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Abstract 

There are different modalities of intercellular communication governed by cellular 

homeostasis. In this review, we will explore one of these forms of communication called 

extracellular vesicles (EVs). These vesicles are released by all cells in the body and are 

heterogenous in nature. The main function of EVs is to share information through its cargo 

consisting of proteins, lipids and nucleic acids (mRNA, miRNA, dsDNA etc.) with other cells 

which has a direct consequence on their microenvironment. We will focus on the role of EVs 

of mesenchymal stem cells (MSCs) in the nervous system and how these participate in 

intercellular communication to maintain the physiological function and to provide 

neuroprotection. However, deregulation of this same communication system could play in role 

in a number of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, 

Amyotrophic lateral sclerosis, multiple sclerosis, prion disease and Huntington’s disease.  The 

release of EVs from a cell provide crucial information to what is happening inside the cell and 

thus could be used in diagnostics as well as in therapy. In addition, we consider the role of 

trinucleotide repeats in neurodegenerative diseases with a view to focus on miRNA profiling, 

prediction of their binding and their potential role in diagnosis and stem cell therapy. We will 

discuss and explore new avenues for the clinical applications of using engineered MSC-EVs 

and their potential therapeutic benefit in the treatment of neurodegenerative diseases. 
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Introduction 

Neurodegenerative diseases (ND) result from a deterioration in brain atrophy, neuronal 

function and the accumulation of protein deposits. The ND such as Parkinson’s disease (PD), 

Alzheimer’s disease (AD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), 

multiple sclerosis (MS) and prion disease all occur in distinctive regions of the brain with 

different causes while a number of reports indicate that there are common molecular and 

cellular mechanisms. A great effort has been made to develop therapies to target 

neurodegenerative disease were improvements are still required. Our understanding of the 

cellular and molecular mechanism involved in the disease pathogenesis has improved. The 

challenges remaining in tackling ND are due to many reasons. These include the understanding 

of how neurons die, the lack of early diagnostic biomarkers, several mechanisms maybe driving 

the pathogenesis of the disease such as cellular inflammation and the reduced accessibility of 

the central nervous system (CNS) due to the blood-brain-barrier (BBB). 

In the last 20 years, cell-based therapies have been developed and numerous advancements has 

been accomplished [1]. The use of stem cell therapy has shown promise and therapeutic value 

for ND. For the treatment of AD, the development of neural stem cells (NSCs), induced 

pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), and mesenchymal stem cells 

(MSCs) have all been considered. MSCs are favourites due to their ability to reprogram and 

therapeutic efficiency at the target site. Nevertheless, some reports have implied that the MSCs 

are rarely located at the target site but could secrete factors that add to the therapeutic value [2-

4]. A number of reports are emerging that show extracellular vesicles (EVs), secreted from 

cells to play a role in intercellular communication [5]. MSCs derived from EVs (MSC-EVs) 

are proposed to enhance the therapeutic effect at a similar level to the MSCs indicating that 

MSC-EVs play a role in the efficacy of MSCs treatment [6, 7]. A number of molecules have 

been found in EVs including DNA, various RNA species (e.g., miRNAs, mRNAs, tRNA), 

proteins and lipids [8]. These molecules are encapsulated in a protective environment and can 

be delivered horizontally or at a distant site to the recipient cells [9-11]. The EVs are natures 

equivalent of nanoparticles which have the ability to transport various biomolecules between 

cells and to distant sites in the body [12]. They provide a means to cross the BBB and have the 

potential to treat a number of NDs such as AD and PD [13]. Herein, in this review, we explore 

the different ND, the role of miRNAs and adapting stem cell therapy in tackling these 

debilitating and life-threatening diseases. 

