples and the last six boxes belong to [rnq-] samples A larger version of 
this Figure is available in Appendix G. 
 

4.4.7. Examination of the upstream connections of the ubiquinol pathways, via 
BioCycs pathway collage, reveals other potential interactions of Rnq1p  
The identification of the ubiquinol pathway as being perturbed (shown in Figure 4.9.) is 

interesting but presents issues. Rnq1p, is known to reside within the cytoplasm (Huh et al.  

2003) and confirmatory bioinformatic tests using PSORT (https://wolfpsort.hgc.jp/) have 

shown that the likelihood of this Rnq1p to be localised to the mitochondria as very low. Given 

that the ubiquinol pathways largely operate within the mitochondria this leads to the 

conclusion that observations are the downstream effect of an earlier change. Prior to 

investigating these pathways upstream, there was a desire to rule out the possibility of 

alternate influencers. The only known influencer other than those pathways inherently linked 

to ubiquinol pathways is glucose depression. Szkopinska (2000) states that glucose 

depression in yeast increases the level of ubiquinone-6 synthesised. To ensure that this was 

not in operation here, glycolysis, glycogen biosynthesis, glycogen degradation and 

glucosamine biosynthesis pathways were overlaid with the same standardised data (shown 

in Figure 4.12.). Given that this data set only contained the most significant findings, only 

one metabolite hit was shown. This provided substantial evidence to rule out glucose 

depression as being a mitigating issue. In addition, given the presence of pyruvate, (a 

metabolite that is often falsely identified as a positive hit due to its repetition in many 
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metabolic pathways), a further analysis was performed under the same conditions, but 

encouragingly no significant hits were found.  

 

Ubiquinone pathways are known to be upregulated upon various types of oxidative stress 

and are downregulated with age. This is intriguing given the known relationship between 

Rnq1p and oxidative stress (Chiti and Dobson, 2006; Szkopinska, 2000). Ubiquinone 

pathways were indicated as most perturbed (Table 4.13) and considering the cellular 

location of Rnq1p, the decision was taken to trace the source of these metabolic pathways. 

Both the superpathway of ubiquinol-6 biosynthesis and the ubiquinol-6 biosynthesis from 4-

hydroxybenzoate (eukaryotic) feed into the hexaprenyl diphosphate biosynthesis pathway. 

This in turn, links into the superpathway of geranylgeranyldiphosphate biosynthesis I (via 

mevalonate) which initiates at the pyruvate dehydrogenase complex. The standardised data 

was overlaid onto all the pathways listed (shown in Figure 4.13.) and a clear downregulation 

trend (in the absence of Rnq1p) is seen in the hexaprenyl diphosphate biosynthesis 

pathway. Within the geranylgeranyldiphosphate biosynthesis I (via mevalonate) the picture 

is a little more complex. The pathway terminates with a clear downregulation trend (in the 

absence of Rnq1p) but between DMAPP and (R)-mevalonate diphosphate, this appears to 

switch. Unfortunately, due to either lack of measurement/ID or the lack of significant hit data 

for this metabolite, information for IPP was not available.  

 

Above this point in the pathway, the downregulation trend switches direction, although 

limited information is available for early stages of this pathway.  It was considered that the 

influence seen within the ubiquinone pathways may well be an area particularly sensitive to 

change. However, following the downstream effect of the changes observed in the 

geranylgeranyldiphosphate biosynthesis I (via mevalonate) pathway may well point to other 

key areas of perturbation. Figure 4.14. reveals the connection between this pathway and 

the superpathway of ergosterol biosynthesis. Overlaying our data onto this pathway shows 

interesting findings, but we must note that our experimental methodology (untargeted and 

metabolite focused in nature) does not have the specificity to have reliably extracted and 

measured the type of relatively large lipid molecules that are found towards the latter end of 

this pathway.   
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Figure 4.12. Pathway collage of three of the top 10 implicated pathways (via BioCycs 
cellular overview) with standardised omics Δrnq1 and [rnq-] data of individual 
metabolites overlaid. A colour legend is shown in the top left-hand corner to signify the 
direction of the change indicated by colour. Dark blue labels at the top of the pathway state 
the pathway name, black writing names individual metabolites, blue arrows depict reactions, 
pink arrows depict spontaneous reactions, faded grey circles show metabolites for which no 
data is present, coloured ‘heat blocks’ represent omics data. The first six boxes in any ‘heat 
block’ belong to Δrnq1 samples and the last six boxes belong to [rnq-] samples. A larger 
version of this Figure is available in Appendix G. 
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Figure 4.13. Pathway collage of three of the top 10 implicated pathways (via BioCycs 
cellular overview) with standardised omics Δrnq1 and [rnq-] data of individual 
metabolites overlaid. A colour legend is shown in the top left-hand corner to signify the 
direction of the change indicated by colour. Dark blue labels at the top of the pathway state 
the pathway name, black writing names individual metabolites, blue arrows depict reactions, 
pink arrows depict spontaneous reactions, faded grey circles show metabolites for which no 
data is present, coloured ‘heat blocks’ represent omics data. The first six boxes in any ‘heat 
block’ belong to Δrnq1 samples and the last six boxes belong to [rnq-] samples. A larger 
version of this Figure is available in Appendix G. 
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Figure 4.14. Pathway collage of metabolic 
implications upstream from three of the 
top 10 implicated pathways with 
standardised omics Δrnq1 and [rnq-] data 
of individual metabolites overlaid. A colour 
legend is shown to the centre left of the 
Figure to signify the direction of the change 
indicated by colour. Dark blue labels at the 
top of the pathway state the pathway name, 
black writing names individual metabolites, 
blue arrows depict reactions, pink arrows 
depict spontaneous reactions, faded grey 
circles show metabolites for which no data is 
present, coloured ‘heat blocks’ represent 
omics data. The first six boxes in any ‘heat 
block’ belong to Δrnq1 samples and the last 
six boxes belong to [rnq-] samples A larger 
version of this Figure is available in Appendix 
G. 
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4.5. Discussion 
 
The results of the analysis of the data as documented in section 4.2. and 4.3. confirms the 

assertions of Myers et al. (2017) that the variance between metabolomics analysis programs 

can be considerable. The use of cross comparison of these two programs, as outlined by Li 

et al. (2019), has proved to be a valuable addition to our bioinformatic methodology and one 

which will be continued for subsequent analyses in order to improve confidence in our data 

and robustness to our conclusions. Encouragingly, Simca analysis found significant 

differences between the Δrnq1 samples and [rnq-] samples, enabling analysis in 

Metaboanalyst and BioCyc. Observations on this scale can at first be difficult to interpret due 

the complexity and extent of the information available. However, by combining PIM and NIM 

results within BioCyc has allowed for strong and reliable DPPS scores that have added an 

extra dimension of stringency and validating our findings.  

 

4.5.1. Exploring the Ubiquinol pathways, searching for Rnq1p influences 
Our analyses strongly indicate that perturbations within the ubiquinol 6 biosynthetic 

pathways and their connecting pathways maybe key to elucidating Rnq1p’s cellular role. 

Ubiquinol-6 pathways show a relative down regulation when Rnq1p is present.  However, 

as this is a mitochondrial based pathway and Rnq1p is cytoplasmic localised, further 

investigation into this pathway and its interactions was sought.  

 

Ubiquinol-6 is a mitochondrial pathway whose enzymatic components consist of the 

Coenzyme Q group of enzymes. Indeed, the pathways listed in Figure 4.10 involve the 

function of COQ2, COQ3, COQ5, COQ6 and COQ7 (BIOCYC database, 2019). A search of 

the literature regarding this pathway and enzymes suggest that the quinonoid nucleus of the 

COQ’s is derived from the shikimate pathway via chorismate within bacteria and via tyrosine 

with the higher eukaryotes (Meganathan, 2001; Olsen and Rudney, 1983). For information 

regarding COQ nomenclature please see Stefely and Pagliarini (2018) comprehensive 

paper. In S. cerevisiae if the shikimate pathway is present (i.e. not a knockout strain) cells 

can derive tyrosine from the chorismate pathway in vivo and studies have shown that wild-

type mutants favoured method of deriving Q is via the chorismate intermediate 

(Meganathan, 2001; Olsen and Rudney, 1983).  

 

Given that in our analyses the chorismate pathway has also been identified as significantly 

perturbed, this area was investigated further. These investigations did not provide definitive 
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evidence of up or downregulation within the chorismate pathway with no data available 

concerning shikimate metabolites. The DPPS score of 287000 given by Biocyc of the super 

pathway of chorismate is indicative of the entire pathway’s perturbation and clearly indicates 

an upregulation within this pathway in the absence of Rnq1p.  

 

The upregulation in ubiquinol-6 pathways in the absence of Rnq1p may be due to an 

increased availability in the component parts for the Coenzyme Q enzymes. However, the 

rate limiting steps and the set of reactions for the biosynthesis and increased availability of 

the component metabolites (those which are incorporated within the enzymes) are not 

currently known (Awad et al. 2018; Stefely and Pagliarini, 2018; Gonzalez-Mariscal et al. 

2014; Meganathan, 2001). Further research using UHPLC-MS to quantify the relative 

availability of the COQs and their redox state within Δrnq1 and [rnq-] cells is therefore 

advised.  

 

Ubiquinone’s (coenzyme Q) primary role is as a component of the mitochondrial respiratory 

chain but in its reduced form it also acts as an antioxidant, protecting membrane 

phospholipids and lipoproteins from lipid peroxidation. It also has a role in protecting other 

cell components from free radical-induced oxidative damage (Awad et al.  2018; Szkopinska, 

2000; Genova et al.  1999; Mikosovska et al. 1999). These associated pathways are known 

to be upregulated upon various types of oxidative stress and downregulated with age 

(Szkopinska, 2000). This regulation is actioned via the mevalonate pathway, where there is 

a delicate interplay between the major biosynthetic products of mevalonate metabolism. The 

precise details as to how this interplay is controlled and monitored (and hence how the 

subsequent up and down regulation of these metabolites is achieved) is, as yet, unknown 

(Mohamed et al. 2015; Szkopinska, 2000; Szkopinska et al. 2000; Grabowska et al. 1998).  

 

What is known is that the biosynthesis of these Coenzyme Q enzymes and the activity of 

these pathways are regulated to match these two key cellular processes: bioenergetic 

metabolism and antioxidant defence (González-Mariscal et al. 2014). Assuming that no 

bioenergetic change has occurred (Figure 4.13.), we can conclude that antioxidant defence 

is key to the role of Rnq1p: when Rnq1p is present, ubiquinone production is low and when 

Rnq1p is not present, ubiquinone production is high. This suggests that Rnq1p is a negative 

controller of ubiquinone production.  
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4.5.2. The biological function of Rnq1p as a regulator of ubiquinone production and 
suggestions for further research to confirm this role  
How Rnq1p acts upon these pathways is still unclear due to its known cellular location. 

Given that ubiquinone production is regulated via the mevalonate pathways and so too are 

dolichol and sterol, the action of Rnq1p on these pathways may occur further upstream of 

the ubiquinol pathways (Mohamed et al. 2015; Szkopinska, 2000). Within the hexaprenyl 

pathway a relative upregulation in the presence of Rnq1p is observed. This indicates some 

disconnect between the hexaprenyl pathway, and both, the superpathway of 

geranylgeranyldiphosphate biosynthesis I (via mevalonate) and the super pathway of 

ergosterol biosynthesis, that appears to only be occurring in the presence of Rnq1p. The 

Rnq1p is cytoplasmic, and curiously this connection between the ubiquinol and hexaprenyl 

pathways is a connection from the cytoplasm into the mitochondria. The observed restriction 

of the downstream flow of all-trans-hexaprenyl diphosphate into the ubiquinol pathways in 

the presence of Rnq1p may provide evidence of a cellular role for Rnq1p in limiting the 

trafficking of these metabolites to the mitochondria. The observed upregulation of the 

hexaprenyl and connected pathways may be a consequence of this halt in the downstream 

connection, allowing these metabolites to build up within cells. However, overlay of 

metabolic data shown in Figures 4.14 and 4.15 demonstrate that the observed upregulation 

may have diverted these resources to the ergosterol superpathway, although evidence for 

this is limiting due the nature of experimentation. 

 

The yeast homolog of the human lipid cholesterol, ergosterol has long been considered to 

play a role in the regulation of membrane fluidity and structure. The most abundant sterol in 

fungal cell membranes, ergosterol is thought to participate in cytoprotective roles, 

interkingdom interactions and immune response (Rodrigues, 2018; Koselny et al.  2018). 

Despite this already large list of the beneficial roles, new biologically relevant roles for this 

lipid are still being discovered (Rodrigues, 2018; Koselny et al.  2018). Of relevance to this 

study is the use of this sterol as a target for many of the antifungal treatments (Rodrigues, 

2018) and a suggestion for future research could be to compare the effectiveness of 

antifungals such as the azoles on the strains used within this study. A prediction would be 

that strains containing native, soluble Rnq1p ([rnq-]) would exhibit a higher azole sensitivity 

due to their apparent higher concentration of ergosterols. Conversely strains where Rnq1p 

is absent (Δrnq1 and potentially [RNQ+]) may exhibit a lower azole sensitivity. 
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The sterol composition of membranes is known to have a strong correlation with the 

tolerance of organisms to a variety of stressors (Bhattacharya et al. 2018; Lui et al. 2017; 

Mohamed et al. 2015). However, there is a systematic lack in understanding among the 

relationship between cellular resistance and sterol composition (Bhattacharya et al. 2018; 

Lui et al. 2017). Various modifications and recombinantly engineered enzymes have been 

produced within these pathways in an attempt to enhance stress resistance, but with 

variable results (Bhattacharya et al. 2018; Lui et al. 2017). Interestingly, both Bhattacharya 

et al.  (2018) and Lui et al.  (2017) note that duration of lag growth phase can be significantly 

altered due to changes in sterol composition. During the course of this research it has 

routinely been found that starter cultures of [rnq-] have a considerably longer lag growth 

phase than the other strains tested. This observation has not been previously reported in 

the literature but may be indicative of the role of Rnq1p. Additional studies of the lag phases 

of Rnq1p strains may provide evidence for a link to sterol metabolism supported by targeted 

lipidomic studies focusing on sterol composition and quantification. 

 

4.5.3. Limitations of this study and suggestions for further research 
Initially there was some concern about the impact that this variability in lag phase would 

have on the growth rate and cell number of our two biological classes, and subsequently the 

metabolic perturbations observed. To ensure parity between different strains at the time of 

sampling, the total protein content was to be determined as an approximation of metabolite 

concentration (Tredwell et al. 2011) and cell counting using a haemocytometer were 

considered. However, due to the time sensitivity of quenching the samples, the time-

intensive nature of cell counting and the lack of availability of instrumentation for rapid 

protein quantification, this was unrealistic. In addition, considering that experimental 

evidence for a general normalisation of metabolite concentration to cell number or protein 

concentration appeared to be lacking (Muschet et al. 2016), neither techniques were added 

to the experiments conducted.  

 

Instead, all cells were harvested at the same OD (0.6 OD600), indicative of exponential 

growth and cell number in yeast. Despite our early observations, no notable growth effects 

were reported for the strains used and indeed, we did not see any growth effects outside of 

the lag phase observation reported for [rnq-]. These observations support the assumption 

that growth rate and cell number was consistent between the two classes. For future 

experimentation, it may be advisable to monitor the growth rate of the strains independently 

alongside metabolomic experimentation and so ensure growth rate is not a variable. An 
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alternative solution would be the inclusion of a fluorescence-based DNA quantification of 

metabolite harvested cells. Muschet et al. (2016) suggest this method as fast, sensitive, and 

robust and demonstrate that DNA quantification, unlike cell or protein quantification, is 

indicative of metabolite concentration (for 82-97% of metabolites).  

 

The most significant and uncontrollable factor within this research is the bottleneck between 

features detected and the features identified (Monge et al. 2019). Although regrettable, the 

impact of this is unknown. More feature identity may have led to other undiscovered pathway 

perturbations being revealed. Alternatively, it may have added valuable information about 

uncharacterised metabolites within the pathways highlighted. Given that this is a factor in 

any metabolomic research, metabolite libraries are constantly evolving and being added too 

(Monge et al. 2019). However, for this work to continue, demand from researchers must 

exist. Therefore, conducting metabolomic experiments, even with the knowledge that some 

information will be missed, is preferable as new perturbation information will be gained and 

the demand and work on improvements will continue. Specifically, within this research, 

greater feature ID would have been possible using Progenesis, or any other platform that 

would have granted access to the higher-energy collision data. Such data, containing 

valuable fragmentation information, was acquired and stored but was not accessible 

throughout this research.  

 

4.5.4. Findings and implications  
This work has revealed that Rnq1p may play a lipid/mevalonate based cytoprotective role 

as a regulator of ubiquinone production. Present in wild populations (Halfmann et al. 2012; 

Kelly et al. 2012a; Nakayashiki et al. 2005), the native conformation of tRnq1p in times of 

limited stress interrupts/interferes with the regulation of ubiquinol 6, having a relative 

downregulation effect. This down regulation effect on ubiquinol-6 masks the cells capacity 

to produce high levels of ubiquinone. It is suggested that these cellular resources are 

diverted to the production of sterols, upregulating the production of these more long-term 

membrane bound cytoprotective lipids. Rnq1p however is intrinsically disordered and so 

when acted upon by a stress condition, will readily misfold into its prion form, behaving much 

like a switch. Conversion to the prion form downregulated the production of membrane 

bound cytoprotective lipids and allows for a fast and effective upregulation of the ubiquinol 

pathways which needed for intercellular antioxidant defence. Mechanistically how this is 

achieved is yet unclear, although further targeted metabolic experimentation aimed at these 
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pathways may reveal details. In addition, experimentation that investigated these roles 

biochemically would add evidence to these theories and direct future studies.  

 

If confirmed, the implications of these findings may well be far reaching. As of yet, no DNA 

sequence homolog has currently been identified for Rnq1p but the potential for another 

intrinsically disordered protein to play a similar role within mammalian cells is likely. Even 

without the identification of such a protein, the switch from lipid to ubiquinol biosynthesis 

occurring in the presence of misfolding proteins as part of a cellular response against stress, 

would provide an opportunity with which to track and monitor the progress of a related 

disease using specific biomarkers.    
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Chapter Five - The metabolic perturbations associated with the 
presence of the [RNQ+] prion 
 
This chapter attempts to identify the metabolic pathways that are perturbed in the presence 

of the [RNQ+] prion. This is achieved by comparing the metabolites profiles from [rnq-] and 

[RNQ+] cells together with those identified from previous studies involving Δrnq1 (as detailed 

in the previous chapter). Comparison with ∆rnq1 data allows for the removal of ‘loss of 

function’ effects observed for Rnq1p. In addition to these biological classes, [rnq-] cells and 

[RNQ+] cells were also subjected to a mild oxidative stress with the metabolite profiles 

obtained acting as controls as a general stress response within a prion-containing and a 

prion-free background. These studies will enable the subtraction of a general stress 

response factor from differences seen between [rnq-] and [RNQ+] cells and so identify 

changes only due to [RNQ+] prion presence. Experiments were conducted as detailed in 

chapter two.  

 
5.1. Introduction  
 
The self-propagating and transmissible proteinaceous agents, known as prions, are 

responsible for causing a host of devastating and fatal degenerative diseases in mammals 

(Liebman and Chernoff, 2012; Tuite and Serio, 2010). Despite the mechanistic similarity 

between the prions of both kingdoms, yeast prions are largely benign and so are not 

associated with a disease phenotype. As a result, yeast prions provide a unique vantage 

point from which to view the underlying cellular chemistry of prion presence and subsequent 

amyloid formation and their influence on cellular functioning (Liebman and Chernoff, 2012; 

Tuite and Serio, 2010).  

 

In these experiments, metabolic comparisons of prion free cells ([rnq-]) with prion containing 

cells ([RNQ+]) were conducted. It was hypothesised that inference towards a pseudo ‘non-

disease’ vs ‘disease’ comparison may reveal information pertinent to the understanding of 

amyloid formation and relevant interactions with normal cellular biochemistry, without the 

experimental restrictions imposed by mammalian cell death. Whilst at first this may seem 

contradictory, due to the lack of a disease phenotype per se, yeast models have long been 

used to study protein mis-folding and the underlying cellular pathomechanisms thereof 

(Gregorio and Duennwald, 2018; Wickner et al. 2015).  
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The role of the [RNQ+] prion as a facilitator to prion formation places this prion in the initial 

stages of what is a complex and downstream process of protein misfolding. Although 

experimentation on the much more readily studied [PSI+] prion would have been possible, it 

would have been difficult to rule out the implications of the presence of [RNQ+] prions, even 

in strains which no longer contained this particular prion (given that [RNQ+] is required for 

formation not maintenance of [PSI+]) (Bradley et al. 2002).  

 

The structure and function of the protein domains of Rnq1p are also an area of interest. 

Rnq1p-PFD, found within the C-terminal region of the protein, is atypically Q/N rich; 

however, some discrepancies exist as to the relationship between prion status and other 

protein domains present within the protein (Stein and True, 2011; Vitrenko et al. 2007). The 

N-terminal domain has been implicated in both positive and negative regulation of [RNQ+] 

prion maintenance (Bardill and True, 2010). What is clear is that the Rnq1p-PFD is more 

complex than other prion counterparts, with loosely defined oligopeptide repeats over four 

Q/N rich regions. Hence, it is posited that any work which aims to define or elucidate the 

role of these regions may too be crucial in our understanding of amyloid formation (Stein 

and True, 2011; Vitrenko et al.  2007).  

 

Irrespective of a mechanistic interest in amyloidosis, the [RNQ+] prion has many other 

intriguing qualities. Linked to its role in heterologous appearance and the presence of 

multiple variant conformations in its prion form, it has been argued that [RNQ+] prions 

demonstrate a Lamarckian inheritance pattern via prion state switching, which appears to 

allow access to complex traits in a single generation (Stein and True 2011; Halfmann et al. 

2010). This switching is capable of inferring both negative and positive survivability 

outcomes for the yeast cells depending on the stress condition. When considered alongside 

the discovery of [RNQ+] prions in wild populations, it is now thought that this function plays 

a pivotal role in the adaptive abilities of yeast and the evolution of new traits (Halfmann et 

al. 2010). Certainly, this is not without precedent; many other organisms contain amyloids 

which are known to play a variety of positive biological roles, including protection from stress, 

silk production, multicellular growth and community development (Upadhyay and Mishra, 

2018; Dragos et al.  2017; Greenwald and Riek, 2010).  

 

Apart from the protists, prions or amyloids are present throughout all of the kingdoms of life 

(Upadhyay and Mishra, 2018), with evidence for the presence of amyloid like proteins in 

over 30 species (Upadhyay and Mishra, 2018). This has increased our understanding of the 
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prions and amyloids, encouraging further debate about the function of prions within the 

fungal kingdom. Halfmann et al.  (2010) argues that prions provide a specific mechanism 

with which cells can induce phenotypic variability within fluctuating environments. This has 

been likened to that of an evolutionary capacitor, capable of hiding the effects of genetic 

polymorphisms. This would allow for the storage or silence of many benign differences 

between cells, which when acted upon by changes in the environment would then allow for 

a sudden exposure of these differences. Typically, this presentation of diverse ecological 

niches leads to natural selection, driving the stabilization of one or more of these variations 

(Nelson and Masel, 2018; Halfmann et al.  2010). Arguably the extent to which prions or 

amyloids are subject to evolution or have a role to play in natural selection (even in yeast 

alone) is debatable. It has been demonstrated that these natural phenomena present 

mechanistic similarities, despite inferring a range of both beneficial and deadly effects and 

so present a conflicting and intriguing quality as inducers of phenotypic plasticity (Allwein et 

al. 2019; Nelson and Masel, 2018; Upadhyay and Mishra, 2018).  

 

Although it is possible to report on the distinct strain of [RNQ+] present (using the system 

discussed in section 1.1.11), is not ideal, as the level of genetic manipulation to induce this 

assay may well inhibit or mask the effect of [RNQ+] (Stein and True, 2011). Hence an 

understanding of the role of the metabolic perturbations as a result of the presence of the 

[RNQ+] prion as carried out in this study may point to a biochemical test that may be 

indicative of the strain strength. Such information could potentially inform a valuable new 

biomarker or biochemical assay, or even a phenotypic assay, via genetic manipulation when 

armed with this information.  

 

The use of metabolomic studies as a tool to investigate amyloidosis and prion formation is 

not without precedent. Many human blood and plasma studies have focused on biomarker 

recognition, largely for Alzheimer’s, as well as Parkinson’s and other well-known 

neurodegenerative disorders (Jiang et al.  2019; Pena-Bautista et al. 2019; Varma et al.  

2018; Phelan et al.  2017; Trushina and Mielke, 2014). The rigour of the studies is improving 

all the time aided by the ever-increasing availability of identifiable metabolites within the 

Human Metabolome Database. Despite this potential, metabolomics studies remain largely 

hindered by the time scales required to conduct such experimentation and a general 

inconsistency between studies. In a recent review of pooled data, Jiang et al. (2019) found 

that there were no metabolites that were consistently identified in all studies, but they did 

note that lipids and amino acids clearly played a pivotal role in the progression of dementia, 
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calling for a standardisation within experimentation and the routine use of larger more 

diverse participant groups to address this variation. It is noteworthy that the acknowledgment 

of models outside of the relatively small group of mammals that are typically used in this 

type of experimentation is lacking, even among those who appear to actively encourage 

multidisciplinary approaches (Brandner and Jaunmuktane, 2017). Narayan et al. (2014) 

argue that the shortfalls of prion or amyloid research that focuses on the higher organisms, 

results from a general lack of understanding regarding the underlying disease biology, 

highlighting the pivotal role that relatively biochemically simple model organisms, such as 

yeast, can have in unravelling such complexities.  

 

It was proposed that metabolic comparisons of [rnq-] and [RNQ+], may identify biomarkers 

and/or metabolic pathways that were indicative of prion presence (detailed in Table 5.1.). In 

an effort to ensure that the observed metabolic changes were specific for prion presence 

rather than simply being indicative of a general cellular stress response, the experimentation 

included the induction of an atypical stress response in S. cerevisiae as a control. Previous 

stress response studies in S. cerevisiae suggest that a near universal metabolic stress 

response is seen via heat shock, oxidative stress and high pH (Kang et al. 2012). Given that 

the other stress responses tested appeared to give a variety of results and the known 

biochemical associations between heat/oxidative stress and amyloidosis the decision to use 

a mild oxidative stress in our control [rnq-] was taken (detailed in Table 5.1.). This detracted 

from atypical stress response influencers, ensuring that our results reflected the pseudo-

disease state in question, without stressing cells enough to induce protein misfolding.  

 

As a matter of curiosity, a mild-oxidative stress response was also induced in [RNQ+] cells 

to investigate if or how, metabolically, the presence of the prion effected the cells ability to 

cope with this stress (detailed in Table 5.1.). Consideration was also be given to the loss of 

function of Rnq1p so as not to confuse the effect of the prion itself with this loss of function. 

Although these factors are inherently linked, extrapolation of the metabolic effects of loss of 

protein to our understanding of amyloidosis as a whole may be hindered without ample 

consideration of this factor.  
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Table 5.1. Experimental sample groups used in chapter five.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Their name, prion status, function, and details of their intended experimental role of those 
conditions. 
 
  

Sample 
Group 

Prion 
Status Stress Function Purpose 

[rnq-] - n/a Negative 
Control 

Establish metabolite 
baseline 

[rnq-] with 
mild 

oxidative 
stress 

- H2O2 
(0.2mM) 

Positive 
Control 

Detect metabolite changes 
due to stress 

Establish baseline (when 
comparing to [RNQ+] stress) 

[RNQ+] + n/a Test 
Group 

Detect metabolite changes 
due to prion presence 

[RNQ+] 
with mild 
oxidative 

stress 
+ H2O2 

(0.2mM) 

Additional 
Test 

Group 

Detect metabolite changes 
due to prion presence 
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5.2. Results – All samples  
 

5.2.1. Feature detection and normalisation 
As instructed from the literature and described in chapter 4, cross correlation of m/z values 

from XCMS and MZmine2 was achieved via the methods outlined in section 2.8.4. PIM data 

reported 4898 m/z values and NIM data reported 3196 by both programmes (Figure 

5.1.(A+B)). Comparative analysis was conducted as detailed in section 4.5. and overlapping 

features were used to build statistical models via SIMCA and perform pathway analysis via 

Metaboanalyst and BioCyc.  

 

A)  

 

B) 

 

 
Figure 5.1. Venn diagrams showing the total number of features reported by MZmine2 
and the total number of features reported by XCMS when considering [rnq-], [rnq-] 
with a mild oxidative stress, [RNQ+] and [RNQ+] with a mild oxidative stress data. 
Mzmine2 features are shown in grey and XCMS features are shown in red, the overlapping 
section in the centre of the two depicts the total number of m/z values reported by both 
analysis programmes in bold A) Venn diagram of PIM m/z values of MZmine2 and XCMS B) 
Venn diagram of NIM m/z values of MZmine2 and XCMS 
 
 
 

5.2.2. PCA and PLSDA modelling of comparative metabolomic data in SIMCA 
differentiates and shows relationships between groups  
All 24 samples were used to build initial PCA and PLS-DA models, consisting of 6 samples 

from each of the sample groups: [rnq-], [rnq-] with mild oxidative stress, [RNQ+] and [RNQ+] 

with mild oxidative stress. This would allow us to interrogate the connectivity and provide an 

insight into the relationship between our ‘non-disease’ ([rnq-]) and ‘disease’ phenotype 

([RNQ+]) as well as the stresses tested.  

 

 

MZmine2 
13431

XCMS
5550

MZmine2 
10399

XCMS
37344898 3196 
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PIM data gave a PCA model with good confidence levels, providing acceptable R2 and Q2 

values of 0.718 and 0.509 respectively. The NIM data demonstrated less confidence with 

the PCA model reporting an acceptable R2 value of 0.667 but a lower Q2 value of 0.378. 

This indicated that the predictivity of the model may not be reliable but was deemed to 

provide fair confidence levels overall given the number of variables present within the data.  

 

Visual assessment of these models (Figure 5.2.) revealed that the strongest separation 

components of the model, t[1] vs t[2], for both PIM and NIM data showed distinct clustering 

of all sample’s groups. This was slightly more evident in PIM data (Figure 5.2. A and B). Very 

strong separation was observed between prion-containing and prion-free samples, however 

one of the [rnq-] samples sat outside of the 95% confidence region. Interestingly, both of the 

stress sample groups appeared to cluster together indicating a closer relationship to each 

other than to either of the prion ‘status’ sample groups, that both appeared somewhere in 

the middle of this variation. 

 

Observations between the model components, t[1] vs t[3] and t[1] vs t[4], reinforced the t[1] 

separation of the [RNQ+] samples from the rest of the groups with varying levels of 

separation seen between these other groupings (Figure 5.2. C-F). This was evidence that 

the strongest source of variation appeared to be dependent on [RNQ+] status. Although 

differences between the other sample’s groups were observable, they were not as 

compelling. A discrepancy appears here in that one of the stress conditions was also prion 

containing but suggests that metabolic differences are potentially put aside in order to cope 

with more prevailing stresses. Alternatively, given the findings of chapter four, a switch in 

ubiquinone/sterol production due to oxidative stress has brought metabolite levels within 

these cells closer to each other. This action on [rnq-] with oxidative stress samples may not 

be sufficient enough to cause protein misfolding to occur in cells, given the difference 

between these and stressed [RNQ+] samples, the stress however is deliberately mild, and 

so potentially is on the brink of initiating this process. Switching view to consider the other 

most important variables, t[2] vs t[3], give new perspective to these relationships now 

revealing distinctions between the stressed and non-stressed conditions, with very little heed 

to the prion status other than some moderate clustering (Figure 5.2. G and H).  

 

 

To further elucidate on the variation seen here PLSDA models were built using both PIM and 

NIM data. The models gave excellent scores indicative of strong reliable models: R2(X) = 
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0.659, R2(Y) = 0.939, Q2 = 0.866 and R2(X) = 0.667, R2(Y) = 0.987, Q2 = 0.923 respectively 

(Figure 5.3.). CV-ANOVAs also suggest statistically significant differences had been 

observed between groupings, PIM data giving a p-value = 4.23 x 10-8 and NIM data a p-

values of p-value = 1.59 x 10-11. Clustering within models appeared more defined between 

groups, although arguably the models themselves gave no further insight into the differences 

between groups, visually supporting the PCA observations of Figure 5.3. 

 

Group modelling and observation confirmed that each of the sample groups were distinct 

from each other, providing clear evidence that each of our conditions had been maintained 

successfully. These established that the differences between our negative control, [rnq-], 

and our positive control, [rnq-] with mild oxidative stress, had in fact produced a distinct 

stress response from the stress response observed as a result of prion presence (Figure 

5.2.and Figure 5.3.). The response to mild oxidative stress varied, but was not dissimilar, 

between prion-containing and prion cells (Figure 5.2.and Figure 5.3.). An unexpected result, 

given that the separation of the samples, especially within NIM data, is that [RNQ+] with a 

mild oxidative stress is behaving much more like the prion-free samples than the prion-

containing samples.   
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Figure 5.2. PCA models of XCMS/MZmine2 comparative data plotting [rnq-], [rnq-] with 
a mild oxidative stress, [RNQ+] and [RNQ+] with a mild oxidative stress (multiple 
components shown). Overview of the data shows no more than one outlying sample within 
the 95% confidence range within each model. The PIM PCA model, with R2 = 0.451 Q2 = 
0.312 values, is shown on the left (A, C, E and G) and the NIM PCA model, with R2 = 0.451 
Q2 = 0.312 values, on the right (B, D, F and H). Shown here are a variety of the contributary 
components from each of the PIM and NIM PCA models. Blue circles represent [rnq-], blue 
triangles show [rnq-] with a mild H2O2 stress, Red circles represent [RNQ+] and red triangles 
show [RNQ+] with a mild H2O2 stress. A and B) Show component t[1] on the X axis and 
component t[2] on the Y axis, C and D) Show component t[1] on the X axis and component 
t[3] on the Y axis, E and F) Show component t[1] on the X axis and component t[4] on the Y 
axis, G and H) Show component t[2] on the X axis and component t[3] on the Y axis.  

A) B) 

C) D) 

E) F) 

G) H) 
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Figure 5.3. PLS-DA models of XCMS/MZmine2 comparative data plotting [rnq-], [rnq-] 
with a mild oxidative stress, [RNQ+] and [RNQ+] with a mild oxidative stress (multiple 
components shown). Overview of the data shows no more than one outlying sample within 
the 95% confidence range within each model. The PIM PLS-DA scores plot a model with 
R2(X) = 0.659, R2(Y) = 0.939, Q2 = 0.866 and a CV-ANOVA p-value = 1.60 x 10-11, shown 
on the left (A, C, E and G) and the NIM PLS-DA scores plot a model with R2(X) = 0.687, 
R2(Y) = 0.987, Q2 = 0.923 and a CV-ANOVA p-value = 4.23 x 10-8, shown on the right (B, D, 
F and H). Shown here are a variety of the contributary components from each of the PIM 
and NIM PCA models. Blue circles represent [rnq-], blue triangles show [rnq-] with a mild 
H2O2 stress, Red circles represent [RNQ+] and red triangles show [RNQ+] with a mild H2O2 
stress. A and B) Show component t[1] on the X axis and component t[2] on the Y axis, C and 
D) Show component t[1] on the X axis and component t[3] on the Y axis, E and F) Show 
component t[1] on the X axis and component t[4] on the Y axis, G and H) Show component 
t[3] on the X axis and component t[2] on the Y axis.  

A) B) 

C) D) 

E) F) 

G) H) 
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5.3. Results – Comparison of [rnq-] cells in the presence or absence of 
mild oxidative stress  
 

5.3.1. PCA and OPLSDA modelling of comparative metabolomic data in SIMCA 
differentiates between [rnq-] and [rnq-] with mild oxidative stress 
In order to account for the metabolic effects of a generalised stress condition, the negative 

and positive control groups, [rnq-] and [rnq-] with oxidative stress, were modelled together. 

This is important as the identification of the metabolic changes that occur due to a stress 

response would inform our subsequent interpretations of the metabolic responses caused 

solely to prion presence and allow us to distinguish between general stress responses and 

those unique to prion presence.  

 

PCA scores plot reasonable models for both PIM and NIM data, with R2 = 0.570, Q2 = 0.206, 

R2 = 0.843, Q2 = 0.160 values respectively (shown in Figure 5.4.). Acceptable R2 values are 

given but Q2 values indicate poor predictability within the data set. This may be due to the 

large number of variables. OPLS-DAs plot models with good levels of confidence, with the 

PIM model giving an R2(X) = 0.649, R2(Y) = 0.990, Q2 = 0.882 and CV-ANOVA p-value = 

9.45 x 10-3, and the NIM model reporting an R2(X) = 0.564, R2(Y) = 0.977, Q2 = 0.743 and a 

CV-ANOVA p-value = 8.13 x 10-2 (shown in Figure 5.4.). All models, except for the NIM PCA, 

show distinct clustering and separation as a result of sample group. NIM PCA shows 

significantly more overlap than ideal but given the strong separation within the PIM PCA and 

the significant CV-ANOVA values, this is acceptable. These results provide confidence that 

[rnq-] samples are metabolically distinct from [rnq-] samples with oxidative stress.  

 

5.3.2. Statistical analysis and tentative feature ID of comparative metabolomic data 
via Metaboanalyst  
The methodology and details that relate to the subsequent Mummichog analysis (including 

statistical analysis, tentative feature ID and pathway analysis) can be found within appendix 

B.  
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A) 

 
C) 

 
 

B) 

 
D) 

 

Figure 5.4. PCA (A and C) and OPLS-DA (B and D) models of XCMS/MZmine2 comparative data of [rnq-] and [rnq-] with a 
mild oxidative stress. Overview of the data shows one outlying samples within the 95% confidence range within each model. Blue 
circles represent [rnq-] and blue triangles show [rnq-] with a mild H2O2 stress (A) Comparative PIM data PCA scores with R2 = 0.570 
Q2 = 0.206 values. (B) Comparative PIM data OPLS-DA scores with R2(X) = 0.649, R2(Y) = 0.990, Q2 = 0.882 and CV-ANOVA p-
value = 9.45 x 10-3. (C) Comparative NIM data PCA scores with R2 = 0.843, Q2 = 0.160 values. (D) Comparative NIM data OPLS-DA 
scores with R2(X) = 0.564, R2(Y) = 0.977, Q2 = 0.743 and a CV-ANOVA p-value = 8.13 x 10-2..
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5.3.3. BioCyc omics dashboard and cellular overview enables mapping of most 
significant metabolic changes indicating key metabolic pathways of interest 
To prepare for pathways analysis within BioCyc, all significant punitively identified 

metabolites (as established by Metaboanalyst’s Mummichog), their relative abundances and 

average relative abundances (within groupings) were collated. This included all PIM and 

NIM ‘omics data. Relative abundances of the most significantly altered metabolites 

(established via Metaboanalyst’s Mummichogg) from the six [rnq-] samples and the six [rnq-] 

with mild oxidative stress samples were uploaded to BioCyc’s Omics Dashboard. This 

permitted an overall, non-directional, assessment of the key metabolic regions influenced 

by the stress condition (Figure 5.5.) and a directional visualisation of the scale of specific 

metabolic regions altered between groups, shown in Figure 5.6.  

 

Figure 5.5 reveals that pathways involving biosynthesis are the most widely affected within 

cellular metabolism, particularly cofactor and amino acid biosynthesis pathways. This was 

found to correlate with the information from Metaboanalyst (shown in appendix B). Kang et 

al. (2012) study was used to design the mild-stress condition used in this experiment, they 

did not perform a subsequent pathway analysis but identified amino acid as the most 

significantly altered metabolites. However, Kang et al. (2012) do state that the confines of 

their experiment and the metabolic burden of the stresses used made identifying key 

perturbed metabolites implausible.  

 

Another key area is energy metabolism, which shows significant change in several of the 

key energy production cycles and pathways. It appears that Glycolysis and ATP production 

have remained relatively unaltered, but the TCA cycle, other energy and fermentation cycles 

have changed, collectively contributing over half of the changes seen within energy 

metabolism. The pathways involved in degradation shown in Figure 5.6. is also considerably 

larger than previously observed in chapter 4. Current thinking suggests that under stress 

conditions S. cerevisiae and other organisms’ ability to control waste is hampered, leading 

to an effect known as stress induced recycling (Parrou et al. 1997). This may explain why 

approximately a 25% increase within this area is seen, without a significant change within 

biosynthesis. Yeast specific/other pathways make a significant contribution to the overall 

spread of the changes seen Figure 5.5., representing a 30 % decrease in activity when 

compared to chapter four.  
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Figure 5.6 divides the data into [rnq-] and [rnq-] with mild oxidative stress samples 

respectively to give a greater insight into the direction of these changes. Biosynthesis 

pathways and degradation pathways are found to be downregulated in both [rnq-] samples 

and [rnq-] with mild oxidative stress, but this downregulation is not equal. Biosynthesis 

appears affected more than degradation and this lack of correlation between the two 

processes may be intrinsically linked to stress induced recycling. It may also be linked to the 

increase in reactive oxygen species (ROS) that is known to occur under oxidative stress. 

ROS although common by-products of normal cellular metabolism, can serve as signalling 

molecules and mediate cellular damage (Ali et al.  2010; D’Autreaux and Toledano, 2007). 

Their tendency to donate oxygen to other substances due to their unstable and highly 

reactive properties makes them capable of attacking important macromolecules leading to 

homeostatic disruption (Lobo et al. 2010). Given the common compartmentation of cellular 

degradation, it stands to reason that biosynthesis pathways may be more susceptible to the 

cellular presence of ROS and then the degradation pathways, hence creating this 

disconnect in downregulation. Essentially biosynthesis pathways may simply be more 

susceptible to the metabolic burden presented by stress conditions due to their free 

availability within cells.  

 

Within the pathways related to energy metabolism, upregulation of the PPP and Glycolysis 

pathways can be seen within [rnq-] with mild oxidative stress samples, an effect that has 

been noted by other researchers as a response to oxidative stress within S. cerevisiae.  This 

suggests that our mild oxidative stress conditions were maintained throughout the 

experiment (Gonzalez-Siso et al.  2009; Magherini et al.  2009). The most significant change 

seen within the remaining pathways is within the C1 utilities pathway, where a considerable 

downregulation is observed in the presence of oxidative stress. As a common source of 

biomarkers for the occurrence of oxidative stress and associated diseases, this finding is 

expected and offers further support that our mild oxidative conditions were maintained (Vona 

et al.  2019). Despite providing a general overview our analyses (Figure 5.5. and 5.6.) did 

not reveal which specific pathways were most perturbed as a result of the mild oxidative 

stress condition. As the purpose of this experimental stage was to allow us to separate the 

pathways implicated as playing a key role in prion presence from those involved in a general 

stress response, combined PIM and NIM data was uploaded to BioCyc’s specific S. 

cerevisiae cellular overview. This enabled the identification of pathways perturbed by oxidate 

stress at a pathway levels and are listed in Table 5.2.  



188 
 

 
 
Figure 5.5. Graphical representation of the metabolic perturbations detailed by region when comparing [rnq-] and [rnq-] with a 
mild oxidative stress. The largest pie chart shows a general overview of the key areas detected as changed between [rnq-] and [rnq-] with 
mild oxidative stress, and the percentage of the change assigned to those areas, as determined via BioCyc’s omics dashboard. The smaller 
pie charts are colour coded with the small blue pie chart showing (by percentage) the metabolic region contributing to the overall 
biosynthesis percentage seen in the largest pie chart. The orange pie chart provides these details for the degradation percentage, the grey 
pie chart provides these details for the energy percentage and the yellow pie chart provides these details for the other pathway’s 
percentage.     
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Figure 5.6. Graphical comparisons of the average relative abundances between [rnq-] 
and [rnq-] with a mild oxidative stress samples within key metabolic regions. A) Charts 
average comparisons of the relative abundances between [rnq-] samples (shown in blue) 
and [rnq-] with mild oxidative stress (shown in red), data is first separated by key metabolic 
region (shown as a graph title) and then by specific metabolic area (shown on the x axis). 
The Y axis is set to a linear scale, appropriate to the relative abundances. Individual data 
points are shown as small circles within the larger summated bars. B) Shows the same 
information with a logarithmic scale on the Y axis.     

A) 

B) 
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Table 5.2. Top Ten most perturbed pathways between [rnq-] and [rnq-] with a mild 
oxidative stress.   
 

Pathway Name 
proline degradation 

arginine degradation VI (arginase 2 pathway) 
proline biosynthesis 

inosine-5'-phosphate biosynthesis II 
tryptophan biosynthesis 
citrulline biosynthesis 

formaldehyde oxidation II (glutathione-dependent) 
histidine biosynthesis 

superpathway of phenylalanine, tyrosine and tryptophan biosynthesis 
aerobic respiration  

When comparing the most significant [rnq-] relative abundances to the most significant [rnq-] 
with mild oxidative stress relative abundances, via BioCyc’s specific S. cerevisiae cellular 
overview, as ranked by DPPS.  
 

5.3.4. Data overlay onto implicated pathways, via BioCycs pathway collage, reveals 
the direction of the up and down regulation between groups 
Table 5.2 lists the key perturbed pathways identified using standardized data (as described 

in section 4.5.6). Using BioCyc pathway collage, this data was overlaid onto pathways of 

interest to further visualize and interpret these results. The pathways listed in Table 5.2. are 

presented within Figures 5.7 and 5.8. The data shown is optimized to permit efficient 

presentation as opposed to presenting them by DPPS rank (as shown in Table 5.6.).  

 

The data within Figures 5.7 and 5.8 indicates that in the presence of mild-oxidative stress 

there is a downregulation in pathways that involve proline, arginine, and the aromatic amino 

acids. These residues have been identified as the preferred targets for ROS attack 

(Stadtman and Levine (2003) and that within proline and arginine metabolism, ROS will 

result in the conversion of these amino acids to the oxidation-species glutamic 

semialdehyde. This metabolite is an intermediate within all of the pathways shown in Figure 

5.8 but was not identified in this study. In addition, no amino acids containing thiol groups 

were identified which may have been expected as these are commonly associated with 

ROS. Methionine and cysteine are thought to be particularly susceptible to oxidation under 

H2O2 stress resulting in disruption to intracellular signaling (Vona et al.  2019).  These effects 

may be more subtle and not included in the ten most perturbed pathways shown here. 

Indeed, from data shown of the PPP pathway seen in Figure 5.6 this would suggest so. 

Work in this area has demonstrated that the mechanism of upregulation within PPP is 

intrinsically linked with alterations to methionine concentrations (Campbell et al.  2016) 

highlighting the value of an overall general comparison prior to individual pathway analysis. 
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A further explanation as to why these pathways do not appear within the ten most perturbed 

pathways could be explained by the cyclic, reversible oxidation of thiol groups which may 

be overshadowed by unidirectional effects (Stadtman and Levine, 2003). Further 

examination of this data will be conducted with respect to the aims of this chapter, within the 

following sections. 
 

 
 

Figure 5.7. Pathway collage of 5 of the top 10 implicated pathways (via BioCycs 
cellular overview) with standardised omics [rnq-] and [rnq-] with a mild oxidative 
stress sample data of individual metabolites overlaid. A colour legend is shown in the 
bottom left-hand corner to signify the direction of the change indicated by colour. Dark blue 
labels at the top of the pathway state the pathway name, black writing names individual 
metabolites, blue arrows depict reactions, coloured ‘heat blocks’ represent omics data where 
available. Reading from left to right, the first six boxes in any ‘heat block’ belong to [rnq-] 
samples and the last six boxes belong to [rnq-] with mild oxidative stress samples. A larger 
version of this Figure is available in Appendix H. 
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Figure 5.8. Pathway collage of 4 of the top 10 implicated pathways (via BioCycs cellular overview) with standardised omics [rnq-] 
and [rnq-] with a mild oxidative stress sample data of individual metabolites overlaid.  A colour legend is shown in the top left-hand 
corner to signify the direction of the change indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black 
writing names individual metabolites, blue arrows depict reactions, coloured ‘heat blocks’ represent omics data where available. Reading 
from left to right, the first six boxes in any ‘heat block’ belong to [rnq-] samples and the last six boxes belong to [rnq-] with mild oxidative 
stress samples. A larger version of this Figure is available in Appendix H. 
 
  



193 
 

5.4. Results – Comparison of the Metabolomics Perturbations Observed 
between [rnq-] and [RNQ+]  
 

5.4.1. PCA and OPLSDA modelling reveals significant difference between prion free 
[rnq-] and prion containing cells [RNQ+]  
To establish if a metabolic difference had been observed between prion free, [rnq-] cell 

samples and prion containing, [RNQ+] cell samples, PCA plots for both PIM and NIM data 

were built as shown in Figure 5.9. The PCAs showed no outlying samples and gave 

desirable scores for both PIM and NIM, with R2 = 0.712 Q2 = 0.523 and R2 = 0.807, Q2 = 

0.556 values, respectively. Clustering of the sample types was clearly seen, although [RNQ+] 

samples appeared to cluster much more closely than [rnq-] samples indicating that the 

[RNQ+] samples present less variability among the group than the [rnq-] samples, 

nevertheless clear metabolic separation was observed.  

 

Subsequent OPLS-DAs plot models with good levels of confidence with PIM data scoring 

R2(X) = 0.748, R2(Y) = 0.999, Q2 = 0.976 and NIM data scoring R2(X) = 0.776, R2(Y) = 0.997, 

Q2 = 0.936. Although the same level of spread was seen in the [rnq-] samples, CV-ANOVAs 

revealed significant differences between the sample groups for both PIM and NIM data sets, 

CV-ANOVA p-value = 9.26 x 10-5 and CV-ANOVA p-value = 1.57 x 10-3 (Figure 5.9.).  

 

These analyses provide confidence in the data and confirm the generally commonly 

considered notion that [rnq-] samples are metabolically distinct from [RNQ+] samples.  

 

5.4.2. Statistical analysis and tentative feature ID of comparative metabolomic data 
via Metaboanalyst  
The methodology and details that relate to the subsequent Mummichog analysis (including 

statistical analysis, tentative feature ID and pathway analysis) can be found within appendix 

C.  
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A) 

 
C) 

 
 

B) 

 
D) 

 

Figure 5.9. PCA (A and C) and OPLS-DA (B and D) models of XCMS/MZmine2 comparative data of [rnq-] and [RNQ+] samples. 
Overview of the data shows no outlying samples within the 95% confidence range within each model. Blue circles represent [rnq-] and Red 
circles represent [RNQ+]. (A) Comparative PIM data PCA scores with R2 = 0.712 Q2 = 0.523 values. (B) Comparative PIM data OPLS-DA 
scores with R2(X) = 0.748, R2(Y) = 0.999, Q2 = 0.976 and CV-ANOVA p-value = 9.26 x 10-5. (C) Comparative NIM data PCA scores with 
R2 = 0.807, Q2 = 0.556 values. (D) Comparative NIM data OPLS-DA scores with R2(X) = 0.776, R2(Y) = 0.997, Q2 = 0.936 and a CV-ANOVA 
p-value = 1.57 x 10-3. 
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5.4.3. BioCyc omics dashboard and cellular overview enables mapping of most 
significant metabolic changes indicating key metabolic pathways of interest 
Data throughout this section has been processed as described in section 5.3. Figure 5.10. 

which shows metabolic perturbation by region when comparing [rnq-] and [RNQ+] samples, 

when compared with Figure 4.7. reveals similar trends in the contributary percentage of 

biosynthesis, degradation, and other pathways. Indeed, even the detailed metabolic regions 

under influence are largely the same. This was not found for energy metabolism, with Figure 

5.10. energy metabolism percentage influence at 4.4%, somewhere between the findings of 

Figure 4.7. (2.4%) and those in Figure 5.5. (7.2%), with the new areas of energy metabolism 

seen in Figure 5.5. making a reappearance.  