 

 



Mesenchymal stem cells (MSCs) 

Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic adult stem cells 

originating from different adult tissues [14]. MSCs can be found in different tissues and organs, 

such as umbilical cord blood, placenta, amniotic fluid, peripheral blood, adipose tissue and 

bone marrow [15-19]. MSCs have the ability to undergo self-renewal and differentiate into 

many different cell types. They have been shown to differentiate into osteoblasts, muscle cells, 

adipocytes, chondrocytes, neurons, endothelial cells, hepatocytes, pancreatic b-cells and 

keratocytes [20-29]. MSCs offer immunomodulation benefits and could be an option for 

autoimmune diseases [30-32]. It is believed MSCs have a lower immunogenicity due to the 

lack of expression of MHC class II and the co-stimulatory molecules such as CD40 and CD80 

[33]. Also, MSCs can inhibit T-lymphocytes activation and function, block dendritic cell 

maturation/differentiation and B cell proliferation [34-38]. MSCs have the ability to be migrate 

and target specific sites. A number of studies have shown MSCs ability to target to a site of 

injury and promote repair of the damaged area [39-41]. Interestingly, this homing therapeutic 

effect can be applied to tumour microenvironments while the mechanism is still unclear [42, 

43]. 

 

What are extracellular vesicles. 

Extracellular vesicles (EVs) are small membrane vesicles that are secreted by various cell-

types and are present in most bodily fluids. EV is a generic term for cell-borne particles which 

are delimited by a lipid bilayer and cannot replicate, i.e. do not contain a functional nucleus 

[44]. EVs have repeatedly drawn interest from both the cell biology community, biotechnology 

and bioinformatics [45, 46]. There are three major groups of EVs according to their scale and 

biogenesis: exosomes (also known as small EVs (sEVs), microvesicles (also known as medium 

EVs (mEVs), and apoptotic bodies (also known as large EVs (lEVs) [44, 47].  

Exosomes are nanosized vesicles which have a size of 30–100 nm, produced by inward 

budding of the limiting membrane of multivesicular bodies (MVBs), resulting in intraluminal 

vesicles (ILVs) being created [48]. From early to late maturation of the endosome, MVBs can 

fuse in the extracellular space with the plasma membrane releasing the enclosed ILVs (then 

called exosomes) [49]. Exosomes are important regulators of intercellular communication, and 

in recent years, numerous studies have highlighted their significance in disease progression, 

production or promotion. There are cell-derived membrane vesicles present in virtually all 



biological fluids, such as urine, blood, and cerebrospinal fluid, and are isolated primarily from 

cell culture medium [50, 51].  

Unlike exosomes, which are smaller and have a complex inward budding formation, 

the larger (100-1000nm) microvesicles, are released into the extracellular space by outward 

budding formation [51]. Their biogenesis occurs by blebbing immediately outwards and 

pinching the plasma membrane, releasing the nascent microvesicle into the extracellular space 

[52]. Microvesicles are membrane vesicles of the cell of origin, bearing proteins, nucleic acids 

and bioactive lipids [53]. Microvesicles, when released in the extracellular space and entered 

into circulation, may transfer their cargo to neighbouring or distant cells, resulting in 

phenotypic and functional changes that are important under several physio-pathological 

conditions [54]. 

Apoptotic bodies are large vesicles formed by the physical process of causing a rise in 

hydrostatic pressure after cellular contraction. They are protrusive blisters which occur when 

the cellular plasma membrane is delaminated from the cortical cytoskeleton which it entirely 

covers [55]. Mostly, apoptotic bodies are considered to contain a significant amount of RNA, 

differently from other microvesicles [56]. Although microvesicles and exosomes may act as 

secure containers that mediate intercellular communication, apoptotic bodies appear after an 

apoptotic cell is disassembled into subcellular fragments [57].   

EVs consist of nucleic acids such as DNA, RNA, miRNA, mRNA, short non-coding 

RNA, circular RNA and proteins, lipids, specifically plasma membrane, cytosol and those 

involved in lipid metabolism. Many researchers have analyzed that miRNA, as an effective 

diagnostic and prognostic marker for diseases. mRNA, DNA (containing oncogenic 

mutations), short non-coding RNA, and circular RNA are other nucleic acids known as 

showing biomarker potential [58, 59].   

Post-transcription gene expression is modulated by miRNAs ~ which are 22 nucleotide 

transcripts this has gained special interest among the transcripts residing in EV. The molecular 

mechanisms and regulation of sorting miRNAs into sEVs remain poorly understood. 