 

The same general impression is provided by Figure 5.11 with a striking similarity to the 

regulation events seen in Figure 4.8. relative to the data’s relationship to [rnq-]. By this, it is 

meant that within Figure 4.8. [rnq-] is seen on the left due to comparison with Δrnq1, however 

within Figure 5.11. [rnq-] appears on the right due to comparison with [RNQ+]. Once again, 

the only significantly different observation is within energy metabolism with fermentation and 

glycolysis both showing upregulation in the presence of the [RNQ+] prion.  

 

Whilst this number of shared features may appear surprising, this was entirely anticipated 

as the loss of function effects shown previously (chapter four) should also be observed in 

the [RNQ+] samples. This is because a metabolic effect of prion presence is a loss of function 

due the now non-functional misfolded Rnq1 protein. Crossover between the stress effects 

was also expected, via a general cellular stress response.  

 

For the expectations stated above, the decision was made to include the top 20 most 

significantly perturbed pathways as identified in BioCyc. This would permit overlap with our 

previous findings as well as allow for the identification of new ones. The results of this search 

(Table 5.3) found that most if not all of the pathways perturbed appeared to be linked to 

either loss of function or a generalized stress response. The ten most significantly perturbed 

had DPPS scores above 100000 and all pathways listed gave DPPS scores greater than 

29,000.  
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Figure 5.10. Graphical representation of the metabolic perturbations detailed by region when comparing [rnq-] and [RNQ+].The 
largest pie chart shows a general overview of the key areas detected as changed between groups and the percentage of the change 
assigned to those areas, as determined via BioCyc’s omics dashboard. The smaller pie charts are colour coded with the small blue pie 
chart showing the detailed metabolic regions (by percentage) that are contributing to the overall biosynthesis percentage seen in the largest 
pie chart. The orange pie chart provides these details for the degradation percentage, the grey pie chart provides these details for the 
energy percentage and the yellow pie chart provides these details for the other pathway’s percentage.     
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Figure 5.11. Graphical comparisons of the average relative abundances between 
[rnq-] and [RNQ+] samples within key metabolic regions. A) Charts average 
comparisons of the relative abundances between Δrnq1 samples (shown in blue) and [rnq-] 
(shown in red), data is first separated by key metabolic region (shown as a graph title) and 
then by specific metabolic area (shown on the x axis). The Y axis is set to a linear scale, 
appropriate to the relative abundances. Individual data points are shown as small circles 
within the larger summated bars. B) Shows the same information with a logarithmic scale 
on the Y axis.     

A) 

B) 
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Table 5.3. Top Ten most perturbed pathways between [rnq-] and [RNQ+].  
 

Pathway Name 

tryptophan biosynthesis 

geranylgeranyldiphosphate biosynthesis 

formaldehyde oxidation II (glutathione-dependent) 

phospholipids degradation 

histidine biosynthesis 

superpathway of phenylalanine, tyrosine and tryptophan biosynthesis 

phospholipid biosynthesis (Kennedy pathway) 

choline biosynthesis 

phosphatidylcholine resynthesis via glycerophosphocholine 

4-hydroxyphenylpyruvate biosynthesis 

tyrosine biosynthesis 

tyrosine degradation 

siroheme biosynthesis 

superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 

ubiquinol-6 biosynthesis from 4-hydroxybenzoate (eukaryotic) 

homocysteine and cysteine interconversion 

L-lysine biosynthesis IV 

superpathway of chorismate metabolism 

ubiquinol-6 bypass biosynthesis 

leucine biosynthesis 

When comparing the most significant [rnq-] relative abundances to the most significant 
[RNQ+] relative abundance, via BioCyc’s specific S. cerevisiae cellular overview. 

 

5.4.4. Data combination and overlay onto implicated pathways, via BioCycs pathway 
collage, reveals loss of function effects 
The most significant perturb pathways provided by Table 5.3. was cross correlated with the 

information from chapter 4, to enable the ‘removal’ of those pathways linked to loss of 

function. Data from chapter 4 was combined with [RNQ+] data and any pathways implicated, 

or those pathways linked to pathways which had been implicated were overlaid with this 

information. Examination of Figure 5.13. and 5.14 shows that a consistent and similar 

response can be seen in Δrnq1 and [RNQ+] samples, validating the initial interpretation of 

these pathway hits as being as a result of the loss of function of the Rnq1 protein. However, 

the response seen within the ubiquinol pathways (shown in Figure 5.13) is not as strongly 

defined as implied within the discussion in chapter 4 indicating that there are other factors 

involved that are not yet known.  
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5.4.5. Data combination and overlay onto implicated pathways, via BioCycs pathway 
collage, reveals generalised stress effects  
Cross correlation of the [rnq-] relative abundances to the most significant [RNQ+] relative 

abundances from section 5.3 confirmed that a generalized stress response can be seen in 

both [rnq-] with mild-oxidative stress samples and [RNQ+] samples. Both conditions were 

found to give comparable data with the unaffected [rnq-] samples. The perturbed metabolites 

identified as a result of a generalized stress response include the amino acid tryptophan and 

many of the intermediates within its biosynthetic pathway (Figure 5.14.). Closer inspection 

of Figure 5.14 reveals that tyrosine biosynthesis and tyrosine degradation show common 

features in [rnq-] and [rnq-] with mild oxidative stress and only appear to be (generally) 

downregulated in our [RNQ+] samples. However, given the relationship of these pathways 

to pathways known to be implicated by stress, this result would require further validation.  

  

5.4.6. Data combination and overlay onto implicated pathways, via BioCycs pathway 
collage, reveals loss of function effects  
Three of the pathways, namely homocysteine and cysteine interconversion, L-lysine 

biosynthesis and leucine biosynthesis, shown on Table 5.3 were not present as hits or 

strongly related to hits within those pathways that had previously been implicated by either 

loss of Rnq1 function or stress response.  These pathways were subsequently overlaid with 

data from all groups to ensure all potential hits were included. Figure 5.15 reveals 

perturbations within the leucine biosynthesis pathway and that fluctuations within this 

pathway could be attributed to both loss of Rnq1 function and stress response.  A similar 

situation is also apparent within the L-lysine biosynthesis pathway. How these perturbations 

have manifest is not clear, although a possible explanation could be that there is further 

induction of additional pathways under stress conditions as a result of a knockout strain like 

Δrnq1.  

 

The perturbations seen within the homocysteine and cysteine interconversion pathways are 

mixed, showing up and down regulation in a disordered pattern and irrespective of sample 

condition, making it difficult to come to any definitive conclusion.  
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Figure 5.12. Pathway collage of three of the top 10 implicated pathways in the loss of 
function effect (via BioCycs cellular overview) overlaid with Δrnq1, [rnq-] and [RNQ+] 
data. A colour legend is shown in the bottom left-hand corner to signify the direction of the 
change indicated by colour. Dark blue labels at the top of the pathway state the pathway 
name, black writing names individual metabolites, blue arrows depict reactions, coloured 
‘heat blocks’ represent omics data. The first six boxes in any ‘heat block’ belong to Δrnq1 
samples and the middle six boxes belong to [rnq-] samples and the last six boxes to [RNQ+] 
samples. A larger version of this Figure is available in Appendix H. 
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Figure 5.13. Pathway collage of seven of the top 10 implicated pathways in the loss of function effect (via BioCycs cellular 
overview) overlaid with Δrnq1, [rnq-] and [RNQ+] data. A colour legend is shown in the bottom right-hand corner to signify the direction 
of the change indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black writing names individual 
metabolites, blue arrows depict reactions, coloured ‘heat blocks’ represent omics data. The first six boxes in any ‘heat block’ belong to 
Δrnq1 samples, the middle six boxes belong to [rnq-] samples and the last six boxes to [RNQ+] samples. A larger version of this Figure is 
available in Appendix H. 
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Figure 5.14. Pathway collage of four of the top 10 implicated pathways in general 
stress response (via BioCycs cellular overview) overlaid with [rnq-], [RNQ+], [rnq-] 
with mild oxidative stress data. A colour legend is shown in the bottom left-hand corner to 
signify the direction of the change indicated by colour. Dark blue labels at the top of the 
pathway state the pathway name, black writing names individual metabolites, blue arrows 
depict reactions, coloured ‘heat blocks’ represent omics data. The first six boxes in any ‘heat 
block’ belong to [rnq-] samples, the middle six boxes belong to [RNQ+] samples and the last 
six boxes to [rnq-] with mild oxidative stress samples. A larger version of this Figure is 
available in Appendix H. 
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Figure 5.15. Pathway collage of three of the top 20 implicated pathways in metabolic comparisons of [rnq-] and [RNQ+] (via 
BioCycs cellular overview) overlaid on the left with Δrnq1, [rnq-] and [RNQ+] and on the right with [rnq-], [rnq-] with mild oxidative 
stress and [RNQ+] data. A colour legend is shown in the top middle to signify the direction of the change indicated by colour. Dark blue 
labels at the top of the pathway state the pathway name, black writing names individual metabolites, blue arrows depict reactions, coloured 
‘heat blocks’ represent omics data. The first six boxes in any ‘heat block’ left of the page belong to Δrnq1 samples and the middle six boxes 
belong to [rnq-] samples and the last six boxes to [RNQ+] samples. The first six boxes in any ‘heat block’ right of the page belong to [rnq-] 
samples and the middle six boxes belong to [rnq-] with mild oxidative stress samples and the last six boxes to [RNQ+] samples. A larger 
version of this Figure is available in Appendix H. 
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5.4.7. Further pathway and metabolite investigations reveal another potential prion 
specific perturbation  
The most perturbed pathways identified by BioCyc were hits to sphingolipid metabolism 

(Table 5.3). However, although the DPPS scores for these hits were high, one of the 

metabolites, sphinganine, dominated this result. It was suspected that sphinganine may be 

falsely identified and that this single metabolite should be removed from the data set owing 

to the large effect it appeared to be having on pathway hits. Once sphinganine was removed, 

analysis was repeated.  With the exception of the first two hits, the pathways most perturbed 

in this new analysis remained the same. After attributing pathway hits to either loss of Rnq1 

function or generalized stress response, it became clear that specific metabolites and 

pathway perturbations linked to prion formation or influence could not be clearly identified. 

As a consequence, these removed sphingolipid metabolism hits were investigated further, 

requiring further experimentation for validation.  

 

Attempts to combine all of the sample data, similar to that shown in Figure 5.15 were made; 

however, Δrnq1 and [rnq-] with mild-oxidative stress samples lacked data, with only one 

metabolite hit within the sphingolipid pathways. Figure 5.17 shows the pathway overlay with 

data from [rnq-] and [RNQ+] samples, showing a clear downregulation in the [RNQ+] 

samples.  Interestingly the relationship between the sphingolipid pathways and protein 

misfolding is well documented (Varma et al. 2018; Wilkins and Trushina, 2018; Laurens et 

al. 2015; Han et al. 2011; Oresic et al. 2011). These results shown here demonstrate the 

predicted directionality due to this metabolic perturbation. This type of clear molecular 

mechanistic similarity between yeast prions and mammalian prions/amyloids has not been 

documented, despite the common inference that they are indeed present. Data for only one 

metabolite within these pathways was present in all biological class and comparisons of this 

in Figure 5.18 show that only [RNQ+] samples appear to have significant and change in 

sphinganine reading.  
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Figure 5.16. Pathway collage of sphingolipid recycling and degradation in yeast (via 
BioCycs cellular overview) with standardised omics [rnq-] and [RNQ+] data of 
individual metabolites overlaid. A colour legend is shown in the bottom left-hand corner 
to signify the direction of the change indicated by colour. Dark blue labels at the top of the 
pathway state the pathway name, black writing names individual metabolites, blue arrows 
depict reactions, coloured ‘heat blocks’ represent omics data. The first six boxes in any ‘heat 
block’ belong to [rnq-] samples and the last six boxes belong to [RNQ+] samples. A larger 
version of this Figure is available in Appendix H. 
 
 
 
 

 
 

 
Figure 5.17. Box and whisker plot of sphinganine relative abundances with [rnq-], 
[RNQ+], [rnq-] with mild oxidative stress and Δrnq1 data. Darker lines in the body of the 
box depict the mean line and error bars show quartile ranges from the mean. Legend shown 
below details the sample group reading represented by each colour. 
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5.5. Results – Comparison of the metabolomics perturbations observed 
between [rnq-] with mild-oxidative stress and [RNQ+] with mild-oxidative 
stress  
 

5.5.1. PCA and OPLS-DA modelling reveals no significant difference between [rnq-] 
with mild oxidative stress vs [RNQ+] with mild oxidative stress 
Rather unexpectedly, [RNQ+] with a mild-oxidative stress appears much more closely 

‘related’ to [rnq-] oxidative stress than to [RNQ+] samples. Modelling these sample groups 

would permit the identification of any significant differences in metabolic response due to 

the presence of absence of the [RNQ+] prion under mild-oxidative stress.  

 

Figure 5.18. (A) shows that PIM PCA modelling positioned just one of the [rnq-] mild oxidative 

stress samples alongside the [RNQ+] mild oxidative stress samples rather than grouped with 

the other [rnq-] oxidative stress samples. Given the propensity for [rnq-] cells under stress to 

randomly acquire [RNQ+] prion, it was considered that this sample had acquired [RNQ+] 

status, however this was not seen in Figure 5.18. (C) NIM PCA models. This sample was 

considered acceptable and the relative clustering of all other samples into groups was 

considered encouraging. However, the PIM PCA model plotted reasonable scores with R2 = 

0.691, Q2 = 0.339, whereas the NIM PCA model was relatively acceptable with R2 = 0.494, 

but poor Q2 = -0.145, indicating that this model was not predictive.  

 

Assessment of CV-ANOVA scores were used to evaluate the significance of these 

differences given the poor PCA models. Strong OPLS-DAs models were achieved, with the 

PIM model giving an R2(X) = 0.624, R2(Y) = 0.979, Q2 = 0.695 and CV-ANOVA p-value = 

0.126, and the NIM model reporting an R2(X) = 0.496, R2(Y) = 0.970, Q2 = 0.665 and a CV-

ANOVA p-value = 0.160 (shown in Figure 5.18. B and D). CV-ANOVA values reveal that 

although some clustering was seen in the PIM PCA model, no significant difference in 

metabolic profile exists between the stressed groups irrespective of prion status.  As a result 

of this, no further pathway analysis was conducted on this data set. 
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A) 

 
C) 

 
 

B) 

 
D) 

 

Figure 5.18. PCA (A and C) and OPLS-DA (B and D) models of XCMS/MZmine2 comparative data of [rnq-] with a mild oxidative 
stress and [rnq-] with a mild oxidative stress. Overview of the data shows no outlying samples within the 95% confidence range 
within each model. Blue triangles show [rnq-] with a mild H2O2 stress and red triangles show [RNQ+] with a mild H2O2 stress. (A) 
Comparative PIM data PCA scores with R2 = 0.691 Q2 = 0.339 values. (B) Comparative PIM data OPLS-DA scores with R2(X) = 0.624, 
R2(Y) = 0.979, Q2 = 0.695 and CV-ANOVA p-value = 0.126. (C) Comparative NIM data PCA scores with R2 = 0.494, Q2 = -0.145 
values. (D) Comparative NIM data OPLS-DA scores with R2(X) = 0.496, R2(Y) = 0.970, Q2 = 0.665 and a CV-ANOVA p-value = 0.160. 
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5.6. Discussion  
 
The experiments described in this chapter attempt to further elucidate the effect that 

presence of the [RNQ+] prion had on the underlying cellular functioning of yeast cells. 

However, it was clear that certain factors had the potential to confuse results, namely loss 

of function metabolic effects and generalised stress response. Therefore, in order to allow 

for discrimination between these results, an appropriate stress control was conducted 

(section 5.3.) and data from chapter four was utilised where appropriate. Loss of Rnq1 

function and a generalised stress response were found to have had a significant impact on 

the pathways perturbed between [rnq-] cells and [RNQ+] cells. Whereas pathways involved 

in sphingolipid metabolism (specifically a downregulation in sphingolipid recycling and 

degradation) appear to be perturbed solely due to prion presence.  

 

5.6.1. Overlapping effects of loss of function and generalised stress response, their 
implications and potential for future research 
Cross comparison with data from chapter four revealed that approximately 70% of the 

pathways perturbed when comparing [rnq-] cells to [RNQ+] cells are as a direct result of the 

loss of function of the Rnq1 protein. This may be the case for any of the yeast prions and 

these results substantiate the findings of chapter four. Knowledge of loss of function of 

effects within the prion field have been used to develop easy to use assays capable of 

reporting the strength of the strain and the roles of distinct sections of the protein. Such 

knowledge may be extremely valuable in the development of an assay or knockout strain 

for Rnq1 protein similar to those which exist for [PSI+] and [URE3].  

 

Examining the metabolic differences between [rnq-] cells to [RNQ+] cells, such an assay may 

be possible via a number of different experimental approaches. Firstly, in section 4.5. the 

possibility of using azole compounds to distinguish between [rnq-] cells and Δrnq1 based on 

their changeable sterol composition due to upstream changes with the ubiquinol pathways 

was discussed. As these same changes have been observed in [RNQ+] cells (whether due 

to loss of function or not) these sterol changes and hence variable azole sensitivity could be 

used to select for [RNQ+] variants. With [rnq-] cells having a higher concentration of 

ergosterols, the target for the azoles (Rodrigues, 2018), their tolerance of azoles should be 

low. Whereas in [RNQ+] cells, having a lower concentration of the ergosterol target, their 

tolerance for the azoles should be much higher. This potential variability in azole sensitivity 

could result in ‘doses’ being established, which would enable the separation of prion and 
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non-prion strains.  Secondly, the changes in tryptophan and tyrosine biosynthesis may be 

of interest, as both were downregulated in [RNQ+] cells. Colorimetric and fluorometric 

assays are available for both amino acids (Sigma) and establishing the content of either or 

both of these amino acids may be a reliable way to distinguish between [RNQ+] cells and 

[rnq-] cells. However, this would rely on sufficient concentrations of these amino acids for 

the assays to be effective.  

 

Amino acid restriction in S. cerevisiae is beneficial to the overall health of cells, promoting 

longevity (Hu et al. 2014; Wu et al. 2013; Eisenberg et al. 2012). The results of this work 

show a downregulation in histidine, leucine, and choline in [RNQ+] cells, possibly instigating 

the types of dietary restrictions known to have positive effects on longevity. Wang et al. 

(2017) found that the presence of the [PSI+] prion prolonged the chronological lifespan of S. 

cerevisiae. The downregulation of amino acid pathways shown here in [RNQ+] cells appears 

to correlate well with these findings. Hence further investigation into the comparative 

chronological lifespan of [rnq-] and [RNQ+] cells is recommended.  

 

The shared pathways between the mild-oxidative stressed condition and [RNQ+] samples, 

suggests that the role prions play within yeast cells is not as benign as previously thought. 

Perhaps evidence confirming this observation can be found within the pathways that are not 

implicated within [RNQ+] samples. Comparisons of Table 5.2. (stress condition pathways) 

and Table 5.3. (prion presence pathways) reveal that proline and arginine degradation are 

unique to the stress condition. This may point to potential biomarkers for distinguishing 

between damage done as a result of oxidative stress and damage as a result of misfolded 

protein presence, although further research is needed to validate this.  

 

5.6.2. [RNQ+] specific perturbations, limitations, and further research  
The main perturbation that occurred due to the [RNQ+] prion appeared to be the down 

regulation of sphingolipid recycling and degradation.  

 

The sphingolipids, alongside the phospholipids and the sterols, are synthesised mainly 

within the endoplasmic reticulum (ER) (Hebert and Molinari, 2007) an organelle that plays a 

key role in the promotion of the correct assembly and folding of newly synthesised proteins. 

Due to this essential role, monitoring of the ER is crucial to cellular success and when 

subject to stresses (such as the accumulation of misfolded proteins and perturbations in lipid 
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synthesis) the ER is acted heavily upon by the unfolded protein response or UPR, which 

aims to assist protein folding, remove misfolded proteins, and promote lipid synthesis 

(Travers et al.  2000). ER stresses are known to initiate a “diffusion barrier response”, which 

prevents damaged proteins and metabolites from entering daughter cells during budding 

(Clay et al.  2014). Experiments on Hsp70 revealed that this barrier prevents misfolded 

proteins from entering daughter cells and confirm that the sphingolipids play a key and vital 

role in this compartmentalization and barrier formation (Clay et al. 2014). Posited to form the 

bottom part of a fatty molecules layer, the sphingolipids, are thought to act as a skeleton to 

allow this diffusion barrier to form (Clay et al.  2014). Given that the mechanism which prions 

use to proliferate from mother to daughter cells is now understood to involve ‘an unknown’ 

mechanism of partitioning (Ness et al. 2017). It seems reasonable, based on the 

observations of changes in sphingolipid degradation, to suggest that these diffusion barrier 

forming, sphingolipids may have a critical role within this partitioning between mother to 

daughter cells, although further investigation is needed.   

 

Our results show that when prions are present, a downregulation event occurs within the 

degradation and recycling of the sphingolipids, not a downregulation of sphingolipid 

production itself. This could be due to the identification of common metabolites within the 

degradation pathways or that metabolites within the synthesis pathways were not measured 

and identified, either due to either their lipid nature or chance. The result being that the 

highlighted pathway for the known or identified metabolites would always revert to the 

smallest pathway known to contain them, hence the degradation pathways. Alternatively, it 

is possible that degradation of the sphingolipids is lower in [RNQ+] samples due to the cells 

simply using all the sphingolipid resources available to them to deal with the number of 

misfolded proteins. Indeed, within amyloid biology it is well documented that microdomains 

are formed by the sphingolipids and cholesterols which act as sites for the binding and 

oligomerisation of amyloidogenic proteins (Fantini and Yahi, 2010).  

 

Within cells carrying the mammalian prion (PrPSC), sphingolipid rafts present in cell plasma 

membranes, are known to decrease in concentration (Naslavsky et al. 1999). It is proposed 

that sphingolipid rafts are used by cells to aid in the formation of the PrPSC from its normal 

conformer PrPC (Naslavsky et al. 1999). This observation by Naslavsky et al. (1999) helps 

to support the observations seen in this study, where sphingolipid recycling and degradation 

are downregulated in the presence of [RNQ+], it is reasoned that this downregulation may 

be as a result of continued use or containment of sphingolipid rafts within the process of 
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misfolding and subsequent aggregation of [RNQ+]. Despite the common inference that 

connects the mechanistic actions of mammalian prions/amyloids with the yeast prions, this 

has not previously been observed in yeast and provides new evidence of homology between 

yeast prions and mammalian prions/amyloids. The results from this research may further 

encourage the use of this easy to use and readily available model organism within a wider 

range of neurodegeneration studies, hence rapidly increasing our fundamental 

understanding of these mechanisms.  

 

This research has established that metabolic differences exist between [rnq-] and [RNQ+] 

cells indicating that prion presence is not without metabolic consequence. Similar 

experiments using the 74D-strain variants of [RNQ+] (which include low, medium, high, and 

very high strength [RNQ+]) may aid in the discovery of biomarkers for the quantification of 

the strength of prion variants. As there are many other known yeast prions and several 

model organisms commonly in use for amyloid studies, such as Caenorhabditis elegans, 

Drosophila melanogaster and Danio rerio (Carlo, 2012), this work could be extended to 

examine if homologous metabolic perturbations are seen for other prion proteins, potentially 

identifying a specific set of metabolic pathways unique for prion presence. As perturbations 

in phospholipids and sterols pathways have been identified here the use of revised 

methodology such as GC-MS for sterol capture and lipidomics is recommended to obtain 

better quality information. 

 

In addition to the prion-specific downregulation observed within sphingolipid degradation 

and recycling, we also observed a prion-specific down regulation in tyrosine metabolism. 

Hilaly et al. (2016) in their work on PD (Parkinson’s Disease) found in vitro that tyrosine 

residues in patients with PD are sequestered into covalently crosslinked homodimers that 

appear to play a key role in the formation of seed and oligomeric species. Without 

confirmation of the presence of such a dimer in yeast, it is possible to only speculate that 

such an event may be occurring within yeast prions too and so enabling the formation of the 

oligomeric stages that precede amyloid formation. Further research to investigate if the 

downregulation of tyrosine in [RNQ+] cells is due to similar crosslinked homodimer being 

formed using tyrosine residues would be advisable. This would provide further evidence of 

the mechanistic links of oligomeric formation between yeast prions and amyloid formation. 
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5.6.3. Stress induction in [rnq-] and [RNQ+] cells requires further research and 
highlights the need for prion assays  
The lack of an observable difference between stressed conditions regardless of their prion 

status, is a puzzling and unanticipated result, one which may be inaccurate. This contradicts 

the literature regarding the effect of prion formation on cells and their capacity under stress. 

Where have the loss of function effects of the prion gone? Does Rnq1 not lose its function 

entirely? A plausible explanation for such an observation is that the increase in oxidative 

stress to cells although mild had a direct influence on the number of Hsp and UPR within 

the cell. These response mechanisms may have been able to cope with the misfolded forms 

of proteins at a rate sufficient to reduce the templating action to daughter cells and 

essentially act as a curing agent. If this is the case though, it begs the question is mild 

oxidative stress a curing agent?  This seems incredibly unlikely, due to the extensive 

experimentation done by Doronina et al. (2015) which repeatedly evidenced an increase in 

the devo formation of [PSI+] due to oxidative stress, however perhaps the influence of this 

condition varies depending on the prion studied (Grant, 2015).  

 

Upon reassessment of the PCAs in Figure 5.18. the PIM PCA does show significant levels 

of separation, although the NIM one does not. The decision to not analyse this data any 

further based on the p-values of OPLSDAs CV ANOVAS may have been an inaccurate one 

given the PCA separation and the contradictory findings here. It would therefore be 

preferable to repeat this analysis, especially considering a new feature of Metaboanalyst 

which allows for the combination of PIM and NIM data.  

 

The decision not to assay for prion formation during this experiment was due to confidence 

in the prion status of the cell lines used with their status confirmed of within other work 

alongside or prior to this research (data not shown). However, it would have been advisable 

to assay for prion formation in all the biological classes used within this experiment, given 

the reactive nature of prion formation with stress. Common assays which had been 

conducted on these strains in other experimentation include western blotting and the 

addition of GFP protein tags with subsequent visualisation of foci.  

 

Kryndushkin et al. (2003) procedure for the western blotting of prions requires the growth of 

cells in broth until an OD600 of 0.6 is reached. These cells are then lysed using lysis buffer, 

glass beads and centrifugation. Protein concentration of lysates using a BSE Bradford assay 

is established to normalise cell concentrations. Lysates are then run on agarose gels, SDD-
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AGE, as opposed to the common polyacrylamide SDS-PAGE. Proteins from these agarose 

gels, which can separate large aggregates from smaller ones, are then transferred to PDVF 

or nitrocellulose membrane using an electric current. The membrane now containing the 

proteins, is first probed with a weak milk solution to ‘fill the gaps’ and then between washes 

a primary antibody specific to the Rnq1 protein and a secondary antibody (bound to horse 

radish peroxidase (HRP)) capable of binding to the primary antibody are added. The 

membrane is then imaged via enhanced chemiluminescence (ECL) of HRP, thus allowing 

for a semi quantitative detection of the Rnq1 protein and its aggregates. The size of the 

bands on the image are used to establish the presence of aggregates and hence the prion 

status.  

 

Alternatively, cells may be transformed with a plasmid containing RNQ1-GFP insert, using 

the transformation protocol described in section 2.4.3. Fluorescence microscopy of 

individual transformed cells can be imaged for the presence of diffuse GFP, as would be 

expected of [prion-] variants, and distinct foci, as would be expected of [prion+] variants 

(Vitrenko et al. 2007). Another possible option would be to use the common amyloid 

diagnostic dye thioflavin-T, which binds to amyloid aggregates and is detectable via 

fluorescence (excitation 450 nm, emission 485 nm) (Douglas et al. 2008).  

 

Overall, our results supported by the current literature indicate that [RNQ+] prions have an 

effect and/or are interacting with the sphingolipid pathways. Confirmation of the findings of 

our loss of function experimentation in chapter four have been acquired and new metabolic 

information regarding both general stress response and specific stress responses of 

oxidative stress on cells both with and without prions has been obtained.  
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Chapter Six - The metabolic perturbations associated with toxicity on 
overexpression of Rnq1 protein  
 
 

The experiments within this chapter attempt to identify the metabolic pathways that are 

perturbed by induced toxicity caused by the overexpression of the RNQ1 gene in a [RNQ+] 

background. This was achieved by comparing four biological classes: [rnq-], [RNQ+], [rnq-] 

with overexpression of Rnq1 and [RNQ+] with overexpression of Rnq1. The pYES2 plasmid 

containing the RNQ1 gene under the control of the strong, inducible GAL promoter (Table 

2.6) was transformed via methods detailed in section 2.4. into [rnq-] and [RNQ+] prior to 

experimentation and maintained using synthetic complete -ura media (see methods section 

2.2.1.). Galactose induction of the RNQ1 gene was initiated by a switch to synthetic 

complete - ura media containing galactose as a carbon source when cultures had reached 

an OD600 of 0.5. All biological classes were then allowed to grow on galactose media for up 

to four hours, with a sampling of cells being removed at one-hour intervals. Metabolite 

extraction, UHPLC-MS analysis, and data analysis was conducted as detailed in chapter 

two.  

 
6.1. Introduction  
 

A long-standing question within the amyloid field has been the role that amyloids play within 

disease pathology. It has been well established that amyloid formation can result in 

degradation of affected tissues which quickly led to the conclusion that the assembly of 

amyloid fibres is a pathological process (Jackson and Hewitt, 2017; Chiti and Dobson, 

2006). However, throughout the preceding decade of study, many functional amyloids have 

been discovered that play host to a large range of physiological process (Jackson and 

Hewitt, 2017; Audas et al. 2016). As such, these discoveries have cast doubt over 

conclusions that had previously been made regarding the toxicity of amyloid formation.  

 

The formation of amyloid fibrils is as a result of a cascading event via multiple oligomeric 

species (detailed in section 1.1.5.) and hence identifying the culprits of toxicity and 

elucidating their actions has remained a challenging priority (Sipe et al. 2016). These 

oligomers are often transient in nature, with multiple different forms present at any one time 

and despite containing the same peptide coding, these proteins are capable of producing 

both toxic and non-toxic effects (Campioni et al.  2010). What is clear about the mechanisms 
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of toxicity is that (the permeable) lipid membranes appear to be a major target for these 

prefibrillar oligomers (Bucciantini et al.  2004).  

 

Given the relationships with the major lipid metabolites (see section 4.5. and 5.6.), it was 

possible that one may be able to further explore these toxic effects within yeast via the 

[RNQ+] prion. The major problem being that, as explained in section 5.1., the yeast prions 

are not thought to present a disease phenotype per se, and so toxic, cell-death inducing 

effects were not available to monitor. However, Douglas et al. (2008) found that despite 

being considered generally benign, the moderate (approximately 5-10 fold) overexpression 

of the Rnq1 protein in cells which carried the [RNQ+] prion was moderately toxic to cells.  

 

Alongside this Douglas et al. (2008) found that the same effects could not be seen in deletant 

strains or in cells with the non-prion conformation of Rnq1, [rnq-]. These findings were 

replicated in a number of different strains that consistently exhibited a number of extreme 

growth defects, with overexpression in a [RNQ+] background resulting in approximately 25% 

cell death within four hours. Most intriguingly, Treusch and Lindquist’s (2012) 

experimentation detailed how inherent toxicity of this overexpression is not as a result of 

generalised proteomic stress but is instead part of a highly specific and orchestrated mitotic 

arrest.  

 

Further experimentation involving the molecular chaperones known to be involved with the 

conversion of soluble Rnq1 into amyloid fibrils, confirmed that upregulation of these 

chaperones eliminated the observed toxicity in [RNQ+] cells with Rnq1 protein 

overexpression (Sondheimer et al. 2001). This provided evidence that insufficient chaperone 

conversion to amyloid allows for the formation of other toxic Rnq1 conformers. Such toxic 

Rnq1 conformers do not form in [RNQ+] cells as molecular chaperones sequester the 

misfolded protein into amyloid aggregates; however, when overexpressed, the molecular 

chaperone system becomes overwhelmed allowing for the formation of these toxic 

conformers (Douglas et al.  2009; Douglas et al.  2008). 

 

Additionally, a similar effect was observed using polyQ-containing proteins, highlighting the 

role of the [RNQ+] prion as a mediator to prion formation (Meriin et al. 2002). However, the 

lack of a mammalian homolog has meant that the details of this relationship have remained 

elusive. It seemed reasonable to ask if the key metabolic disruptions that arise as a result 

of the [RNQ+] prion are conducive to polyQ aggregation and toxicity. Furthermore, are there 
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disruptions to mammalian counterparts that may be induced by an entirely different protein, 

albeit one acting on the same metabolic networks. 

 

Given the complexity surrounding the manifestation of toxicity, it is hoped that by inducing 

this toxic effect of overexpression the detection of key specific metabolic perturbations that 

are intrinsically linked to cell death may be possible. Such information could provide 

information regarding the specific metabolic process that are being disrupted by these 

oligomeric protein species and may identify regions of the metabolome that could act as 

potential targets to eliminate these effects.  

 

In order to conduct these experiments, the Rnq1 protein was overexpressed in [RNQ+] cells. 

Using a kind gift from the Kent Fungal Group, the pYES2 plasmid with GAL promoter, URA3 

selective marker and RNQ1 insert. The GAL promoter is induced by the presence of 

galactose in the media. These growth conditions are significantly different from previous 

experimentation and so metabolic perturbation data obtained previously could not be used 

for comparative purposes.  Thus, to ensure parity, all test strains and experiments were 

grown under identical conditions to control for metabolic changes caused by using galactose 

as a carbon source. The need for such controls within metabolic experimentation is stressed 

via the recent discovery by Alam et al. (2016) whose study found that the detectable 

metabolic disruption attributed to a variety of the commonly used gene deletions in yeast 

was large and widespread across many areas of the metabolome. 
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6.2. Results  
 

6.2.1. Feature detection and normalisation 
Data was placed into the four-time groupings, shown in Table 6.1., as the complexity and 

size of the data files did not allow for an entire single group analysis to be conducted. Cross 

correlation of the m/z values from each time-groupings XCMS and MZmine2 analysis was 

achieved via the methods outlined in section 2.8.4. Reported values from each program 

individually and comparatively are shown in Figure 6.1. (A-D). Overlapping comparative 

features were used to build statistical models via SIMCA and perform pathway analysis via 

Metaboanalyst and BioCyc.

 

A)  

 

C) 

 

 
B)   
 

 
 
D) 
 

 

 
Figure 6.1. Venn diagrams showing the total number of features reported by MZmine2 
and the total number of features reported by XCMS when considering [rnq-], [rnq-] 
with overexpression of Rnq1, [RNQ+] and [RNQ+] with overexpression of Rnq1 data 
from four separate time points. The overlapping section in the centre of the two depicts 
the total number of m/z values reported by both analysis programmes in bold A) Venn 
diagram of T1 m/z values of MZmine2 and XCMS A) Venn diagram of T2 m/z values of 
MZmine2 and XCMS A) Venn diagram of T3 m/z values of MZmine2 and XCMS A) Venn 
diagram of T4 m/z values of MZmine2 and XCMS  
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6.2.2. PCA and PLSDA group modelling of XCMS/MZmine2 comparative 
metabolomic data in SIMCA highlights time as strongest metabolic divider  
All 96 samples were used to build initial PCA and PLS-DA models, consisting of 6 samples 

from each of the sample groups: [rnq-], [rnq-] with overexpression of Rnq1, [RNQ+] and 

[RNQ+] with overexpression of Rnq1. This would establish the important factors and 

relationships present within the dataset as a whole.  

 

These initial models were strong, with good confidence levels. The PCA reported R2 and Q2 

values of 0.718 and 0.509 respectively, and the PLS-DA reported R2(X) = 0.659, R2(Y) = 

0.939, Q2 = 0.866 and CV-ANOVA of 0. Upon examination of the data, it was apparent that 

the strongest metabolic differences were founded on a similarity in time point, with T1 

samples clustering together irrespective of the group the sample belonged to. The same 

was observed for data from samples for time points T2, T3 and T4 (Figure 6.2). Some 

differentiation was seen between samples within their time group clusters but this was only 

visible in PLS-DAs and not sufficiently distinct to establish the relationship between the 

sample groups with respect to their prion or overexpression status. There appeared to be a 

relationship between samples from the same collection time, and to investigate this further 

collection times were modelled independently. To simplify this analysis, symbols were 

assigned to each sample group as shown in Table 6.2. 

 
Table 6.1. Symbol assignment for sample groups within chapter six.  
 

Sample group  Assigned symbol  
[rnq-] W 
[rnq-] with overexpression of Rnq1 X 
[RNQ+] Y 
[RNQ+] with overexpression of Rnq1 Z 

 
Describes experimental group conditions and assigns symbols to those groups for future 
reference.   

 

6.2.3. PCA and PLSDA time separated group modelling of XCMS/MZmine2 
comparative metabolomic data in SIMCA differentiates between groups  
Visual assessment of the models (Figure 6.3.), confirm the prediction that as time 

progresses so do the number of metabolic differences between groups, accentuating their 

group separation. T1’s PCA gives a good R2 = 0.670 value but the Q2 = 0.386 is sub-optimal 

for biological interpretation and shows some moderate group separation. The forced 
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separation of the PLSDA gives a strong model (R2(X) = 0.407, R2(Y) = 0.807, Q2 = 0.508) 

and a CV-ANOVA p-value = 2.71 x 10-2 indicating that even at this early timepoint, significant 

differences are seen between groups. Explanations for these differences can be attributed 

to these groupings being different; some containing plasmids, some containing prions.  

 

Continuing to T2, the PCA some moderate, albeit slightly more convincing (than T1) 

clustering occurs, with group X and Z plasmid-containing samples appearing closely linked 

and W and Y groups appearing within their own clusters. The model itself suffers similar 

issues as T1 with respect to its scores, R2 = 0.668, Q2 = 0.338. T2’s PLSDA with its R2(X) = 

0.636, R2(Y) = 0.964, Q2 = 0.863 and a CV-ANOVA p-value = 3.23 x 10-6 showing that 

significant differences between groups are present at only two hours after plasmid induction. 

These may suggest differences between [rnq-] and [RNQ+], but the increase in the clustering 

and significance suggests that other factors may be present. 

 

T2 appeared to possess the largest pooling of samples due to the presence of the plasmid.  

At T3, the presence of the prion appears to have become dominant with regard to the 

characteristic causing clustering, with [rnq-] and [RNQ+] appearing closely grouped to each 

other. The T3 PCA score is stronger but the predictability of the model is still less than 

desired with R2 = 0.832, Q2 = 0.440. T3 PLSDA gave much stronger score plots with R2(X) 

= 0.691, R2(Y) = 0.979, Q2 = 0.830 and a CV-ANOVA p-value = 5.64 x 10-5. By T4, PCA 

score plots indicate biological relevance with R2 = 0.790, Q2 = 0.528. Interestingly, this model 

has group W appearing alone with a closer clustering between the remaining groups than 

had previously been observed. The T4 PLSDA values indicate a strong significant difference 

between groups, with clustering of individual groups now clearly observable, R2(Y) = 0.967, 

Q2 = 0.907 and a CV-ANOVA p-value = 1.77 x 10-9.  

 

Group modelling and observation confirmed that each of the sample groups were distinct 

from each other; evidence that each of the conditions had been maintained successfully. 

Clustering behaviour based on time intervals has started to reveal the cellular conditions 

that most influence the metabolome; however, in order to investigate this further, detailed 

two-group comparisons will be needed to extract the significant metabolic changes between 

sample groups.  
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A) 
 

 

 
B) 
 

 
 
 
 
Figure 6.2. PCA (A) and PLS-DA (B) models of XCMS/MZmine2 comparative data of [rnq-] (W), [rnq-] with overexpression of Rnq1 
(X), [RNQ+] (Y) and [RNQ+] with overexpression of Rnq1 (Z) data from four separate time points.  Overview of the data shows no 
more than two outlying sample within the 95% confidence range within each model. The PCA model, with R2 = 0.820 Q2 = 0.707 values, is 
shown on the left and the PLS DA model, with R2(X) = 0.757, R2(Y) = 0.715, Q2 = 0.540 and a CV-ANOVA p-value = 0 x 10-7, shown on the 
right. Circles represent T1, squares T2, triangles T3 and diamonds T4, green shows W, yellow shows X, red show Y and blue shows Z.  
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Figure 6.3. PCA (A,C,E and G) and PLS-DA (B,D,F and H) models of XCMS/MZmine2 
comparative data of [rnq-] (W), [rnq-] with overexpression of Rnq1 (X), [RNQ+] (Y) and 
[RNQ+] with overexpression of Rnq1 (Z) data at individual time points.  Overview of the 
data shows no more than one outlying sample within the 95% confidence range within each 
model. On the left are PCA model in order of time, with T1 appearing at the top all the way 
to T4. PCA scores for models A, C, E and G were R2 = 0.670, Q2 = 0.386, R2 = 0.668, Q2 = 
0.338, R2 = 0.832, Q2 = 0.440 and R2 = 0.790, Q2 = 0.528 respectively. On the right are PLS 
DA models in order of time, with T1 appearing at the top (B) all the way to down T4 (H). PLS 
DA scores for models B, D, F and H were R2(X) = 0.407, R2(Y) = 0.807, Q2 = 0.508 and a 
CV-ANOVA p-value = 2.71 x 10-2, R2(X) = 0.636, R2(Y) = 0.964, Q2 = 0.863 and a CV-ANOVA 
p-value = 3.23 x 10-6, R2(X) = 0.691, R2(Y) = 0.979, Q2 = 0.830 and a CV-ANOVA p-value = 
5.64 x 10-5 and R2(X) = 0.598, R2(Y) = 0.967, Q2 = 0.907 and a CV-ANOVA p-value = 1.77 
x 10-9 respectively. Blue circles show W, blue triangles show X, red circles show Y and red 
triangles show Z.   

B) 

D) 

F) 

H) 

A) 

C) 

E) 

G) 
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6.3. Results - [rnq-] (W) and [rnq-] with overexpression of Rnq1 (X) 
comparison  
 

6.3.1. PCA and OPLSDA modelling of comparative metabolomic data in SIMCA 
differentiates between sample group W and sample group X  
To rule out the metabolic effects presented as a result of plasmid presence, sample groups 

W and X were subject to PCA and OPLSDA comparison. This detailed examination of 

plasmid influence would inform our interpretation of the metabolic influencer of toxicity 

without the side-effects of plasmid presence, allowing the identification of any metabolic 

variation caused as a result of induced toxicity.  

 

Initially groups W and X do not separate well in the T1 PCA, the model itself is gave a good 

R2 = 0.664 value but poor Q2 = 0.288 (Figure 6.4). The forced separation of  the T1 OPLSDA 

suggests that there is a significance to this divide as determined by statistically significant 

CV-ANOVA p-value = 2.79 x 10-1 with good model scores of R2(X) = 0.455, R2(Y) = 0.883, 

Q2 = 0.475. T2 to T4 PCAs show an increasing amount of significance in group separation 

and clustering. The T2 PCA model is comparable to the T1, with R2 = 0.549, Q2 = 0.193. 

However, the strength of the models for T3 and T4 are much improved, with their R2 = 0.714, 

Q2 = 0.544 and R2 = 0.756, Q2 = 0.521 respectively. OPLSDAs for T2, T3 and T4 reaffirm 

these findings with their respective model scores of R2(X) = 0.621, R2(Y) = 0.993, Q2 = 0.863 

and a CV-ANOVA p-value = 3.21 x 10-2, R2(X) = 0.776, R2(Y) = 0.984, Q2 = 0.901 and a CV-

ANOVA p-value = 5.68 x 10-3 and R2(X) = 0.617, R2(Y) = 0.990, Q2 = 0.969 and a CV-ANOVA 

p-value = 2.36 x 10-5.  

 

From the similarity in the model scores and subsequent observations to the group models, 

it was decided to remove T1 and T2 from any further analysis owing to the lack of strength 

in PCA model scores and the lack of significant CV-ANOVA p-values. The changes caused 

by carbon-source change as well as the overexpression of Rnq1 from the GAL1 promoter 

from time point 0 take would time to influence the metabolome and this is apparent in the 

data (Hovland et al. 1989).  
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Figure 6.4. PCA (A,C,E and G) and OPLS-DA (B,D,F and H) models of XCMS/MZmine2 
comparative data of [rnq-] (W) and [rnq-] with overexpression of Rnq1 (X) data at 
individual time points.  Overview of the data shows no more than one outlying sample 
within the 95% confidence range within each model. On the left are PCA models in order of 
time, with T1 appearing at the top all the way to T4. PCA scores for models A, C, E and G 
were R2 = 0.664, Q2 = 0.288, R2 = 0.549, Q2 = 0.193, R2 = 0.714, Q2 = 0.544 and R2 = 0.756, 
Q2 = 0.521 respectively. On the right are OPLS DA models in order of time, with T1 appearing 
at the top (B) all the way to T4 (H). OPLS DA scores for models B, D, F and H were R2(X) = 
0.455, R2(Y) = 0.883, Q2 = 0.475 and a CV-ANOVA p-value = 2.79 x 10-1, R2(X) = 0.621, 
R2(Y) = 0.993, Q2 = 0.863 and a CV-ANOVA p-value = 3.21 x 10-2, R2(X) = 0.776, R2(Y) = 
0.984, Q2 = 0.901 and a CV-ANOVA p-value = 5.68 x 10-3 and R2(X) = 0.617, R2(Y) = 0.990, 
Q2 = 0.969 and a CV-ANOVA p-value = 2.36 x 10-5 respectively. Blue circles depict sample 
group W and blue triangles depict sample group X.  

A) B) 

C) D) 

E) F) 

G) H) 
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6.3.2. Further PCA and OPLSDA modelling of comparative metabolomic data in 
SIMCA addressing the prion formation issue 
Given the nature of prion formation, the presence of overexpression of Rnq1 protein may 

well have induced prion formation. This presents a challenge to control for; overcome by 

using multiple comparisons. Comparing group W with group Y provides lists of pathways 

effected over time by prion presence. Whilst in previous chapters the analyses have 

commonly relied on preceding data to inform on such issues, this is not possible due to the 

change of media that all of the cells have been subjected to. This means that the 

predictability of the metabolic changes based on our previous findings, whilst not entirely 

inaccurate, cannot serve as a guide.  

 

Samples X and Y will also be compared to provide some perspective as to the prion status 

of our group X samples and allow for plasmid effects to be distinguished. If samples from 

group X have not taken on a prion conformation, they will reveal the effects of the plasmid 

via comparison with group W and the effects of the prion and the plasmid when compared 

to group Y. If Rnq1 protein has been sequestered into a prion form, then when compared to 

group Y, the data will only reveal the effects of the plasmid. When the data is compared to 

group W, it will reveal the effects of the prion. It is planned that this cross comparison of 

multiple groups will ascertain the distinct metabolic influencers of the plasmid presence to 

remove these influencers from our toxicity study.  

 

Group W vs Group Y comparisons for T3 and T4 gave strong PCA models, giving R2 = 0.952, 

Q2 = 0.567, R2 = 0.835, Q2 = 0.593 respectively. PCAs showed defined clustering, increasing 

in strength with time, a similar trend is observed in our OPLSDA models with good scores 

and significant CV-ANOVA p-values, R2(X) = 0.821, R2(Y) = 0.999, Q2 = 0.918 and a CV-

ANOVA p-value = 4.60 x 10-2, R2(X) = 0.635, R2(Y) = 0.991, Q2 = 0.966 and a CV-ANOVA 

p-value = 3.12 x 10-5. This establishes metabolic differences that are separating the two 

groups W and Y from each other, giving confidence that these groups are distinct from each 

other. This confirms the findings of chapter 5, namely that a change in prion status alone 

has a measurable bearing on the metabolic fingerprint of cells.  

 

Groups X and Y comparisons for T3 and T4 gave similar results, although the predictability 

of the T3 model was less than desirable the other model scores, observations of this model 

show moderate clustering but one of each sample group that deviated. This was thought to 

have caused the lack of predictability or low Q2 value within this model, R2 = 0.666, Q2 = 
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0.281 and R2 = 0.809, Q2 = 0.445. OPLSDAs gave high scores and showed similar clustering 

as before but on a much larger scale, demonstrating that the differences between the groups 

where governed by stronger metabolic characteristic changes than other models, , R2(X) = 

0.679, R2(Y) = 0.997, Q2 = 0.856 and a CV-ANOVA p-value = 4.96 x 10-2 and R2(X) = 0.620, 

R2(Y) = 0.998, Q2 = 0.962 and a CV-ANOVA p-value = 3.56 x 10-4. These values demonstrate 

with some confidence that these two groups are metabolically distinct from each other.  

 

This distinction alone is expected, as the two groups contain within them samples which are 

distinct from each other with regard to both prion status and plasmid addition. Therefore, in 

order to ascertain the metabolic features that are responsible for these changes’ further 

analysis via Metaboanalyst and Mummichogg as previously conducted was needed. 

However, given the number of two-way comparisons now needed to prepare the data for 

BioCyc pathway analysis and to simplify the analysis within this chapter, Metaboanalyst 

statistical analysis, tentative feature ID and pathway details / results will be provided in 

Appendix D.  
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Figure 6.5. PCA (A,C,E and G) and OPLS-DA (B,D,F and H) models of XCMS/MZmine2 
comparative plotting of [rnq-] (W) vs [RNQ+] (Y) (A-D) and [rnq-] with overexpression 
of Rnq1 (X) vs [RNQ+] (Y) (E-H) at T3 and T4. Overview of the data shows no more than 
one outlying sample within the 95% confidence range within each model. On the left are 
PCA models T3 and T4 for W vs Y (A and C) and T3 and T4 for X vs Y (E and G). PCA 
scores for models A, C, E and G were R2 = 0.952, Q2 = 0.567, R2 = 0.835, Q2 = 0.593, R2 = 
0.666, Q2 = 0.281 and R2 = 0.809, Q2 = 0.445 respectively. OPLS-DA scores for models T3 
and T4 for W vs Y (B and D) and T3 and T4 for X vs Y (F and H). OPLS-DA scores for 
models B, D, F and H were R2(X) = 0.821, R2(Y) = 0.999, Q2 = 0.918 and a CV-ANOVA p-
value = 4.60 x 10-2, R2(X) = 0.635, R2(Y) = 0.991, Q2 = 0.966 and a CV-ANOVA p-value = 
3.12 x 10-5, R2(X) = 0.679, R2(Y) = 0.997, Q2 = 0.856 and a CV-ANOVA p-value = 4.96 x 10-

2 and R2(X) = 0.620, R2(Y) = 0.998, Q2 = 0.962 and a CV-ANOVA p-value = 3.56 x 10-4 
respectively. Blue circles depict sample group W, blue triangles depict sample group X and 
red circles depict sample group Y.  

A) B) 

C) D) 

E) F) 

G) H) 
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6.3.3. BioCyc omics dashboard and cellular overview enables mapping of most 
significant metabolic changes indicating key metabolic pathways of interest 
To prepare for pathways analysis within BioCyc, those metabolites considered significant 

(as established by Metaboanalyst’s Mummichog) together with their relative abundances 

and average relative abundances (within groupings) were collated. The relative abundances 

of the most significantly altered metabolites (established via Metaboanalyst’s Mummichogg) 

from each of the six W, X and Y samples were then uploaded to BioCyc’s Omics Dashboard. 

Each time stamp, T3 and T4, were treated individually to allow for assessment over time. 

This three-way comparison made the value of the non-directional assessment (used in 

chapter 4 and 5) null and so the analysis centred on the directional visualisation of specific 

metabolic regions that altered between groups (Figure 6.6 and 6.7). 

 

The linear version of the graphs (Figures 6.6 and 6.7.) show differences between the two-

time stamps. A significant downregulation in amino acid synthesis was observed occurring 

in sample groups X and Y between T3 and T4, although sample group W’s amino acid 

biosynthesis appears unchanged. Likewise, a significant downregulation in cofactor 

biosynthesis was observed for all groups but was more prominent for group W than other 

groups. In contrast, both the biosynthesis and degradation of fatty acid and lipids appears 

to be significantly upregulated from T3 to T4. There appears more similarity between groups 

X and Y than between group W and X within biosynthesis and degradation. However, when 

considering pathways involved in energy metabolism, there is a similarity between groups 

W and Y with group X appearing to be substantially different. This could be as a direct result 

of plasmid presence. It is known that controlling the flux in the galactose utilization pathways 

can be difficult and this may explain the changes seen in energy metabolism between T3 

and T4 for group X (Ostergaard et al.  2000).  

 

The logarithmic graphs within Figures 6.6. and 6.7., appear to show a far greater similarity 

between group X and group Y, with group W consistently appearing as different. This is 

interesting due to the concern that overexpression of the Rnq1 protein may lead to [RNQ+] 

formation. This data leads to the conclusion that the overexpression of Rnq1 protein has led 

to the formation of prions within the formally prion-free cells and that any metabolic 

differences left between these two groups are likely a result of the plasmid. However, further 

pathway analysis will be needed to confirm these findings.    
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Figure 6.6. Graphical comparisons of the average relative abundances between [rnq-] (W), [rnq-] with overexpression of Rnq1 (X) 
and [RNQ+] (Y) samples within key metabolic regions at T3. A) Charts average comparisons of the T3 relative abundances between 
group W samples (shown in blue), group X (shown in red), and group Y (shown in yellow) data is first separated by key metabolic region 
(shown as a graph title) and then by specific metabolic area (shown on the x axis). The Y axis is set to a linear scale, appropriate to the 
relative abundances. Individual data points are shown as small circles within the larger summated bars. B) Shows the same information 
with a logarithmic scale on the Y axis.    
 
 

A) B) 
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Figure 6.7. Graphical comparisons of the average relative abundances between [rnq-] (W), [rnq-] with overexpression of Rnq1 (X) 
and [RNQ+] (Y) samples within key metabolic regions at T4. A) Charts average comparisons of the T4 relative abundances between 
group W samples (shown in blue), group X (shown in red), and group Y (shown in yellow) data is first separated by key metabolic region 
(shown as a graph title) and then by specific metabolic area (shown on the x axis). The Y axis is set to a linear scale, appropriate to the 
relative abundances. Individual data points are shown as small circles within the larger summated bars. B) Shows the same information 
with a logarithmic scale on the Y axis.   

A) B) 
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Table 6.2. Top Twenty most perturbed pathways during T3 
when comparing [rnq-] (W), [rnq-] with overexpression of 
Rnq1 (X) and [RNQ+] (Y) samples.  
 
 

Pathway 

L-leucine biosynthesis 

siroheme biosynthesis 

superpathway of branched chain amino acid biosynthesis 

purine ribonucleosides degradation 

guanine and guanosine salvage 

xanthine and xanthosine salvage 

lipoate biosynthesis and incorporation (pyruvate dehydrogenase and 
oxoglutarate dehydrogenase) 

lipoate biosynthesis and incorporation I 

lipoate biosynthesis and incorporation (glycine cleavage system) 

superpathway of lipoate biosynthesis and incorporation (PDH, KGDH, 
GCV) 

biotin biosynthesis from 8-amino-7-oxononanoate I 

β-alanine biosynthesis 

inosine-5'-phosphate biosynthesis II 

salvage pathways of adenine, hypoxanthine and their nucleosides 

salvage pathways of pyrimidine ribonucleotides 

adenine and adenosine salvage IV 

superpathway of purine nucleosides salvage 

L-histidine biosynthesis 

7-(3-amino-3-carboxypropyl)-wyosine biosynthesis 

superpathway of purine nucleotides de novo biosynthesis I 

 
The most significant relative abundances of samples groups W, X 
and Y, via BioCyc’s specific S. cerevisiae cellular overview. 
 

Table 6.3. Top Twenty most perturbed pathways during T4 
when comparing [rnq-] (W), [rnq-] with overexpression of 
Rnq1 (X) and [RNQ+] (Y) samples.  
 
 

Pathway 

sphingolipid biosynthesis (yeast) 

sphingolipid recycling and degradation (yeast) 

dehydro-D-arabinono-1,4-lactone biosynthesis 

formate oxidation to CO2 

pyruvate decarboxylation to acetyl CoA 

L-malate degradation II 

(R,R)-butanediol degradation 

ethylene glycol degradation 

glycine biosynthesis II 

leucine degradation III 

leucine degradation 

mannitol degradation II 

glycine cleavage 

sorbitol degradation 

10-trans-heptadecenoyl-CoA degradation (reductase-dependent) 

xylitol degradation 

L-glutamate biosynthesis IV 

10-cis-heptadecenoyl-CoA degradation 

oleate β-oxidation (isomerase-dependent) 

glycolysis 

 
The most significant relative abundances of samples groups W, X 
and Y, via BioCyc’s specific S. cerevisiae cellular overview. 
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Data was loaded onto to BioCyc’s specific S. cerevisiae cellular overview and pathway hits 

can be seen in Table 6.2. and 6.3. The most perturbed pathways appear to change according 

to time point. Pathways are ranked by DPPS score which is a measure pathway perturbation 

within multiple data sets. All the pathways listed gave scores over 100,000 for Table 6.2. and 

over 400,000 for Table 6.3. indicating perturbation. Due to the very high DPPS score for 

Table 6.3. and the variance between the two the lower ranking perturbations of Table 6.3. 

were subsequently investigated. The perturbations seen within Table 6.2. are still present in 

Table 6.3. with approximately the same DPPS scores. However, within 6.3. these 

perturbations appear relatively insignificant when compared to the DPPS scores of the 

pathways shown in Table 6.3., knocking the pathways shown in Table 6.2. below the top 20 

ranking. Clearly significant changes to the pathways present in Table 6.3. must have 

occurred in the hour between T3 cell harvest and T4 cell harvest.  

 

6.3.4. Data overlay onto implicated pathways, via BioCycs Pathway collage, reveals 
the direction of the up and down regulation between sample groups 
The information provided by Table 6.2. and 6.3. highlighted areas for further investigation. 

Standardised LC-MS data (as described in section 4.5.6.) was overlaid onto these specific 

pathways to further visualise and interpret the findings, and so separate the plasmid-only 

and prion-only metabolic indicators. T3 pathway overlays (Figure 6.8. and 6.9.) indicated 

that metabolic characteristics are shared between group X and Y, defining group W as our 

outlying sample group. Interestingly this same pattern was observed in the logarithmic 

version of the graphs (Figure 6.6. and 6.7.). This indicates that overexpression of the Rnq1 

protein within sample group X, may have induced prion formation as previously suggested. 

It is regrettable that western blots were not conducted to elucidate this, as discussed in 

section 5.6.3. However, owing to the presence of distinct variants of prions; it may be 

possible that the slight metabolic differences between the two groups may have presented 

themselves regardless, owing to a different strength in the prion variant formed as a result 

of overexpression (Bardill and True, 2010).   

 

The data within Figure 6.9 show a reliable and notable upregulation of the pathways listed, 

yet within Figure 6.8, the overlay is not so robust. The presence of a gradient within the 

pyrimidine salvage pathway between samples W, X and Y (from upregulation in sample 

group W to downregulation in sample group Y) is perplexing. Also, there are clear metabolic 

differences apparent within sample group X. These differences may be attributed to the 

presence of the plasmid, as similar inconsistencies within salvage pathways are also seen 
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within Figure 6.8., appearing to show sample group X as an outlier group. This suggests 

that the presence of the plasmid is influencing nucleotide and amino acid salvage within 

cells.  

 

Previous studies have shown that adenine and nucleotide metabolism can be altered due 

to change in carbon and nitrogen source within bacterial strains, and that within yeast strains 

the salvage of nucleotides aids in their survival during nutrient starvation and oxidative stress 

(Xu et al. 2013; Nygaard et al. 1996). Interestingly, within yeast, this dysregulation of 

nucleotide pathways when at high levels can lead to cytotoxicity (Kowalski et al. 2008). 

These observations would help support a plasmid-caused effect here if a clear upregulation 

of these pathways was seen in sample group X. However, upregulation is not consistent 

enough to draw firm conclusions. Further research is required, potentially using another 

plasmid which does not overexpress Rnq1 alongside this plasmid, both with GAL promoters, 

to aid in picking apart these differences.  

 

Figure 6.10 shows the pathways indicated within Table 6.3. as a result of T4 and displays a 

sub selection of the pathways listed. The sub selection is since many of the pathways listed 

on Table 6.3. are influenced or modified by small add on pathways that are not easily 

presentable within such a pathway diagram. The decision has been made to focus on those 

pathways that have been directly influenced by changes in the metabolome between the 

groups. Observations of these findings identify similarity between sample groups X and Y, 

leaving sample group W as an outlier. Encouragingly, despite the change in carbon source, 

similar metabolic influencers as seen previously (section 5.4.) are identified, with 

upregulation within the sphingolipid biosynthesis and degradation pathways alongside the 

presence of the prion (as is the case for group Y) and induced prion (as is reportedly the 

case for group X). Although, the same pathways have been implicated, the directionality of 

this perturbation has altered, with [RNQ+] previously observed (section 5.4.) as causing 

downregulation in sphingolipid metabolism, and now [RNQ+] showing upregulation of all 

sphingolipid pathways (Figure 6.10.). This difference may have been caused by media 

change and/or due to a variance in ‘age’ between the cells tested within these experiments 

and those tested previously (chapter five). However, this switch was not observed in the T3 

pathway. It is possible that at T4, the cells are changing their growth phase from logarithmic 

to stationary phase. Degradation pathways are highlighted only within sample group X giving 

further credence to the plasmid influence on degradation pathways, especially those readily 

influenced by carbon source change.  
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Figure 6.8. Pathway collage of four of the top 20 implicated pathways at T3 (via 
BioCycs cellular overview) with standardised omics [rnq-] (W), [rnq-] with 
overexpression of Rnq1 (X) and [RNQ+] (Y) data of individual metabolites overlaid. A 
colour legend is shown in the bottom righthand corner to signify the direction of the change 
indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black 
writing names individual metabolites, blue arrows depict reactions, grey text show 
metabolites for which no data is present, coloured ‘heat blocks’ represent omics data. The 
first six boxes in any ‘heat block’ belong to group W samples, the middle six belong to group 
X and the last six boxes belong to group Y. A larger version of this Figure is available in 
Appendix I. 



234 
 

 
 
Figure 6.9. Pathway collage of five of the top 20 implicated pathways at T3 (via 
BioCycs cellular overview) with standardised omics [rnq-] (W), [rnq-] with 
overexpression of Rnq1 (X) and [RNQ+] (Y) data of individual metabolites overlaid. A 
colour legend is shown on the middle left to signify the direction of the change indicated by 
colour. Dark blue labels at the top of the pathway state the pathway name, black writing 
names individual metabolites, blue arrows depict reactions, grey text show metabolites for 
which no data is present, coloured ‘heat blocks’ represent omics data. The first six boxes in 
any ‘heat block’ belong to group W samples, the middle six belong to group X and the last 
six boxes belong to group Y. A larger version of this Figure is available in Appendix I. 
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Figure 6.10. Pathway collage of six of the top 20 implicated pathways at T4 (via 
BioCycs cellular overview) with standardised omics [rnq-] (W), [rnq-] with 
overexpression of Rnq1 (X) and [RNQ+] (Y) data of individual metabolites overlaid. A 
colour legend is shown in the bottom left hand corner to signify the direction of the change 
indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black 
writing names individual metabolites, blue arrows depict reactions, grey text show 
metabolites for which no data is present, coloured ‘heat blocks’ represent omics data. The 
first six boxes in any ‘heat block’ belong to group W samples, the middle six belong to group 
X and the last six boxes belong to group Y. A larger version of this Figure is available in 
Appendix I. 
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6.4. Results – Comparison of the Metabolomic Perturbations of [RNQ+] 
and [RNQ+] with overexpression of Rnq1  
 

6.4.1. PCA and OPLSDA modelling of comparative metabolomic data in SIMCA 
differentiates between sample group Y and sample group Z at T4  
Initial scrutiny of the PCAs reveal samples appear moderately clustered at T4. PCA scores 

for T3 gave good R2 values at 0.654, however the Q2 values of 0.279 are not indicative of a 

model with good predictability. Clustering within Figure 6.11. (A) is limited, with considerable 

overlap between samples. By T4 a visible divide is apparent and model scores improve 

considerably: R2 = 0.813, Q2 = 0.478.  

 

Given the lack of separation in Figure 6.11. (A) for T3, the resultant OPLSDA, shows 

reasonable model scores but no significant difference within the CV-ANOVA, R2(X) = 0.690, 

R2(Y) = 0.998, Q2 = 0.808 and a CV-ANOVA p-value = 9.50 x 10-2. This is not apparent at 

T4 (D) where a significant metabolic difference between the two groups can be measured, 

with the model giving scores indicative of its reliability, R2(X) = 0.673, R2(Y) = 0.987, Q2 = 

0.907 and a CV-ANOVA p-value = 4.81 x 10-3. 

 

From this assessment, it is possible to conclude that sample groups appear to be 

metabolically similar until T4, and further analysis of this timepoint was conducted.  

 

To determine the metabolic features responsible for these changes, further analysis via 

Metaboanalyst and Mummichogg was required. However, in order to prepare the data for 

BioCyc pathway analysis and to simplify the analysis within this chapter, Metaboanalyst 

statistical analysis, tentative feature ID and pathway details and results will be provided in 

appendix C, to better focus on the consequences of induced toxicity.  
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Figure 6.11. PCA (A and C) and OPLS-DA (B and D) models of XCMS/MZmine2 comparative data [RNQ+] (Y) and [RNQ+] with 
overexpression of Rnq1 (Z) data from T3 (A and B) and T4 (C and D). Overview of the data shows no more than one outlying sample 
within the 95% confidence range within each model. On the left are PCA model in order of time, with T3 appearing at the top (A) and T4 at 
the bottom (B). PCA scores for models A and C, were R2 = 0.654, Q2 = 0.279 and R2 = 0.813, Q2 = 0.478. On the right are OPLSDA models 
in order of time, with T3 appearing at the top (B) and T4 appearing at the bottom (D). OPLSDA scores for models B and D were R2(X) = 
0.690, R2(Y) = 0.998, Q2 = 0.808 and a CV-ANOVA p-value = 9.50 x 10-2 and R2(X) = 0.673, R2(Y) = 0.987, Q2 = 0.907 and a CV-ANOVA 
p-value = 4.81 x 10-3. Red circles depict sample group Y and red triangles depict sample group Z.

A) B) 

C) D) 
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6.4.2. BioCyc omics dashboard and cellular overview enables mapping of most 
significant metabolic changes indicating key metabolic pathways of interest 
Data was treated identically to that of section 6.4. and direct visualization of the specific 

metabolic regions altered between groups was made possible by way of Figure 6.12.  

 

Considerable downregulation is seen in group Z when compared to group Y, with a clear 

trend observed in both linear and logarithmic graphs. This downregulation appears to be 

affecting all areas of the metabolism, including biosynthesis, degradation, energy, and other 

pathways. This is likely the effect of toxicity induction causing cellular damage. The only 

notable exceptions from this trend in group Z were secondary metabolite synthesis, amine 

degradation and “other degradation”, in which there is a perceived upregulation. Many of 

the secondary metabolites act to reduce the effect of cytotoxicity and thereby protect the 

cells (Roze et al. 2012). The increase in degradation may (as previously discussed in section 

6.3.) be as a result of the action of the plasmid: a side effect of the change in carbon source 

and the leaky GAL promoter.  

 

To enable deeper pathway analysis, this data was loaded onto to BioCyc’s specific S. 

cerevisiae cellular overview and pathway hits can be seen in Table 6.4. Pathways are ranked 

by DPPS score (that is a measure of the pathway perturbation within multiple data sets), all 

the pathways listed gave scores over 400,000 strongly indicating their perturbation.  
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Figure 6.12. Graphical comparisons of the average relative abundances between [RNQ+] (Y) and [RNQ+] with overexpression of 
Rnq1 (Z) samples within key metabolic regions at T3 (A) and T4 (B). A) Charts average comparisons of the T3 relative abundances 
between group Y samples (shown in blue) and group Z (shown in red), data is first separated by key metabolic region (shown as a graph 
title) and then by specific metabolic area (shown on the x axis). The Y axis is set to a linear scale, appropriate to the relative abundances. 
Individual data points are shown as small circles within the larger summated bars. B) Shows the same information with a logarithmic scale 
on the Y axis.    
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Table 6.4. Top Twenty most perturbed pathways during T4 when comparing [RNQ+] 
(Y) and [RNQ+] with overexpression of Rnq1 (Z) samples.  
 
 

Pathway 

sphingolipid biosynthesis (yeast) 

sphingolipid recycling and degradation (yeast) 

dehydro-D-arabinono-1,4-lactone biosynthesis 

formate oxidation to CO2 

pyruvate decarboxylation to acetyl CoA 

L-malate degradation II 

(R,R)-butanediol degradation 
ethylene glycol degradation 

glycine biosynthesis II 

leucine degradation III 
leucine degradation 

mannitol degradation II 

glycine cleavage 

sorbitol degradation 

10-trans-heptadecenoyl-CoA degradation (reductase-dependent) 

10-trans-heptadecenoyl-CoA degradation (MFE-dependent) 

xylitol degradation 

9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-
dependent) 

L-glutamate biosynthesis IV 

10-cis-heptadecenoyl-CoA degradation 

 
The most significant relative abundances of samples groups Y and Z, via BioCyc’s specific 
S. cerevisiae cellular overview. 
 

6.4.3. Data overlay onto implicated pathways, via BioCycs Pathway collage, reveals 
the direction of the up and down regulation between sample groups 
The information provided by Table 6.4. indicated areas of enquiry. Standardised LC-MS data 

(as described in section 4.5.6.) was overlaid onto these specific pathways to further visualise 

and interpret the findings in an attempt to isolate the toxic effects of Rnq1 overexpression 

without the influence of the effects of the prion or the plasmid. However, the pathways shown 

in Table 6.4. overlap considerably with those found in Table 6.3. Whilst these effects could 

be largely prion mitigated, the changes within each group were further examined with the 

only two more Coenzyme A degradation pathways being identified.  

 

Figure 6.13. details the most prevalent of these changes, a figure largely based on the 

pathways available for this type of visualisation within BioCyc and the ranking of the DPPS 

score. Pathways shown here do not represent whether up or downregulation is strongly 

linked to either group. Given that this is not a process whereby overexpression routinely 
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causes cell death, one would expect that there must be some yet undiscovered factor that 

compels prion formation down a cytotoxic route.  

 

The unpredictability of trend within the sphingolipid pathways between sample groups Y and 

Z (Figure 6.13.) implies that these pathways may be especially sensitive to perturbations of 

this kind. Further research into these pathways using targeted lipidomics may be able to 

provide some clarity with regards to the up and downregulation seen here within biological 

classes. Between sample groups Y and Z, a relative downregulation (Y>Z) is seen in the 

Xylitol degradation, (R-R) butanediol degradation and L-glutamate biosynthesis pathways 

(Figure 6.13.). It is reasoned that this too may be due to the presence of the plasmid and 

the known effects on energy and secondary metabolism.  
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Figure 6.13. Pathway collage of four of the top 20 implicated pathways at T4 (via 
BioCycs cellular overview) with standardised omics [RNQ+] (Y) and [RNQ+] with 
overexpression of Rnq1 (Z) data of individual metabolites overlaid. A colour legend is 
shown in the bottom righthand corner to signify the direction of the change indicated by 
colour. Dark blue labels at the top of the pathway state the pathway name, black writing 
names individual metabolites, blue arrows depict reactions, grey text show metabolites for 
which no data is present, coloured ‘heat blocks’ represent omics data. The first six boxes in 
any ‘heat block’ belong to group W samples, the middle six belong to group X and the last 
six boxes belong to group Y. A larger version of this Figure is available in Appendix I. 
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6.5. Discussion  
 
The experiments performed with this study have not been able to robustly identify the 

metabolic disruptions that arise as a result of induced toxicity. Despite efforts to control for 

the variables of prion and plasmid mitigated effects, clear evidence about the individual 

influence of these factors has been difficult to acquire. These experiments have revealed 

further specifics metabolomic effects regarding plasmid influence on nucleotide and 

secondary metabolite pathways as well as perturbations within the sphingolipid pathways, 

although the directionality of these results remains unclear.  

 

6.5.1. The problem determining the influence of plasmid presence and possible 
solutions 
Many of the pathways analysed appear to indicate that nucleotide, secondary metabolite, 

and amino acid degradation may have been affected by the presence of the plasmid. 

However, the overlap between these pathways and those affected by the presence of the 

prion itself is regrettable and makes for difficult analysis. To successfully pick apart the many 

factors at play here, it would be preferable to change the GAL promoter used in this study 

for another inducible promoter which does not have the same issues with ‘leakage’. 

Metabolic engineering studies have shown that promoter selection can be key in the design 

of experimentation and that without tightly controlled promoter strength and application, 

toxicity within the growth phase can occur (Blazek and Alper, 2012). This questions whether 

the perceived toxicity of overexpression observed by Douglas et al. (2008) was in fact as a 

result of intricate relationships between the number of prion proteins or was indeed as the 

result of unpredictable plasmid effects. However, if this had been the case, the cell death 

effect would be seen in all cells as opposed to only 25% of them. We repeated the 

experiments of Douglas et al. (2008) to confirm these cell losses and indeed our numbers 

support this (data available in appendix E).  

 

The GAL promoter is widely employed as an inducible promoter in pathway engineering 

applications, although perhaps this is a unique case where the promoter is not suitable for 

cellular conditions (Da Silva and Srikrishnan, 2012; Blazek and Alper, 2012). Potentially if 

this is the case then the use of a more tightly regulated inducible promoter, such as CUP1, 

would be advisable. CUP1 is easily inducible via addition of copper sulphate to the media 

with expression levels related to the concentration of copper sulphate added. This provides 

the potential to control a range of protein expression during experimentation (Da Silva and 
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Srikrishnan, 2012; Mascorro-Gallardo et al.  1996). However, the use of this promoter might 

cause issues of its own as copper is known to induce prion formation in PrP monomers. 

There are also links between copper exposure and PrP neurotoxicity, but no evidence that 

this is relevant with regards to yeast prions (Yen et al. 2016). 

 

6.5.2. Loss of function does not present as a perturbation in this experimentation 
The loss of Rnq1 function perturbations (which is described in chapters four and five to have 

a considerable effect on the most perturbed pathways) were not identified in the pathways 

highlighted here. This could be due to either the native role of Rnq1 changing when on 

alternative carbon sources or that the influence or role of Rnq1 changes over time, given 

that the cells tested were considerably more aged than those in previous experiments. 

Without the inclusion of data from a Δrnq1 strain in these experiments, it is difficult to 

ascertain the answer to this question. Such a control was not considered given the focus on 

toxicity and that the loss of function would be observed in both [RNQ+] and [RNQ+] with 

overexpression.  

 

6.5.3. The toxicity of overexpression of the Rnq1 protein, findings, limitations, and 
further research 
The results shown here provide additional evidence of a connection between prion presence 

and a perturbation of sphingolipid metabolism, as described in chapter five. However, Figure 

6.13. shows considerable variation between samples within biological classes (Y and Z) and 

so drawing distinctions between the two groups is difficult. This may be that the perturbations 

that occur as a result of the prion (described in chapter five) are simply exaggerated in cells 

with overexpression. However, if this were the only factor here then a clear upregulation of 

these pathways would be seen from Y to Z, instead of the sporadic pattern observed. An 

explanation of this may be that data here (appendix E) and Douglas et al. (2008) 

demonstrate that many of the cells in the Z group are dead. As the metabolic profile of live 

cells is likely to be very different from dead cells, what we may observe in group Z is a 

portrayal of this imbalance. However, this should have been approximately represented by 

all group Z samples given that the extractions are made from a large 2mL sample of cells 

not individual cells. However, there is considerable variance between the observed 

percentage of cell death between data here (appendix E) and Douglas et al. (2008). With 

data here revealing a 76% reduction in live colony number between samples Y and Z 

(respectively) whereas Douglas et al. (2008), much larger experiment, found approximately 
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a 25% reduction. In addition, we observe a difference between the live colony count of all 

[rnq-] samples and [RNQ+], an unanticipated result. It is possible that this difference may 

have been due to the (undetermined) strength of the [RNQ+] strain used here and within 

Douglas et al. (2008) study. 

 

It is possible that another factor may have limited the results seen here, in chapters four and 

five, due to the small number of samples both PIM and NIM MS data were collected. 

However, for the experiments here, due to a much larger number of samples only PIM MS 

data was collected. Regrettably, it is possible that this uncollected NIM data may have 

provided a clarity to pathway analysis here that has not been obtainable.  For now, the only 

conclusions that can be drawn from this data is that perturbations to sphingolipid metabolism 

are present in both in [RNQ+] and [RNQ+] with overexpression of the Rnq1 protein, and that 

these perturbations appear to be distinct from each other, at least some of the time.  

 

Potentially the use of NMR as a non-destructive analytical method may have been a better 

methodology to employ for these experiments. As NMR is capable of monitoring the same 

samples over time, this may have been able to overcome the variance and overlap seen 

between the Y and Z samples. As this is a non-destructive method, having live samples at 

the end of the experiment would permit viable colony counts to derive an estimation of cell 

death within the culture. This would facilitate appropriate corrections to the subsequent 

relative abundances of metabolites or permit the ruling out that some Z cell samples suffered 

large losses and others did not. An ideal methodology would be the rapidly advancing 

metabolic experiments which aim to monitor single cell metabolic profiles and so be able to 

measure difference between individual cells within this single sample grouping and 

determine if toxicity had therefore been induced (Duncan et al.  2019; Rubakhin et al. 2013). 

Even when limited to the MS technologies used in this experimentation, targeted lipidomics 

using standards to enable the quantification of the metabolites within the pathways (Figure 

6.13.) may bring more clarity to the findings here and aid in understanding the influence of 

the toxicity associated with overexpression.  

 

The extensive lag time to acquire definite separation between groups as seen in all PCAs, 

suggests that induction of RNQ1 via switching the media to galactose at an earlier point may 

have been preferable. This timing was selected based on the previously established four-

hour time scale at which toxicity is reportedly found (Douglas et al. 2008). With hindsight, 

extending induction beyond this time point and into the increasingly cytotoxic cells timeline 
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would have been useful. (section 5.6.3.), The use of SDDAGE and western blotting to test 

for prion formation and thereby determine prion strength would also have confirmed the 

prion status of cells, removing any doubts regarding this status. This was considered at the 

time and indeed lysates from each of the cell lines were acquired with a view to test these 

after the large metabolic experiments had been conducted. Sadly, a large power cut led to 

a mass loss of frozen samples, the lysates among them. Further studies about the rate of 

cell death with overexpression of Rnq1 in cell lines that are known to already have issues 

with their lipid membranes, could provide information about the target and effect of toxicity.  

 

These experiments have determined that all biological classes tested here are metabolically 

distinct and act as “proof of concept”. Future metabolic studies, albeit perhaps using NMR 

or one of the other analytical methods discussed in this chapter, would reveal more details 

about the metabolic effects of Rnq1 induced toxicity. In addition, it is suggested that other 

yeast models that have been developed for the study of cellular toxicity be included. In 

particular, polyglutamine (polyQ) expansions of the huntingtin (Htt) protein (the presence of 

which results in Huntington’s disease in humans) (Walker, 2007). Fragments of Huntington 

exon I with varying length polyQ expansions are available for use in S. cerevisiae (Meriin et 

al. 2002; Krobitsch and Lindquist, 2000). Such fragments recapitulate aggregation in S. 

cerevisiae models, with Meriin et al. (2002) polyQ model capable of inducing cellular toxicity.  

Meriin et al. (2002) found that the polyQ polypeptide 103Q only presented toxicity in the 

[RNQ+] cells, and in the absence of this prion both aggregation and toxicity were dramatically 

suppressed; suggesting that it would be a good candidate for further study here. Other yeast 

models such as α-Synuclein and PrP are available and may also provide valuable 

information about aggregation and toxicity.  

 
All biological classes within this chapter presented distinct metabolic profiles, with 

perturbations to the sphingolipid pathways appearing between groups Y and Z. However, 

details of this perturbation have been difficult to extract from the data and further research 

is needed to provide a better understanding of the implications of toxicity on cellular 

metabolism. 
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Chapter Seven - Discussion 
 
7.1. Overview of the project  
 

A common question encountered throughout this research from members of the 

metabolomics community has been “why use metabolomics?” It was understood that this 

was not asked to be deliberately obtuse, but to encourage us to consider if the use of this 

complex technique for this area of enquiry was justified. Given that it would be possible to 

‘do’ metabolomics on a plethora of subjects, the question sought more to address why 

metabolomics was suitable for investigating the metabolic perturbations of protein misfolding 

in S. cerevisiae?  

 

As discussed in the introductory chapter, despite great improvements to our knowledge 

within the field of amyloid biology over the last 50 years, there remains a lack of fundamental 

understanding regarding the mechanistic actions of protein misfolding and the subsequent 

disease states they cause (Knowles et al. 2014). This, combined with the recent knowledge 

which presents a lack of distinction between the amyloid diseases and prion diseases, 

suggests that prions may be causing the same cellular disruptions as their amyloid 

counterparts (Jaunmuktane et al. 2015). However, despite great efforts to elucidate the 

cellular disruptions that take place due to prion presence, little is known or understood about 

these events and quite how these lead to cell death (Valastyan and Lindquist, 2014; Dobson, 

2003). The prions of yeast present an opportunity to study this intricate mechanism without 

the complexities of mammalian brain chemistry (Liebman and Chernoff, 2012). It was 

therefore considered that investigating the metabolic disruptions of this process was both a 

novel and worthwhile endeavour and one which carried with it the possibility of increasing 

our fundamental understanding about the cellular changes that occur in response to prion 

formation and the metabolic pathways acted on by the presence of such promiscuous 

proteins. 

 

7.2. Developing a reliable metabolomic methodology in S. cerevisiae 
 

In order to achieve our aim, it was understood that a reliable, accessible (to us with our 

limited laboratory resources) and well evidenced technique for use with our model organism 

would be needed. Given the popularity of S. cerevisiae and the reliability with which excellent 

experimental protocols are usually available, surprisingly no single metabolomics protocol 

was found; instead a large number of varied protocols were available with the methods of 
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rating protocols and establishing a consensus within the field appearing vague (Canelas et 

al.  2009; Villas-Bôas et al.  2005; Gonzalez et al. 1999; de Koning and van Dam,1992). 

Therefore, experiments to determine the most effective protocol for use within untargeted 

metabolomics for the model organism, S. cerevisiae, were investigated. It was considered 

important when conducting these experiments that due attention was appropriated to all 

stages of sample preparation and that a ranking system that prioritised the biological 

relevance of findings was established. This included testing alternative methods of cell 

growth and extraction. However, due to the large number of samples needed to test these 

factors, issues such as quenching and the preparation of samples for LCMS, such as freeze 

drying, were not considered. Instead current literature, and the disputes within, were duly 

acknowledged and used as a guide for quenching and LCMS preparation.  

 

With regards to the biological relevance and rankings of findings, the ability to accurately 

report on pre-established metabolic changes was thought to be an appropriate measure of 

the suitability of a methodology. The cellular conditions of aerobic respiration, anaerobic 

respiration and ammonium as a sole nitrogen source were decided upon as our input 

metabolic conditions for detection. Alongside two different growth conditions, the commonly 

used broth growth and the alternative filter growth method, and four different extraction 

techniques, BE, CM, PM and ACN (Kim et al. 2013; Tredwell et al. 2011; Boer et al. 2010; 

Canelas et al. 2009; Villas-Bôas et al. 2005; Prasad Maharjan and Ferenci 2003; Gonzalez 

et al. 1999; de Koning and van Dam 1992).  

 

Multivariate analysis revealed that the anaerobic conditions had not been maintained within 

our experiment, revealing significant overlap with aerobic conditions when PCA models were 

produced. The ammonium as a sole nitrogen source, did however, show considerable 

differences when compared to the aerobic or control condition. The results of this study 

demonstrate that the choice of culturing technique as well as the metabolite extraction 

methodology can influence the quantity of the data observed within a metabolomics study, 

and that this can be reflected in the quality of subsequent pathway analysis. LCMS analysis 

and the subsequent ranking of methodologies revealed that using broth growth and ACN 

extraction method were the most effective at reporting the predicted changes in amino acid 

biosynthetic pathways, given the conditions used.  

 

Given the drastically different biochemical conditions present within cells and their 

organelles, multiple methods of extraction may be advisable dependent upon which 
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metabolic area is of interest. Many researchers argue that maximisation of pathway hits 

could be achieved by using not one but two extraction methods (Riekeberg and Powers, 

2017; Canelas et al. 2009; Oldiges and Takors 2005; Goodacre et al. 2004; Mashego et al.  

2003). Close examination of the results from chapter three reveals that the use of both ACN 

and CM extraction would allow for maximum coverage of metabolite extraction from within 

amino acid biosynthesis.    

 

This experiment introduced the workflow of metabolomics and enabled familiarisation with 

MZmine2, Simca and Metaboanalyst (Chong et al. 2019a; Chong et al. 2019b; Pluskal et al. 

2010; Ni et al. 2016). For some time, the issue of converting the RAW data files into a format 

usable by MZmine2, caused issue; however, this was overcome using Proteowizard. 

Originally identification via MZmine2 using the YMDB was attempted, however the 

comparatively small number of IDs available within this library created a considerable 

bottleneck for our analysis. The use of Chemspider and Kegg libraries were then 

experimented with, however the lack of organism-specific selection created a considerable 

number of false IDs and so this method of identification was abandoned, with preference 

given to the organism-specific IDs that are possible via Metaboanalyst. First attempts at 

Simca analysis revealed the plethora of statistical analyses that are possible via Simca. S-

plots were used to examine the most contributary factors of the score plots, however lack of 

IDs at this stage made this information difficult to interpret and so once Metaboanalyst’s 

compound and pathways analysis had been conducted, the choice was made not to 

continue with additional Simca analysis. Within the pathway analysis of chapter three, KEGG 

pathway was used to overlay information. Although effective, an alternative was sought 

owing to the detail of the pathway models available and the technical difficulties in altering 

and colour coding models. This required a considerable amount of user time to produce the 

figures used throughout this chapter (Kanehisa and Goto, 2000).  

 

As apparent from the discussion in chapter three, the use of broth growth with ACN is not 

the prevailing method throughout this thesis. Despite our experimental efforts, issues 

surrounding the peak selection and capture mode of our original data created a situation 

that, where analysis was performed unknowingly on a corrupt data set. The information 

provided throughout chapter three is as a result of having returned to the original data and 

corrected for this issue with automatic peak detection for the correct mode settings and 

recalculation of all of the subsequent analyses, hence we are confident about the 

conclusions drawn on this data. It was unfortunate that this issue was not apparent until the 
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analysis had been conducted and that the subsequent experiments for chapters four, five 

and six was scheduled prior to this realisation. Encouragingly, our findings indicate that all 

methods accurately reported on the predicted changes. If our flawed approach had been 

detrimental to subsequent experiments, this most likely would have resulted in the under 

reporting of pathway hits rather than change the overall findings.  

 

The most valuable part of chapter three is the method by which the protocols were assessed, 

namely the reporting of pre-established inputs. It could be criticised however given that in 

reality our results may simply reflect the best method for the measurement of amino acid 

biosynthesis. It would be preferable to take heed of a variety of biosynthesis, degradation, 

energy and other pathway metabolism and determine predictable metabolic determinants of 

these pathways for use in a similar application. Such experiments although very large, have 

the potential not only to point to one or two excellent methods for use in untargeted 

metabolomics within yeast, but to provide specific and detailed guidance with which to 

conduct targeted metabolomics. This would allow researchers to achieve the best metabolite 

recovery possible for their intended metabolites or pathways of investigation. Such a gold 

standard protocol for any model organisms would be of high value to the metabolomics 

community and contribute to the extended study of the field.  

 

The use of untargeted metabolomics as a generator for hypotheses which explain the cause 

of variation between groups, was used in the subsequent chapters to investigate the Rnq1 

protein and its prion. These finding were combined with our current biological knowledge of 

[RNQ+] behaviour to develop a better understanding of the mechanism and cellular 

consequences of the Rnq1 protein’s presence, prion formation and the induction of cellular 

toxicity.  

 

7.3. The native role of Rnq1 protein 
 
Chapter four sought to investigate the native role of the Rnq1 protein and the effect of its 

functional loss on cells. As explained in detail within this chapter, the native role of the Rnq1 

protein has long remained unknown - despite detailed descriptions of the native role of other 

prion proteins and the often-important roles these proteins are known to play cellularly 

(Chernova et al. 2014; Liebman and Chernoff, 2012).  
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Additionally, this study aimed to improve data analysis via recommendations within the 

literature to combine the results from two of the most popular freely available data analysis 

programmes, MZmine2 and XCMS, addressing concerns regarding FDR and variance in 

algorithmic processes underpinning data processing (Misra, 2018; Li et al. 2017; Myers, 

2017). Similarly to that of Lui et al. (2017), we observed that large variances were present 

between the top IDs and pathways hits for each individual analysis program and so efforts 

were made (based on Lui et al. (2017) recommendation) to combine the results from both 

programs and use the overlapping information to extend the analysis. This proved a valuable 

addition to the study in removing a lot of the noise from our data set and only allowing 

analysis to take place on the remaining overlapping features. From our observations, we 

would strongly favour the use of XCMS over MZmine2, due to the often large number of 

peaks identified within MZmine2 and the highly editable user controls of MZmine2, all of 

which need to be preprogramed prior to data analysis.  

 

Using this comparative data analysis method revealed several perturbed pathways linked to 

the ubiquinol pathways. Initially this created some confusion owing to the cytoplasmic nature 

of the Rnq1 protein and the mitochondrial location of these pathways. It was therefore 

considered that these may be the downstream effects of an earlier upstream influencer and 

so the upstream pathways of ubiquinol were investigated. This revealed a potential role for 

the Rnq1 protein as a negative controller for ubiquinone production. Known to be 

upregulated with oxidative stress and downregulated with age, these effects link well with 

the known influences of prion formation and oxidative stress. The secondary role of 

ubiquinone’s COQ as an antioxidant, protecting the membrane phospholipids and 

lipoproteins from lipid peroxidation was of particular interest given that the details of this 

delicate interplay are not currently understood (Awad et al. 2018; Mohamed et al. 2015; 

Szkopinska, 2000; Genova et al. 1999; Mikosovska et al. 1999). Regrettably, hits were not 

available for many of the lipids further upstream of these changes, largely owing to the 

metabolite focused range of our m/z capture and our metabolite streamlined preparation 

protocols. Targeted metabolomic and lipidomic studies would be beneficial to confirm results 

found here.  

 

Essentially chapter four reveals that the Rnq1 protein may play a cytoprotective role with 

respect to the lipid/mevalonate pathways. Whilst in its native conformation in times of limited 

stress, Rnq1 causes a relative downregulation of ubiquinone, diverting resources to the 

longer term cytoprotective membrane bound lipids. However as Rnq1 is readily able to 
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misfold when acted upon by stress, Rnq1 loses this proposed function and thus the 

suppression of ubiquinone is reversed, leading to high concentrations of ubiquinone (a much 

needed shorter-term protective agent) to engage in antioxidant defence whilst 

simultaneously downregulating the production of longer term cytoprotective sterols. 

 

Further experimentation involving the sterol composition of Δrnq1 cells, [RNQ+] and [rnq-] 

cells, including the addition of rnq1 mutants (either carrying known sterol mutations or pre-

screening for their influence on sterol composition) may aid in confirming these findings. 

Comparing the effectiveness of the ergosterol targeting azoles (Rodrigues, 2018), common 

antifungal treatments, may show key differences in response between rnq1 mutants, Δrnq1, 

[RNQ+] and [rnq-] cells. In addition, detailed studies of the lag phase of the biological classes 

used within the experiments would be advised as changes in sterol composition are known 

to alter the lag phase of organisms considerably (Bhattacharya et al. 2018; Lui et al. 2017). 

To support this, targeted lipidomic studies focusing on sterol composition and quantification 

would also be desirable. 

 

As briefly discussed in section 4.6. if confirmed, the potential for the presence of a 

homologous (by behaviour) protein in mammalian cells here is highly likely. The discovery 

of such a protein would have considerable potential to provide biomarkers to track and 

monitor disease progress of many of the amyloid diseases in a way that is not currently 

possible. Such a protein may also aid in understanding the often-mitochondrial nature of the 

disruptions within diseases such as Alzheimer’s (Paglia et al. 2012).  

 

7.4. The metabolic perturbations associated with the presence of the 
[RNQ+] prion 
 

The experiments described in chapter five were to investigate the metabolic perturbations 

of the presence of the [RNQ+] prion. The results of this work were compared to those found 

previously (detailed in Chapter four) as the expected loss of function effects caused by 

[RNQ+] state will be present in both knockout and [RNQ+] cells. These needed to be 

determined so that these loss of function effects could be accounted for when comparing 

[RNQ+] and [rnq-] data to reveal the metabolic effects of prion presence alone. In addition, it 

was proposed that cells containing prions represent a pseudo ‘disease’ state that cells may 

respond to with a specific stress response. To distinguish between general stress responses 
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and those caused by the presence of the [RNQ+] prion, a further analysis of cells under mild-

oxidative stress were included in the study.  

 

Stress mitigated pathway responses correlate well with the findings of Kang et al. (2012), 

providing pertinent information for our subsequent prion-free and prion-containing analyses. 

Subsequent comparisons between [rnq-] and [RNQ+] metabolic profiles confirmed many of 

the loss of function pathways hits from chapter four, permitting the removal of 70% of the 

pathways implicated by these experiments as loss of Rnq1 function. Considerable overlap 

was also seen between our mild-oxidative stress control and our prion samples, suggesting 

that the [RNQ+] prion is having a deleterious effect on cells. It would be interesting to see if 

the same conditions that [RNQ+] cells respond positively to also occurred when cells are 

under oxidative stress. This would suggest that an increase in the generalised stress 

response and upregulation of many of the cytoprotective elements is responsible for these 

observations, as opposed to any direct influence on the part of the prion. However, without 

such experimentation, the reasons for the shared relationship between prion stress and 

oxidative stress cannot not be explained. Comparisons between stress-condition pathways 

and prion-presence pathways reveal that the proline and arginine degradation pathways are 

unique to the stress-condition. This may be useful as a potential biomarker for distinguishing 

between damage caused as a result of oxidative stress and damage caused as a result of 

misfolded protein, although further research is needed to validate this.  

 

Comparison of the metabolites from [rnq-] and [RNQ+] cells show downregulation within the 

degradation and recycling of the sphingolipids in [RNQ+] cells. Although it is posited that this 

may be due to a lack of hits and that the shortest of these pathways (the degradation 

pathways) are more prominent compared to the larger synthesis pathways. Alternatively, the 

degradation of the sphingolipids may be reduced in [RNQ+] samples due to the cells simply 

using all the sphingolipid resources available to them to deal with the number of misfolded 

proteins. Indeed, within amyloid biology, it is well documented that microdomains are formed 

by the sphingolipids and cholesterols which act as sites for the binding and oligomerisation 

of amyloidogenic proteins (Fantini and Yahi, 2010). Within cells carrying the mammalian 

prion, scrapie, sphingolipid rafts are known to decrease in concentration. It is posited that 

they are used by cells to aid in the formation of the PrPSC from its normal conformer PrPC 

(Naslavsky et al. 1999). This downregulation event in sphingolipid pathways, having not 

been previously observed in yeast prions, provides new and further evidence of homology 

between yeast prions and mammalian prions/amyloids. 
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The pathways highlighted with this chapter are supported by the results of chapter four, with 

consistencies in the up- and downregulations that occur within the sphingolipid, 

phospholipid, and sterol pathways. Known to maintain balance in the membrane, these 

pathways are linked via shared metabolites that are commonly used for cellular signalling 

(Pina et al.  2018; Han et al. 2010). It is understood that these pathways play a key role 

within protein quality control and membrane homeostasis, however understanding of the 

mechanistic nature of this maintenance is in its infancy. Han et al. (2010) found that the Orm 

proteins in yeast work to control membrane biogenesis coordinating and regulating 

sphingolipid synthesis. Testing multiple stress conditions on mutant phenotypes for one or 

more of the Orm proteins, revealed the nature of this mechanism. Further research 

investigating how mutant phenotypes of Orm proteins respond to prion presence could 

support the links to these pathways.  

 

Given the number of distinct variants present within the prions, it would be interesting within 

this experimentation to have included a variety of variant strengths from weak to very strong 

(Stein and True, 2011; Kalastavadi and True, 2010; Bardill and True, 2010), to inform on the 

question whether the strength of a prion strain has a different metabolic fingerprint. This 

information would aid the yeast community with knowledge surrounding the presence of 

distinct strains and their cellular actions, as well as uncovering biomarkers that may be 

present within other amyloid species carrying with them the potential to confer a more exact 

prognosis for patients. 

 

Further research is required to investigate if homologous perturbations are present among 

the different yeast prions and if a universality of metabolomic perturbations can be observed 

across the eukaryotic domain within other model organisms and within cell culture. Given 

the focus of our findings on the phospholipids and sterols throughout experimentation, it is 

recommended that these experiments use GC-MS for sterol capture and lipidomic.  Within 

this preliminary work, although some changes have been observed, these has been limited 

due to the nature of experimentation.  

 

Curiously, observations of downregulation in some of the amino acid pathways were 

observed in [RNQ+] cells. These seem to correlate well with amino acid restriction studies, 

which demonstrate extended longevity under these conditions (Hu et al. 2014; Wu et al. 

2013; Eisenberg et al. 2012). Links between these findings and the recent finding that the 

presence of [PSI+] prolonged chronological lifespan of S. cerevisiae, bring about questions 



255 
 

regarding the comparative chronological lifespan of [rnq-] and [RNQ+] cells and if this amino 

acid restriction seen in [RNQ+] cells may explain this observation in [PSI+] and [RNQ+].   

 

In addition, the results of this work indicate that prion presence causes downregulations 

within the tyrosine pathways and similar findings have been observed by researchers 

working on other misfolding protein diseases such as PD (Hilaly et al. 2016). This suggests 

that there is a commonality here regarding metabolic disruptions, with yeast demonstrating 

the same metabolic responses to the presence of prions that have observed in mammalian 

cells. Indeed, the connections between the role of Rnq1 and the influence of the prions to 

lipid membranes and sphingolipid rafts share some commonality to the well-known surface 

glycoprotein PrP, which is localised in the membrane lipid rafts, interacting with a variety of 

proteins and regulating synapse transmission (Bieberich, 2018; Glich et al. 2006; Collinge, 

2005; Unterberger et al. 2005). There is a growing body of evidence suggesting the 

importance between misfolded proteins, lipid membranes and the interactions between the 

two and yeast and their prions would provide a convenient and replicable model system in 

which to undertake these investigations. 

 

7.5. The metabolic perturbations associated with toxicity of 
overexpression of Rnq1 protein 
 
Chapter six aimed to investigate the induction of toxicity to cells caused by Rnq1 

overexpression but also reaffirmed many of the previous findings from chapter five, 

strengthening our argument for the universality of prion mitigated metabolic effects. 

However, the results within this chapter did not reliably identify the metabolic disruptions that 

arise as a result of induced Rnq1 toxicity. Considerable overlap between the pathways 

effected by [RNQ+] and the pathways affected by the presence of the overexpression 

plasmid were observed. The merits of changing the GAL promoter on the plasmid used for 

the overexpression of Rnq1 were discussed (Section 6.6.) to aid in mitigating the effects of 

the plasmid from those cause by Rnq1-induced toxicity (Da Silva and Srikrishnan, 2012; 

Blazek and Alper, 2012). 

 

Analyses performed on samples of [RNQ+] and [RNQ+] with over expression highlighted the 

sphingolipid pathways as being the most perturbed. However, upon closer examination of 

this data, a sporadic pattern of up and downregulation is seen across both sample groups, 

making it difficult to draw conclusions from the data. It was considered that this may be due 
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to the lack of NIM data in this study when compared to the previous experiments. Potentially 

this NIM data may have provided a clarity to the pathways overlays that was not possible 

using only PIM data. Furthermore, the change of media from glucose to galactose in this 

experiment prevented comparisons with previous studies and highlighted the requirement 

for the inclusion of a Δrnq strain within this experiment. The loss of Rnq1 function effects 

may have changed on alternative media and were not seen in the top pathway hits as might 

have been expected, although other explanations could have been the different growth 

stage that these cells were sampled at.  

 

These experiments have provided valuable information about how to investigate toxicity in 

cells using a metabolomics approach and many of these are discussed in Section 6.5.3. 

PCAs and OPLS-DA provide ample evidence that all biological classes are metabolically 

distinct, providing a proof of concept. It would be advised that further research used NMR 

instead of, or alongside LCMS, given its non-destructive nature and that other yeast models 

for toxicity including Meriin et al. (2002) polyQ polypeptide 103Q be used.  

 

7.6. Conclusion 
 
This research has revealed that yeast prions share many of the metabolic perturbations 

associated with prion and amyloid disease in mammals (Bourgognon et al.  2018; Varma et 

al. 2018; Wilkins and Trushina, 2018; Laurens et al. 2015; Han et al. 2011; Oresic et al. 

2011; Pushie et al. 2011; Allison et al. 2008; Allison et al. 2007). These include observations 

of significant perturbations within lipid metabolism (the sphingolipid pathways, 

geranylgeranyldiphosphate biosynthesis I (via mevalonate) and ergosterol), amino acid 

metabolism and some disruption to energy metabolism. Having confirmed these similarities, 

questions arise regarding the impact of this knowledge. Given that most cells are known to 

be subject to considerable harm from misfolded proteins, how yeast circumnavigate this 

harm, if indeed they are harmful at all and if not why not, may provide valuable information 

about the pathology of these diseases and their influence on metabolism.  

 

The native role of the Rnq1 protein downregulates the ubiquinone biosynthesis pathways 

within cells, suggesting that Rnq1 protein may play a lipid/mevalonate-based cytoprotective 

role as a regulator of ubiquinone production. The intrinsic links between the native role and 

realities of prion formation are not surprising, given the Lamarckian or epigenetic nature of 

the [RNQ+] prion and its beneficial effects in some environmental conditions (Chakravarty et 
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al. 2020; Itakura et al. 2020; Jarosz et al. 2014a; Halfmann et al. 2012). Are these beneficial 

effects of prion formation present in some of the mammalian prions; simply masked in later 

life by the devastating effects of their presence and potentially providing a similar plasticity 

to changing environmental conditions? Or are yeast cells simply able to circumnavigate the 

toxic effects of prion formation due to their continual transmission of those prions to daughter 

cells and their relatively short life spans? A common technique within wine making may be 

able to help with this inquiry, Potassium sorbate added to a growing yeast culture has the 

ability not to kill the yeast therein, but to effectively make all the yeast present sterile, 

impairing their ability to reproduce. Could such an addition to cells containing [RNQ+] prions, 

or any other yeast prion for that matter, cause the induction of the cytotoxic effects so 

commonly seen in mammalian cells? With regard to prion proliferation with yeast cells, could 

the observations of perturbations within the sphingolipid pathways here indicative of barrier 

diffusion (Clay et al. 2014) or unequal (mother to daughter cell) partitioning mechanism (Cox 

and Tuite, 2019; Ness et al. 2017).  

 

Paglia et al. (2018) argue that the use of metabolomics within the amyloid field has not been 

given the attention it deserves, while Narayan et al. (2014) state that the use of appropriate 

models to increase fundamental understanding of amyloid disease should be overlooked at 

our peril. Hence still in its infancy, metabolomics experimentation that does exist within the 

field, much like this present study, tend to propose more questions than they answer, further 

strengthening the argument for more research (Shao and Le, 2019; Paglia et al. 2018; 

Varma et al. 2018). With an aging global population and amyloid disease set to be the ‘next 

great plague’, all opportunities to increase our understanding of these diseases must be 

explored (Olshansky et al. 2005; World Alzheimer report, 2016; World Alzheimer report, 

2016). Even if effective treatments were found, it is unlikely that they will simply be made 

available to everyone. Efficient and effective early diagnosis will still be a requirement of 

these treatments, if they are to aid in the prevention of these devastating diseases to as 

many people as possible, and so it seems there is an important place for metabolomics 

firmly rooted in this field (Jiang et al. 2019; Paglia et al. 2018). 
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Appendixes  
 
Appendix A 
 
Details the top ten pathway hits for Chapter 4 analysis, specifically relating to Table 4.2., 
4.4., 4.6, 4.8. and 4.12. respectively.  
 
Table A.1. Top Ten PIM pathway hits via Metaboanalyst’s Mummichog using XCMS 
data.  
 

Pathway Name  Pathway 
total 

Hits 
total 

Hits sig EASE FET Gamma 

tryptophan degradation to 2-amino-3-
carboxymuconate semialdehyde 

13 6 5 0.09457 0.016791 0.001701 

tryptophan degradation I (via anthranilate) 9 5 4 0.20286 0.043635 0.002779 
<i>trans, trans</i>-farnesyl diphosphate 
biosynthesis 

5 4 3 0.40064 0.109 0.007017 

biotin biosynthesis from 7-keto-8-
aminopelargonate 

15 7 4 0.42055 0.16963 0.007724 

isoleucine biosynthesis 15 5 3 0.5325 0.20705 0.013436 
hexaprenyl diphosphate biosynthesis 6 5 3 0.5325 0.20705 0.013436 
salvage pathways of pyrimidine 
deoxyribonucleotides 

17 5 3 0.5325 0.20705 0.013436 

homoserine biosynthesis 12 2 2 0.55112 0.10985 0.01477 
nicotinate riboside salvage pathway I 5 2 2 0.55112 0.10985 0.01477 
dolichol and dolichyl phosphate biosynthesis 13 2 2 0.55112 0.10985 0.01477 

The name of the pathway, the total number of metabolites known within the pathway, the 
total number of hits, the total number of significant hits, and the significance scores EASE, 
FET and Gamma as calculated by Metaboanalyst.   
 
Table A.2. Top Ten NIM pathway hits via Metaboanalyst’s Mummichog using XCMS 
data.  
 

Pathway Name  Pathway 
total 

Hits 
total 

Hits sig EASE FET Gamma 

phosphopantothenate biosynthesis I 16 5 4 0.52968 0.21092 0.010671 
leucine biosynthesis 16 4 3 0.71247 0.34181 0.022197 
pyridoxal 5'-phosphate salvage pathway 13 4 3 0.71247 0.34181 0.022197 
nicotinamide riboside salvage pathway II 7 2 2 0.76657 0.26946 0.028388 
thiazole biosynthesis III (eukaryotes) 11 2 2 0.76657 0.26946 0.028388 
xylose metabolism 8 2 2 0.76657 0.26946 0.028388 
sphingolipid recycling and degradation (yeast) 22 2 2 0.76657 0.26946 0.028388 
sphingosine and sphingosine-1-phosphate 
metabolism 

14 2 2 0.76657 0.26946 0.028388 

xylitol degradation 8 2 2 0.76657 0.26946 0.028388 
ubiquinol-6 biosynthesis (eukaryotic) 21 5 3 0.83433 0.53814 0.039989 

The name of the pathway, the total number of metabolites known within the pathway, the 
total number of hits, the total number of significant hits, and the significance scores EASE, 
FET and Gamma as calculated by Metaboanalyst.   
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Table A.3. Top Ten PIM pathway hits via Metaboanalyst’s Mummichogg using 
MZmine2 data.  

Pathway Name Pathway 
total 

Hits 
total 

Hits 
sig EASE FET Gamma 

salvage pathways of pyrimidine deoxyribonucleotides 17 6 4 0.26337 0.075142 0.001591 

tryptophan biosynthesis 17 9 5 0.27948 0.10584 0.00173 
4-amino-2-methyl-5-diphosphomethylpyrimidine 
biosynthesis 11 4 3 0.35673 0.088631 0.002596 

thiamin diphosphate biosynthesis IV (eukaryotes) 11 4 3 0.35673 0.088631 0.002596 

pyridoxal 5'-phosphate salvage pathway 13 4 3 0.35673 0.088631 0.002596 
tryptophan degradation to 2-amino-3-carboxymuconate 
semialdehyde 13 4 3 0.35673 0.088631 0.002596 

tryptophan degradation I (via anthranilate) 9 4 3 0.35673 0.088631 0.002596 

methionine biosynthesis 18 8 4 0.46127 0.2066 0.004561 

lipoate biosynthesis and incorporation I 9 2 2 0.51756 0.094284 0.006232 

nicotinate riboside salvage pathway I 5 2 2 0.51756 0.094284 0.006232 

The name of the pathway, the total number of metabolites known within the pathway, the 
total number of hits, the total number of significant hits, and the significance scores EASE, 
FET and Gamma as calculated by Metaboanalyst.  
 
Table A.4. Top Ten NIM pathway hits via Metaboanalyst’s Mummichog using MZmine2 
data.  

Pathway Name  Pathway 
total 

Hits 
total 

Hits 
sig EASE FET Gamma 

6-hydroxymethyl-dihydropterin diphosphate 
biosynthesis I 14 4 3 0.14625 0.019586 0.000531 

glycine biosynthesis II 8 2 2 0.32375 0.032041 0.001388 

glycine biosynthesis from serine 5 2 2 0.32375 0.032041 0.001388 

serine biosynthesis from glyoxylate 5 2 2 0.32375 0.032041 0.001388 

nicotinamide riboside salvage pathway I 7 2 2 0.32375 0.032041 0.001388 

glycine cleavage 11 2 2 0.32375 0.032041 0.001388 

pyrimidine ribonucleosides degradation II 6 2 2 0.32375 0.032041 0.001388 

folate transformations 26 7 3 0.36067 0.11365 0.001703 

phosphopantothenate biosynthesis I 16 7 3 0.36067 0.11365 0.001703 

folate interconversions 22 8 3 0.4297 0.15899 0.002512 

The name of the pathway, the total number of metabolites known within the pathway, the 
total number of hits, the total number of significant hits, and the significance scores EASE, 
FET and Gamma as calculated by Metaboanalyst.   
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Table A.5. Top Ten NIM pathway hits via Metaboanalyst’s Mummichog using 
comparative data.  

Pathway Name Pathway 
total Hits total Hits sig EASE FET Gamma 

ubiquinol-6 biosynthesis (eukaryotic) 21 6 4 0.51914 0.22761 0.0068221 
leucine biosynthesis 16 4 3 0.57758 0.21942 0.0088931 
pyridoxal 5'-phosphate salvage pathway 13 4 3 0.57758 0.21942 0.0088931 
sphingolipid recycling and degradation (yeast) 22 2 2 0.67657 0.18784 0.01429 
xylitol degradation 8 2 2 0.67657 0.18784 0.01429 
phosphopantothenate biosynthesis I 16 5 3 0.71593 0.37775 0.017462 
mevalonate pathway 17 3 2 0.81695 0.40205 0.03071 
xylose metabolism 8 3 2 0.81695 0.40205 0.03071 
sphingosine and sphingosine-1-phosphate 
metabolism 14 3 2 0.81695 0.40205 0.03071 

salvage pathways of pyrimidine 
deoxyribonucleotides 17 7 3 0.88128 0.65561 0.046963 

The name of the pathway, the total number of metabolites known within the pathway, the 
total number of hits, the total number of significant hits, and the significance scores EASE, 
FET and Gamma as calculated by Metaboanalyst.   
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Appendix B 
 

B.1. Statistical analysis of comparative metabolomic data in Metaboanalyst finds 
significant differences between [rnq-] and [rnq-] with mild oxidative stress samples  
Comparative data were treated in an identical manner to data in section 4.5., with all 12 

samples being subjected to pairwise comparison within Metaboanalyst, using the settings 

described in section 2.9. This time however resultant T-tests, with the adjusted p-value of 

=>0.01, found 2189 positive and 1354 negative features that had been significantly altered 

(p-value=>0.01) when comparing [rnq-] samples and [rnq-] with mild oxidative stress 

samples. Notably more PIM features than NIM features, something which had not been 

previously observed using this programme. 

 

B.2. Tentative feature ID and pathway analysis of comparative metabolomic data via 
Metaboanalyst  
As in chapter 4, to establish the identity and run pathway analysis on the increased and 

decreased features detected by both XCMS and MZmine2, the 2189 PIM features and 1354 

NIM features where subject to Metaboanalyst’s, Mummichog, Peaks to Pathways function, 

as indicated by Figure 5.1. A new algorithm available within Metaboanalyst, known as GSEA, 

believed to have been adapted from the GSEA algorithm commonly used in genetic analysis, 

described by Metaboanalyst as ‘a cutoff-free method using the overall rank based on 

t.score’, was selected. This decision was made based on a personal dislike of the arbitrary 

cut off points that are required by the previous method, in requiring a limited number of 

significant hits for algorithm function. Once again, BioCyc’s Fungi pathway library for 

Saccharomyces cerevisiae (yeast) was selected, providing details of the most significantly 

different metabolites, the direction of the disturbance (whether they were up or down 

regulated), and the most significantly disrupted pathways including the total number of hits 

within specified pathways (Tables A.1., A.2., A.3. and A.4.). Curiously within the PIM results 

show only downregulation for the top 25 hits, this is something that has not been previously 

observed. However, more correlation is observed between PIM and NIM results than ever 

before.  
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Table B.1. The top twenty-five unique and available proposed identities of the most 
significant PIM comparative features identified by Metaboanalyst’s T-test.  
 

m/z RT (min) Proposed Identity Relative change [rnq-] 
> [rnq-] stress p-value FDR Mass 

difference 
204.0643 2.52 indole pyruvate ↓ 1.11E-13 1.86E-10 0.0012 
251.1036 1.3 ch33ado ↓ 1.14E-13 1.86E-10 0.0018 
234.078 1.91 cpd-822 ↓ 4.05E-13 3.06E-10 0.0007 

121.0683 0.95 homo-ser ↓ 4.37E-13 3.06E-10 0.0006 

399.1206 2.76 s-adenosyl-4-methylthio-2-
oxobutanoate ↓ 1.12E-12 4.56E-10 0.0001 

310.1084 1.17 s-hydroxymethylglutathione ↓ 1.36E-12 5.07E-10 0.0018 
137.0709 0.89 c08270 ↓ 1.45E-12 5.07E-10 0.0013 

253.0924 2.52 c05512 ↓ 3.65E-12 9.40E-10 0.0008 

311.0775 1.92 c04677 ↓ 4.40E-12 9.81E-10 0.0025 
183.0805 6.17 coniferyl-alcohol ↓ 4.76E-12 1.00E-09 0.0012 
292.0789 2.83 cpd-5923 ↓ 4.90E-12 1.00E-09 0.0028 
274.0688 2.51 n-acetyl-d-glucosamine-1-p ↓ 5.72E-12 1.07E-09 0.0003 
267.098 0.67 c00212 ↓ 5.92E-12 1.07E-09 0.0012 

269.1132 1.29 7-8-dihydropteroate ↓ 6.62E-12 1.16E-09 0.0014 
149.0111 1.51 imidazole-acetol-p ↓ 7.45E-12 1.20E-09 0.0000 

167.0825 0.86 cpd-371 ↓ 1.34E-11 1.89E-09 0.0004 

310.093 1.5 cpd-10809 ↓ 1.62E-11 2.07E-09 0.0018 
237.0858 0.9 c00534 ↓ 1.62E-11 2.07E-09 0.0012 
120.0476 2.52 amino-oxobut ↓ 1.71E-11 2.07E-09 0.0006 
218.0817 2.91 cpd-12676 ↓ 4.27E-11 4.19E-09 0.0010 
179.0811 0.9 3-hydroxy-l-kynurenine ↓ 4.82E-11 4.63E-09 0.0005 
175.0623 2.81 indole_acetate_auxin ↓ 1.28E-10 1.04E-08 0.0010 
292.1013 1.29 canavaninosuccinate ↓ 1.42E-10 1.11E-08 0.0006 
185.0938 0.86 c00526 ↓ 1.58E-10 1.14E-08 0.0017 
252.0866 2.52 c01136 ↓ 2.48E-10 1.60E-08 0.0022 

Their m/z values, retention times, up or down regulation when comparing [rnq-] to [rnq-] with 
oxidative stress, the p-value, false discovery rate and mass difference as calculated by 
Metaboanalyst.  
 
Table B.2. Top Ten PIM pathway hits via Metaboanalyst’s Mummichogg using 
comparative data.  
 

Pathway Name Pathway total Hits total P-value NES 

tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde 29 9 0.01124 1.736 
UDP-N-acetylglucosamine biosynthesis 12 5 0.02353 1.577 
UDP-<i>N</i>-acetyl-D-glucosamine biosynthesis II 12 5 0.02353 1.577 
tryptophan degradation I (via anthranilate) 3 1 0.025 1.229 
phenylalanine biosynthesis 16 8 0.03448 1.49 
tyrosine biosynthesis 12 7 0.03571 1.487 
hexaprenyl diphosphate biosynthesis 12 2 0.03704 1.341 
<i>trans, trans</i>-farnesyl diphosphate biosynthesis 21 5 0.04706 1.515 
leucine biosynthesis 9 1 0.04839 -1.334 
biotin biosynthesis from 7-keto-8-aminopelargonate 9 1 0.04839 -1.334 

The name of the pathway, the total number of metabolites known within the pathway, the 
total number of hits, the total number of significant hits, and the significance scores p-value 
and NES as calculated by Metaboanalyst.  
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Table B.3. The top twenty-five unique and available proposed identities of the most 
significant PIM comparative features identified by Metaboanalyst’s T-test.  
 

m/z RT (min) Proposed Identity Relative change [rnq-] 
> [rnq-] stress p-value FDR Mass 

difference 
218.0405 2.50 tyr ↓ 1.07E-13 2.56E-10 0.0007 
267.0875 1.29 cpd-9875 ↓ 1.60E-13 2.56E-10 0.0006 
109.0152 2.50 b-alanine ↓ 1.29E-12 6.72E-10 0.0001 
181.0704 7.02 coniferyl-alcohol ↑ 1.40E-12 6.72E-10 0.0018 
190.0423 2.50 dehydroquinate ↓ 1.47E-12 6.72E-10 0.0015 
220.051 2.50 l-histidinol-p ↓ 5.09E-12 1.48E-09 0.0017 

268.0735 2.82 cpd-13040 ↓ 1.17E-11 2.87E-09 0.0015 

174.0513 2.50 cpd-1091 ↓ 2.36E-11 4.61E-09 0.0007 

172.0345 2.50 3-dehydro-shikimate ↓ 2.39E-11 4.61E-09 0.0012 
144.0409 2.50 cpd-578 ↓ 3.20E-11 5.44E-09 0.0005 
269.047 7.02 dihydrokaempferol-cmpd ↑ 4.78E-11 7.06E-09 0.0015 

231.0712 1.84 cpd-822 ↓ 5.08E-11 7.06E-09 0.0008 
233.0541 4.27 c09871 ↓ 1.63E-10 1.74E-08 0.0000 
199.0217 4.28 o-phospho-l-homoserine ↓ 2.27E-10 2.21E-08 0.0010 
205.0563 1.38 c00534 ↓ 3.51E-10 2.98E-08 0.0005 

219.0414 2.50 phosphoryl-choline ↓ 3.68E-10 3.02E-08 0.0014 

206.0395 2.50 homo-cit ↓ 3.89E-10 3.11E-08 0.0007 
335.0771 1.29 cpd-548 ↓ 4.42E-10 3.45E-08 0.0023 
221.9796 4.26 4-oxalomesaconate ↑ 5.17E-10 3.67E-08 0.0008 
234.042 4.08 kynurenate ↓ 8.63E-10 5.63E-08 0.0018 
268.095 1.29 c00526 ↓ 1.00E-09 6.28E-08 0.0011 

214.0408 3.02 o-ureidohomoserine ↓ 1.18E-09 7.12E-08 0.0001 
303.9799 2.50 c11355 ↓ 1.22E-09 7.21E-08 0.0022 
270.0869 4.46 dihydro-neo-pterin ↓ 1.44E-09 8.20E-08 0.0025 
136.035 2.50 c00262 ↓ 1.51E-09 8.48E-08 0.0004 

Their m/z values, retention times, up or down regulation when comparing [rnq-] to [rnq-] with 
oxidative stress, the p-value, false discovery rate and mass difference as calculated by 
Metaboanalyst. 
 
Table B.4. Top Ten NIM pathway hits via Metaboanalyst’s Mummichog using 
comparative data.  
 

Pathway Name Pathway total Hits total P-value NES 

tryptophan degradation I (via anthranilate) 9 4 0.01493 1.604 
alanine biosynthesis 4 3 0.01667 1.49 
alanine degradation III 4 3 0.01667 1.49 
beta-alanine biosynthesis 10 1 0.02174 1.361 
tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde 13 7 0.02632 1.498 
glycine biosynthesis from glyoxylate 4 2 0.0339 1.474 
tyrosine biosynthesis 11 4 0.04478 1.445 
tyrosine degradation 12 4 0.04478 1.445 
thiazole biosynthesis III (eukaryotes) 11 2 0.05085 1.437 
histidine biosynthesis 22 4 0.07463 1.401 

The name of the pathway, the total number of metabolites known within the pathway, the 
total number of hits, the total number of significant hits, and the significance scores p-value 
and NES as calculated by Metaboanalyst.  
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Appendix C  
 

C.1. Statistical analysis of XCMS/MZmine2 comparative metabolomic data in 
Metaboanalyst finds significant differences between [rnq-] and [RNQ+] samples  
Comparative data were treated in an identical manner to data in section 4.5., with all 12 

samples being subjected to pairwise comparison within Metaboanalyst, using the settings 

described in section 2.9. This time however resultant T-tests, with the adjusted p-value of 

=>0.01, found 2880 positive and 1577 negative features that had been significantly altered 

(p-value=>0.01) when comparing [rnq-] samples and [RNQ+] samples.  

 

C.2. Tentative feature ID and pathway analysis of XCMS/MZmine2 comparative 
metabolomic data via Metaboanalyst  
As in chapter 4, to establish the identity and run pathway analysis on the increased and 

decreased features detected by both XCMS and MZmine2, the 2880 PIM features and 1577 

NIM features where subject to Metaboanalyst’s, Mummichog, Peaks to Pathways function, 

as indicated by Figure 5.1. The GSEA algorithm was selected alongside BioCyc’s Fungi 

pathway library for Saccharomyces cerevisiae (yeast). This provided details of the most 

significantly different metabolites, the direction of the disturbance (whether they were up or 

down regulated), and the most significantly disrupted pathways including the total number 

of hits within specified pathways (Tables B.1., B.2., B.3. and B.4.). Curiously within the PIM 

results show only downregulation for the top 25 hits, this is something that has not been 

previously observed. However, more correlation is observed between PIM and results than 

ever before.  
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Table C.1. The top twenty-five unique and available proposed identities of the most 
significant PIM comparative features identified by Metaboanalyst’s T-test.  
 
 

m/z RT (min) Proposed Identity Relative change 
[rnq-] > [RNQ+] 

p-value FDR Mass 
difference 

252.0866 2.5168 c01136 ↓ 2.90E-13 1.42E-09 0.0022 
234.078 2.3707 cpd-822 ↓ 2.04E-12 3.38E-09 0.0007 
270.1165 1.2872 s-hydroxymethylglutathione ↓ 1.97E-11 1.10E-08 0.0023 

183.0805 6.1744 coniferyl-alcohol ↓ 2.95E-11 1.31E-08 0.0012 
269.1132 1.2909 7-8-dihydropteroate ↓ 9.88E-11 3.32E-08 0.0014 
81.0334 1.509 2-keto-isovalerate ↓ 1.06E-10 3.32E-08 0.0001 

256.0588 3.7321 n-acetyl-d-glucosamine-1-p ↓ 1.29E-10 3.32E-08 0.0007 
399.1206 2.7587 s-adenosyl-4-methylthio-2-

oxobutanoate 
↓ 1.87E-10 4.36E-08 0.0001 

311.0775 1.9184 c04677 ↓ 2.28E-10 4.85E-08 0.0025 
235.0807 2.5194 ch33ado ↓ 2.85E-10 5.13E-08 0.0019 
377.1456 2.3517 c00255 ↓ 2.87E-10 5.13E-08 0.0000 
99.0458 5.0065 amino-oh-hydroxymethyl-

dihydropteridine 
↑ 3.92E-10 6.40E-08 0.0010 

292.0789 2.8304 cpd-5923 ↓ 4.59E-10 7.02E-08 0.0028 
354.0989 3.7515 cpd-548 ↓ 7.28E-10 9.64E-08 0.0023 
273.0871 1.8453 trp ↓ 9.25E-10 1.13E-07 0.0025 
108.0456 2.2337 c00740 ↓ 1.23E-09 1.26E-07 0.0001 
204.0643 2.5193 indole_pyruvate ↓ 1.36E-09 1.33E-07 0.0012 
253.0924 2.5164 c05512 ↓ 1.67E-09 1.49E-07 0.0008 
289.1401 0.8856 cpd-9700 ↓ 2.63E-09 2.13E-07 0.0006 
149.0111 1.509 imidazole-acetol-p ↓ 2.82E-09 2.13E-07 0.0000 
441.1523 8.4308 methylene-thf ↑ 3.67E-09 2.50E-07 0.0006 
210.9926 1.5092 cpd-4211 ↓ 4.17E-09 2.71E-07 0.0007 
292.1013 1.2898 canavaninosuccinate ↓ 4.34E-09 2.76E-07 0.0006 
102.0919 0.6209 c01475 ↑ 4.48E-09 2.78E-07 0.0005 
287.0806 4.4028 c01762 ↓ 1.03E-08 5.37E-07 0.0019 

Their m/z values, retention times, up or down regulation when comparing [rnq-] to [RNQ+], 
the p-value, false discovery rate and mass difference as calculated by Metaboanalyst.  
 
Table C.2. Top Ten PIM pathway hits via Metaboanalyst’s Mummichogg using 
comparative data.  
 

Pathway Name Pathway 
total 

Hits P_val P_adj NES 

tetrapyrrole biosynthesis 11 1 0.04 0.8013 1.347 
tetrapyrrole biosynthesis II 11 1 0.04 0.8013 1.347 
fatty acid biosynthesis initiation 7 1 0.04 0.8013 1.347 
fatty acid biosynthesis (concise) 10 1 0.04 0.8013 1.347 
very long chain fatty acid biosynthesis 24 1 0.04 0.8013 1.347 
palmitoleate biosynthesis 9 1 0.04 0.8013 1.347 
ethanol degradation I 7 1 0.04 0.8013 1.347 
pyruvate dehydrogenase complex 10 1 0.04 0.8013 1.347 
carnitine shuttle 4 1 0.04 0.8013 1.347 
UDP-N-acetylglucosamine biosynthesis 12 6 0.05769 0.8013 1.696 

The name of the pathway, the total number of metabolites known within the pathway, the 
total number of hits, the total number of significant hits, and the significance scores p-value 
and NES as calculated by Metaboanalyst. 
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Table C.3. The top twenty-five unique and available proposed identities of the most 
significant NIM comparative features identified by Metaboanalyst’s T-test.  
 

m/z RT (min) Proposed Identity Relative change 
[rnq-] > [RNQ+] p-value FDR Mass 

difference 
144.0409 2.4967 cpd-578 ↓ 4.89E-14 5.83E-11 0.0005 
218.0405 2.4968 tyr ↓ 5.47E-14 5.83E-11 0.0007 
267.0661 1.1675 c02291 ↑ 2.34E-11 1.08E-08 0.0010 
267.0875 1.285 cpd-9875 ↓ 3.39E-11 1.08E-08 0.0006 
231.0712 1.2858 cpd-822 ↓ 6.50E-11 1.60E-08 0.0008 
303.9799 2.501 c11355 ↓ 1.34E-10 3.07E-08 0.0022 

268.095 1.285 c00526 ↓ 1.45E-10 3.08E-08 0.0011 
109.0152 2.4973 b-alanine ↓ 2.03E-10 3.90E-08 0.0001 
165.0598 1.1758 2-deoxy-d-glucose ↓ 2.08E-10 3.90E-08 0.0014 
220.051 2.4977 l-histidinol-p ↓ 3.58E-10 6.03E-08 0.0017 

172.0345 2.499 3-dehydro-shikimate ↓ 4.44E-10 6.76E-08 0.0012 
214.0408 3.0154 o-ureidohomoserine ↓ 5.23E-10 7.60E-08 0.0001 
369.0298 1.9388 pseudouridine-5-p ↑ 7.57E-10 9.67E-08 0.0037 
231.0712 1.8377 cpd-822 ↓ 1.41E-09 1.36E-07 0.0008 
335.0771 1.2897 cpd-548 ↓ 1.43E-09 1.36E-07 0.0023 
199.0217 4.278 o-phospho-l-homoserine ↓ 1.79E-09 1.51E-07 0.0010 
219.0414 2.4988 phosphoryl-choline ↓ 2.38E-09 1.90E-07 0.0014 
205.0563 1.3752 c00534 ↓ 2.76E-09 2.06E-07 0.0005 
369.0298 1.7239 pseudouridine-5-p ↑ 3.36E-09 2.34E-07 0.0037 
268.0735 2.8159 cpd-13040 ↓ 7.72E-09 4.74E-07 0.0015 
206.0395 2.5003 homo-cit ↓ 7.94E-09 4.79E-07 0.0007 
136.035 2.4951 c00262 ↓ 8.37E-09 4.95E-07 0.0004 
269.0971 1.2908 cpd-13040 ↓ 8.74E-09 5.08E-07 0.0002 
190.0423 2.4954 dehydroquinate ↓ 9.48E-09 5.23E-07 0.0015 
233.0541 4.2685 c09871 ↓ 9.49E-09 5.23E-07 0.0000 

Their m/z values, retention times, up or down regulation when comparing [rnq-] to [RNQ+], 
the p-value, false discovery rate and mass difference as calculated by Metaboanalyst. 
 
Table C.4. Top Ten NIM pathway hits via Metaboanalyst’s Mummichog using 
comparative data.  
 

Pathway Name Pathway 
total 

Hits P_val P_adj NES 

tyrosine biosynthesis 11 4 0.02 0.928 1.736 
tyrosine degradation 12 4 0.02 0.928 1.736 
urea degradation 9 1 0.02273 0.928 1.365 
putrescine biosynthesis 4 1 0.03448 0.928 -1.311 
beta-alanine biosynthesis 10 1 0.04545 0.928 1.346 
formaldehyde oxidation II (glutathione-
dependent) 

12 1 0.04545 0.928 1.333 

methionine degradation I (to homocysteine) 11 1 0.06897 0.928 -1.305 
tryptophan biosynthesis 17 7 0.09302 0.928 -1.519 
xylose metabolism 8 1 0.1136 0.928 1.288 
xylitol degradation 8 1 0.1136 0.928 1.288 

 
The name of the pathway, the total number of metabolites known within the pathway, the 
total number of hits, the total number of significant hits, and the significance scores p-value 
and NES as calculated by Metaboanalyst.   
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Appendix D  
 

D.1. Statistical analysis of comparative metabolomic data in Metaboanalyst finds 
significant differences between groups W, X, Y and Z  
Analysis via Metaboanalyst was slightly different given that four groups were being 

compared, all 24 samples being subjected to group comparison within Metaboanalyst, using 

the settings described in section 2.9. This time however T-tests were not possible due the 

lack of pairwise comparison and so ANOVAs were used, with the adjusted p-value of =>0.01, 

found 1800 significant changes at T3 and 2361 significant changes at T4 (p-value=>0.01) 

when comparing samples in group W, X, Y and Z.  

 

D.2. Tentative feature ID and pathway analysis of comparative metabolomic data via 
Metaboanalyst of groups W, X, Y and Z 
As in chapter 4, to establish the identity and run pathway analysis on the increased and 

decreased features detected by both XCMS and MZmine2, the 1800 T3 features and 2361 

T4 features where subject to Metaboanalyst’s, Mummichog, Peaks to Pathways function, as 

indicated by Figure 5.1. The GSEA algorithm was not available for multiple comparisons and 

so the need to revert back to the algorithm used in chapter 4 was essential, A p-value of 

1.0 𝑥𝑥 10−7 was selected for this algorithm functioning alongside BioCyc’s Fungi pathway 

library for Saccharomyces cerevisiae (yeast). This provided details of the most significantly 

different metabolites, the direction of the disturbance (whether they were up or down 

regulated), and the most significantly disrupted pathways including the total number of hits 

within specified pathways (Tables C.1., C.2., C.3. and C.4.).  
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Table D.1. The top twenty-five unique and available proposed identities of the most 
significant T3 comparative features identified by Metaboanalyst’s ANOVA.  
 

m/z RT 
(min) Proposed Identity 

Relative 
change 
W > X 

Relative 
change 
W > Y 

Relative 
change 
X > Y 

Relative 
change 
Y > Z 

p-value FDR Mass 
difference 

369.2373 5.9355 2-keto-3-methyl-
valerate ↑ ↑ ↓ ↑ 4.04E-07 4.05E-06 0.0002 

74.0597 1.8879 4-
hydroxyphenyllactate ↑ ↓ ↓ ↓ 1.37E-09 4.98E-08 0.0007 

175.0854 0.9929 allantoate ↑ ↑ ↓ ↓ 9.72E-07 7.80E-06 0.0016 

173.0757 2.3254 amino-acetone ↑ ↑ ↓ ↑ 8.68E-09 2.15E-07 0.0003 

389.1824 3.0421 anthranilate ↑ ↑ ↑ ↑ 8.68E-07 7.22E-06 0.0001 
110.06 4.2471 c00193 ↑ ↑ ↑ ↓ 9.05E-07 7.45E-06 0.0007 

102.0919 0.617 c00250 ↑ ↓ ↓ ↓ 2.78E-09 8.30E-08 0.0005 
231.2156 2.2425 c00534 ↑ ↓ ↓ ↓ 2.89E-08 5.74E-07 0.0015 
158.0629 0.995 c00882 ↑ ↑ ↓ ↓ 8.38E-11 5.62E-09 0.0013 
333.06 1.3453 c02763 ↑ ↑ ↓ ↑ 4.01E-10 1.89E-08 0.0011 

463.3517 5.0569 c04525 ↓ ↑ ↑ ↓ 7.87E-11 5.41E-09 0.0016 
123.0452 0.6415 c04677 ↑ ↑ ↓ ↑ 4.79E-09 1.31E-07 0.0016 
62.0604 0.6168 c05382 ↑ ↑ ↓ ↓ 3.75E-10 1.79E-08 0.0006 
216.0627 6.7033 c09871 ↓ ↑ ↑ ↑ 4.13E-07 4.10E-06 0.0010 
214.0721 7.7764 c11355 ↓ ↓ ↑ ↓ 4.83E-07 4.61E-06 0.0004 
336.2296 5.1849 canavaninosuccinate ↑ ↑ ↑ ↑ 2.06E-07 2.42E-06 0.0025 

220.0325 0.6425 cpd-10608 ↑ ↑ ↓ ↑ 5.63E-07 5.17E-06 0.0013 

118.0666 0.6419 cpd-11020 ↑ ↑ ↓ ↑ 1.17E-11 1.38E-09 0.0001 
109.1006 3.8885 cpd-195 ↓ ↓ ↑ ↓ 4.59E-12 7.20E-10 0.0008 
130.0655 0.9942 cpd-237 ↑ ↑ ↓ ↓ 2.06E-11 2.18E-09 0.0012 
81.0334 1.4721 cpd-255 ↑ ↑ ↓ ↑ 9.66E-07 7.80E-06 0.0001 
183.0923 3.9537 cpd-35 ↑ ↑ ↑ ↑ 8.47E-07 7.09E-06 0.0005 
235.1343 5.9861 cpd-375 ↑ ↓ ↑ ↓ 1.04E-08 2.45E-07 0.0008 
91.0568 0.6418 cpd-6082 ↑ ↑ ↓ ↑ 9.42E-11 6.05E-09 0.0003 
398.3275 4.0253 cpd-7682 ↑ ↑ ↑ ↑ 2.10E-10 1.13E-08 0.0009 

Their m/z values, retention times, up or down regulation when comparing groups W, X, Y 
and Z, the p-value, false discovery rate and mass difference as calculated by 
Metaboanalyst. 
 
Table D.2. Top Ten T3 pathway hits when comparing groups W, X, Y and Z via 
Metaboanalyst’s Mummichogg using comparative data.  
 

Pathway Name Pathway 
total Hits total Hits sig EASE FET Gamma 

leucine biosynthesis 16 8 7 0.20953 0.059754 0.032749 
tryptophan degradation I (via anthranilate) 9 5 5 0.2476 0.048279 0.034922 
methionine biosynthesis 18 7 6 0.30544 0.098258 0.038588 
phenylalanine biosynthesis 11 4 4 0.38246 0.088888 0.044281 
tetrahydrofolate biosynthesis 13 4 4 0.38246 0.088888 0.044281 
phenylalanine degradation 12 4 4 0.38246 0.088888 0.044281 
histidine biosynthesis 22 6 5 0.43119 0.15884 0.048468 
isoleucine biosynthesis 15 6 5 0.43119 0.15884 0.048468 
ubiquinol-6 biosynthesis (eukaryotic) 21 6 5 0.43119 0.15884 0.048468 
tryptophan degradation to 2-amino-3-
carboxymuconate semialdehyde 

13 6 5 0.43119 0.15884 0.048468 

The name of the pathway, the total number of metabolites known within the pathway, the 
total number of hits, the total number of significant hits, and the EASE, FET and Gamma 
scores as calculated by Metaboanalyst.  
 
 



290 
 

Table D.3. The top twenty-five unique and available proposed identities of the most 
significant T4 comparative features identified by Metaboanalyst’s ANOVA.  
 

m/z RT 
(min) Proposed Identity 

Relative 
change 
W > X 

Relative 
change 
W > Y 

Relative 
change 
X > Y 

Relative 
change 
Y > Z 

p-value FDR Mass 
difference 

148.075 8.6729 1-keto-2-methylvalerate ↓ ↓ ↓ ↓ 5.20E-12 9.15E-11 0.0014 

195.0877 1.2127 2-d-threo-hydroxy-3-
carboxy-isocaproate ↓ ↓ ↑ ↓ 1.34E-13 4.70E-12 0.0014 

121.0491 2.9086 2-oxobutanoate ↓ ↓ ↑ ↓ 1.03E-12 2.39E-11 0.0005 
442.1796 5.1176 5-methyl-thf ↓ ↑ ↑ ↓ 1.08E-13 4.03E-12 0.0037 

243.0738 1.2764 5-phospho-ribosyl-
glycineamide ↓ ↓ ↓ ↓ 1.80E-12 3.72E-11 0.0003 

336.2296 6.5379 6z8e10e14z-5s12r-
512-dihydroxyi ↑ ↑ ↑ ↑ 6.78E-14 2.89E-12 0.0005 

269.1132 1.2735 7-8-dihydropteroate ↑ ↑ ↓ ↑ 5.74E-16 1.12E-13 0.0014 
148.059 0.9987 acetylserine ↓ ↓ ↑ ↓ 7.22E-15 5.76E-13 0.0014 
120.0452 3.8036 amino-oxobut ↓ ↓ ↑ ↓ 1.27E-13 4.51E-12 0.0004 
92.0507 3.8032 b-alanine ↓ ↓ ↑ ↓ 2.23E-12 4.56E-11 0.0001 
308.0904 0.5363 c00051 ↓ ↓ ↑ ↓ 1.66E-12 3.46E-11 0.0007 
107.0499 2.6535 c00193 ↓ ↓ ↑ ↓ 3.72E-12 7.10E-11 0.0007 
135.0296 0.8818 c00242 ↓ ↓ ↑ ↓ 1.98E-13 6.27E-12 0.0006 
177.0892 2.4958 c00299 ↓ ↓ ↑ ↓ 1.84E-13 5.98E-12 0.0002 
161.0952 0.5966 c00526 ↓ ↓ ↑ ↓ 1.88E-14 1.18E-12 0.0007 
141.101 1.5583 c00534 ↓ ↓ ↑ ↓ 1.71E-13 5.70E-12 0.0012 
74.0597 1.724 c01475 ↓ ↓ ↑ ↓ 7.49E-13 1.83E-11 0.0003 
198.1138 2.4247 c01909 ↓ ↓ ↓ ↓ 2.28E-17 9.32E-15 0.0013 
223.0793 0.6938 c02052 ↓ ↓ ↑ ↓ 3.13E-13 8.94E-12 0.0020 
223.0727 0.6043 c02291 ↓ ↓ ↑ ↓ 2.92E-12 5.85E-11 0.0020 
213.1026 3.5926 c09871 ↓ ↓ ↑ ↓ 4.35E-12 7.99E-11 0.0010 
252.1074 1.1062 ch33ado ↓ ↓ ↑ ↓ 5.20E-12 9.15E-11 0.0017 
364.1559 2.074 cpd-10279 ↓ ↓ ↓ ↑ 1.16E-13 4.29E-12 0.0024 
328.1044 1.8014 cpd-10809 ↓ ↓ ↑ ↓ 2.03E-14 1.25E-12 0.0028 
291.0952 1.2759 cpd-13040 ↑ ↑ ↓ ↑ 3.27E-13 9.22E-12 0.0018 

Their m/z values, retention times, up or down regulation when comparing groups W, X, Y 
and Z, the p-value, false discovery rate and mass difference as calculated by Metaboanalyst. 
 
Table D.4. Top Ten T4 pathway hits when comparing groups W, X, Y and Z via 
Metaboanalyst’s Mummichogg using comparative data.  
 

Pathway Name Pathway 
total Hits total Hits sig EASE FET Gamma 

tryptophan biosynthesis 17 9 9 0.036781 0.18161 0.016493 
histidine biosynthesis 22 12 11 0.077401 0.23357 0.018822 
leucine biosynthesis 16 8 8 0.053308 0.23988 0.019129 
lysine biosynthesis 22 8 8 0.053308 0.23988 0.019129 
NAD biosynthesis from 2-amino-3-
carboxymuconate semialdehyde 

14 7 7 0.07718 0.31354 0.023169 

tryptophan degradation VIII (to tryptophol) 12 7 7 0.07718 0.31354 0.023169 
tryptophan degradation to 2-amino-3-
carboxymuconate semialdehyde 

13 7 7 0.07718 0.31354 0.023169 

arginine biosynthesis 26 13 11 0.18911 0.39771 0.029041 
NAD salvage pathway 17 6 6 0.11163 0.40464 0.029598 
folate transformations 26 6 6 0.11163 0.40464 0.029598 

The name of the pathway, the total number of metabolites known within the pathway, the 
total number of hits, the total number of significant hits, and the EASE, FET and Gamma 
scores as calculated by Metaboanalyst. 
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Appendix E  
 

E.1. Colony counts from all sample groups in Chapter six experiments four hours 
after Galactose induction  
Cells grown on filters on Galactose plates was rehydrated using 2ml of broth with vortexing 

and 100 ul was plated onto the appropriate solid media using glass beads. Solid media was 

incubated for four days at 30°C, at which point colonies were counted.  

 
Table E.1. Number of colonies present from six individual filters for all groups. 
 

 
[rnq-] (W) 

[rnq-] with 
overexpression of 

Rnq1 (X) 

 
[RNQ+] (Y) 

[RNQ+] with 
overexpression of 

Rnq1 (Z) 
Confluent Confluent 227 36 
Confluent Confluent 202 45 
Confluent Confluent 212 55 
Confluent Confluent 196 60 
Confluent Confluent 222 51 
Confluent Confluent 231 42 

 
 
The number of cells present in [RNQ+] samples and the number of cells in [RNQ+] with 

overexpression of Rnq1 samples reveals a 77.6% reduction in colonies as opposed to the 

25% reported by Douglas et al. (2008). This may well have been due to the underlying and 

unknown strength of [RNQ+] used here.  

  



292 
 

Appendix F 

 
Figure F.1. KEGG Metabolic pathway of amino acid biosynthesis. Red indicates metabolites detected within samples grown using growth condition three, ammonium as a sole nitrogen source, 
when applying a broth cell culture method and acetonitrile extraction protocol.  

A)  
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Figure F.2. Shows KEGG Metabolic pathway of amino acid biosynthesis, overlaid with the metabolic hits for samples grown using growth condition three, ammonium as a sole nitrogen 
source, when applying a broth cell culture method and A) 50:50 Acetonitrile/water extraction. Green circles indicate metabolites hit by all pathways, Fuchsia circles indicate metabolites hit by 
three methods, Blue circles indicate metabolites hit by two methods and Red circles indicate metabolites detected by only one method.  
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 B)  

 
 
Figure F.2. (Continued) Shows KEGG Metabolic pathway of amino acid biosynthesis, overlaid with the metabolic hits for samples grown using growth condition three, ammonium as a 
sole nitrogen source, when applying a broth cell culture method and B) Boiling ethanol extraction. Green circles indicate metabolites hit by all pathways, Fuchsia circles indicate metabolites 
hit by three methods, Blue circles indicate metabolites hit by two methods and Red circles indicate metabolites detected by only one method.   
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C)  

 
 
Figure F.2. (Continued) Shows KEGG Metabolic pathway of amino acid biosynthesis, overlaid with the metabolic hits for samples grown using growth condition three, ammonium as a 
sole nitrogen source, when applying a broth cell culture method and C) Chloroform/methanol extraction. Green circles indicate metabolites hit by all pathways, Fuchsia circles indicate 
metabolites hit by three methods, Blue circles indicate metabolites hit by two methods and Red circles indicate metabolites detected by only one method.   
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D)  

 
 
Figure F.2. (Continued) Shows KEGG Metabolic pathway of amino acid biosynthesis, overlaid with the metabolic hits for samples grown using growth condition three, ammonium as a 
sole nitrogen source, when applying a broth cell culture method and D) Pure Methanol extraction. Green circles indicate metabolites hit by all pathways, Fuchsia circles indicate metabolites 
hit by three methods, Blue circles indicate metabolites hit by two methods and Red circles indicate metabolites detected by only one method.   
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Appendix G 
 

 
 
Figure G.1. Pathway collage of three of the top 10 implicated pathways. (via BioCycs cellular overview) with standardised omics data of individual metabolites overlaid. A colour legend 
is shown in the top left-hand corner to signify the direction of the change indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black writing names individual 
metabolites, blue arrows depict reactions, pink arrows depict spontaneous reactions, faded grey circles show metabolites for which no data is present, coloured ‘heat blocks’ represent omics data. 
The first six boxes in any ‘heat block’ belong to Δrnq1 samples and the last six boxes belong to [rnq-] samples
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Figure G.2. Pathway collage of three of the top 10 implicated pathways (via BioCycs cellular overview) with standardised 
omics data of individual metabolites overlaid. A colour legend is shown in the top left-hand corner to signify the direction of the 
change indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black writing names individual 
metabolites, blue arrows depict reactions, pink arrows depict spontaneous reactions, faded grey circles show metabolites for which 
no data is present, coloured ‘heat blocks’ represent omics data. The first six boxes in any ‘heat block’ belong to Δrnq1 samples and 
the last six boxes belong to [rnq-] samples. 
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Figure G.3. Pathway collage of three of the top 10 implicated pathways (via BioCycs cellular overview) with standardised omics data of individual metabolites overlaid. A colour legend is 
shown in the middle left to signify the direction of the change indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black writing names individual metabolites, blue 
arrows depict reactions, pink arrows depict spontaneous reactions, faded grey circles show metabolites for which no data is present, coloured ‘heat blocks’ represent omics data. The first six boxes in 
any ‘heat block’ belong to Δrnq1 samples and the last six boxes belong to [rnq-] samples.  
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Figure G.4. Pathway collage of three of the top 10 implicated pathways (via BioCycs cellular overview) with standardised omics data of individual metabolites overlaid. A colour legend is 
shown in the top left-hand corner to signify the direction of the change indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black writing names individual metabolites, 
blue arrows depict reactions, pink arrows depict spontaneous reactions, faded grey circles show metabolites for which no data is present, coloured ‘heat blocks’ represent omics data. The first six 
boxes in any ‘heat block’ belong to Δrnq1 samples and the last six boxes belong to [rnq-] samples. 
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Figure G.5. Pathway collage of three of the top 10 implicated pathways (via BioCycs cellular overview) with standardised 
omics data of individual metabolites overlaid. A colour legend is shown in the top left-hand corner to signify the direction of the 
change indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black writing names individual 
metabolites, blue arrows depict reactions, pink arrows depict spontaneous reactions, faded grey circles show metabolites for which 
no data is present, coloured ‘heat blocks’ represent omics data. The first six boxes in any ‘heat block’ belong to Δrnq1 samples and 
the last six boxes belong to [rnq-] samples. 



302 
 

Figure G.6. Pathway collage 
of metabolic implications 
upstream from three of the 
top 10 implicated pathways 
with standardised omics 
data of individual metabo-
lites overlaid. A colour legend 
is shown to the centre left of 
the figure to signify the direc-
tion of the change indicated by 
colour. Dark blue labels at the 
top of the pathway state the 
pathway name, black writing 
names individual metabolites, 
blue arrows depict reactions, 
pink arrows depict spontane-
ous reactions, faded grey cir-
cles show metabolites for 
which no data is present, col-
oured ‘heat blocks’ represent 
omics data. The first six boxes 
in any ‘heat block’ belong to 
Δrnq1 samples and the last six 
boxes belong to [rnq-] sam-
ples. 

 

 

 

 

.
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Appendix H 

 
 

Figure H.1. Pathway collage of 5 of the top 10 implicated pathways (via BioCycs cellular overview) with standardised omics data of individual metabolites overlaid. A colour legend is 
shown in the bottom left-hand corner to signify the direction of the change indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black writing names individual 
metabolites, blue arrows depict reactions, coloured ‘heat blocks’ represent omics data where available. Reading from left to right, the first six boxes in any ‘heat block’ belong to [rnq-] samples and the 
last six boxes belong to [rnq-] with mild oxidative stress samples.   
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Figure H.2. Pathway collage of 4 of the top 10 implicated pathways (via BioCycs cellular overview) with standardised omics data of individual metabolites overlaid. A colour legend is 
shown in the top left-hand corner to signify the direction of the change indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black writing names individual metabolites, 
blue arrows depict reactions, coloured ‘heat blocks’ represent omics data where available. Reading from left to right, the first six boxes in any ‘heat block’ belong to [rnq-] samples and the last six boxes 
belong to [rnq-] with mild oxidative stress samples.   
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Figure H.3. Pathway collage of three of the top 10 implicated pathways in the loss of function effect (via BioCycs cellular overview) overlaid with Δrnq1, [rnq-] and [RNQ+] data. A colour 
legend is shown in the bottom left-hand corner to signify the direction of the change indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black writing names 
individual metabolites, blue arrows depict reactions, coloured ‘heat blocks’ represent omics data. The first six boxes in any ‘heat block’ belong to Δrnq1 samples and the middle six boxes belong to 
[rnq-] samples and the last six boxes to [RNQ+] samples.  
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Figure H.4. Pathway collage of seven of the top 10 implicated pathways in the loss of function effect (via BioCycs cellular overview) overlaid with Δrnq1, [rnq-] and [RNQ+] data. A colour 
legend is shown in the bottom right-hand corner to signify the direction of the change indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black writing names 
individual metabolites, blue arrows depict reactions, coloured ‘heat blocks’ represent omics data. The first six boxes in any ‘heat block’ belong to Δrnq1 samples, the middle six boxes belong to [rnq-] 
samples and the last six boxes to [RNQ+] samples.



307 
 

 

 
 

Figure H.5. Pathway collage of four of the top 10 implicated pathways in general stress response (via BioCycs cellular 
overview) overlaid with [rnq-], [RNQ+], [rnq-] with mild oxidative stress data. A colour legend is shown in the bottom left-hand 
corner to signify the direction of the change indicated by colour. Dark blue labels at the top of the pathway state the pathway name, 
black writing names individual metabolites, blue arrows depict reactions, coloured ‘heat blocks’ represent omics data. The first six 
boxes in any ‘heat block’ belong to [rnq-] samples, the middle six boxes belong to [RNQ+] samples and the last six boxes to [rnq-] 
with a mild oxidative stress samples..
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Figure H.6. Pathway collage of three of the top 20 implicated pathways in metabolic comparisons of [rnq-] and [RNQ+] (via BioCycs cellular overview) overlaid on the left with Δrnq1, 
[rnq-] and [RNQ+] and on the right with [rnq-], [rnq-] with mild oxidative stress and [RNQ+] data. A colour legend is shown in the top middle to signify the direction of the change indicated by 
colour. Dark blue labels at the top of the pathway state the pathway name, black writing names individual metabolites, blue arrows depict reactions, coloured ‘heat blocks’ represent omics data. The 
first six boxes in any ‘heat block’ left of the page belong to Δrnq1 samples and the middle six boxes belong to [rnq-] samples and the last six boxes to [RNQ+] samples. The first six boxes in any ‘heat 
block’ right of the page belong to [rnq-] samples and the middle six boxes belong to [rnq-] with a mild oxidative stress samples and the last six boxes to [RNQ+] samples.  
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Figure H. 7. Pathway collage of sphingolipid recycling and degradation in yeast (via BioCycs cellular overview) with standardised omics data of individual metabolites overlaid. A colour 
legend is shown in the bottom left-hand corner to signify the direction of the change indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black writing names 
individual metabolites, blue arrows depict reactions, coloured ‘heat blocks’ represent omics data. The first six boxes in any ‘heat block’ belong to [rnq-] samples and the last six boxes belong to [RNQ+] 
samples.  



310 
 

Appendix I 

 
 

Figure I.1. Pathway collage of four of the top 20 implicated pathways (via BioCycs cellular overview) with standardised 
omics data of individual metabolites overlaid. A colour legend is shown in the bottom righthand corner to signify the direction of 
the change indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black writing names individual 
metabolites, blue arrows depict reactions, grey text show metabolites for which no data is present, coloured ‘heat blocks’ represent 
omics data. The first six boxes in any ‘heat block’ belong to group W samples, the middle six belong to group X and the last six boxes 
belong to group Y.   
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Figure I.2. Pathway collage of five of the top 20 implicated pathways (via BioCycs cellular overview) with standardised omics 
data of individual metabolites overlaid. A colour legend is shown on the middle left to signify the direction of the change indicated 
by colour. Dark blue labels at the top of the pathway state the pathway name, black writing names individual metabolites, blue arrows 
depict reactions, grey text show metabolites for which no data is present, coloured ‘heat blocks’ represent omics data. The first six 
boxes in any ‘heat block’ belong to group W samples, the middle six belong to group X and the last six boxes belong to group Y.   
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Figure I.3. Pathway collage of six of the top 20 implicated pathways (via BioCycs cellular overview) with standardised omics 
data of individual metabolites overlaid. A colour legend is shown in the bottom lefthand corner to signify the direction of the change 
indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black writing names individual metabolites, 
blue arrows depict reactions, grey text show metabolites for which no data is present, coloured ‘heat blocks’ represent omics data. 
The first six boxes in any ‘heat block’ belong to group W samples, the middle six belong to group X and the last six boxes belong to 
group Y.   
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Figure I.4. Pathway collage of four of the top 20 implicated pathways (via BioCycs cellular overview) with standardised 
omics data of individual metabolites overlaid. A colour legend is shown in the bottom righthand corner to signify the direction of 
the change indicated by colour. Dark blue labels at the top of the pathway state the pathway name, black writing names individual 
metabolites, blue arrows depict reactions, grey text show metabolites for which no data is present, coloured ‘heat blocks’ represent 
omics data. The first six boxes in any ‘heat block’ belong to group W samples, the middle six belong to group X and the last six boxes 
belong to group Y.  
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