Nevertheless, it is, thought the functional importance of EV-miRNAs, especially sEV-miRNAs 

has gained some support, including in the area of immunologic response and metastatic tumour 

cell growth [60]. In addition to exercising their function intracellularly, miRs can also be 

exported from cells in the extracellular space via EVs or bound to proteins such as Ago-2 or 

HDL (Figure 1) [61]. 

All neural cells from rodent and human microvascular endothelial cells, even 

immortalised human brain, release EVs containing mRNA and miRs for epigenetic 



reprogramming of neural cells or post-transcriptional control of specific genes. When several 

types of miRs are isolated from cerebrospinal fluid, such as miR-100, miR-146, miR-505, and 

miR1274a they are expressed differentially in AD. There is a correlation with the 

neuropsychological assessment and brain imaging in the presence of several types of serum -

isolated exosomal miRs (miR-361-5p, miR-93-5p,miR-335-5p and miR-305p) [62].  

The contribution of exosomes in neurodegenerative diseases, particularly in 

Alzheimer's and Parkinson's diseases, is most studied (within) of the neurological disorders. 

Neurodegenerative disorders are characterised by a gradual loss of neuronal function and/or 

structure including neuronal death. Exosomes could play a neuro-protective or neuro-toxic role 

in these central nervous system (CNS) pathological processes [63]. Vesicles can in fact mediate 

the removal of toxic proteins or the transfer of exosomal neuroprotective molecules. In 

addition, exosomes can mediate molecular transfer as they are very likely to play a key role in 

intercellular interactions and in tissue homeostasis maintenance. For instance, exosomes play 

physiological roles in neuronal growth, electrical impulse transmission, and regeneration and 

may therefore play a pathogenic role in neurological disease [64]. The vesicles at the axon 

terminal, which contain neurotransmitters or neuromodulators, release their contents by 

exocytosis as the nerve impulses pass along the axon in the form of an action potential [65]. 

On the other hand, exosomes can spread potentially toxic molecules into neural cells that are 

receiving them. A number of studies focused on their role in the propagation and pathology of 

diseases and their utility as a diagnostic tool [63].  

EVs actually interact with target cells which cause phenotypic changes in them. For 

these reasons, EVs are now seen as leading intercellular communication actors, mediating both 

physiological and pathological responses. Additionally, EVs can activate intracellular 

pathways in target cells through ligand-receptor interactions or EV membrane proteins can be 

proteolytically cleaved by proteases [66, 67].  

miRNAs can be effectively transported by EVs and perform their molecular function 

regularly in recipient cells. ATP-binding cassette transporter A1 (ABCA1) may participate in 

High-density lipoproteins (HDL) miRNA export mechanism. Confirming that endogenous 

levels of HDL-supplied miRNAs are adequate to affect gene expression in target cells [68, 69]. 

HDL-associated miRNAs can be transported into cells by moving a particular receptor to the 

cell membranes of the receiver [70].   

In conclusion, as with other scientific disciplines, EV science is moving forward by a 

combination of new ideas, technologies, astute observations, and careful data analysis. More 



specific and standardised purification methods are also needed to incorporate EVs as 

biomarkers, vaccines, or drug delivery devices in a clinical environment. 

 

Role of extracellular vesicles in the nervous system 

As mentioned before, extracellular vesicles (EVs) is a term used to describe lipid-bilayer 

particles that are released from the cell and cannot replicate [71]. They are classified into three 

subtypes according to their size and their mode of biogenesis into, apoptotic bodies, 

microvesicles and exosomes [72]. They are responsible for intercellular communication that 

are involved in different physiological and pathological conditions [73].  In the nervous system, 

EVs have a role both in healthy conditions to maintain the central nervous system (CNS) 

development, and in the pathogenesis of some neurogenerative and neuroinflammatory 

diseases, such as Alzheimer’s disease (AD) where high concentrations of microglial exosomes 

are found, and neural cell death that is caused by oligodendroglioma cell exosomes [64]. 

Under normal physiological conditions, exosomes released from various glial cells (astrocytes, 

oligodendrocytes, and microglia) maintain the adult brain and CNS development, such as 

regulating the synaptic activity and regeneration after injury; also these exosomes interact with 

neurons for the development and maintenance of the neural circuit via promoting neurite 

outgrowth from hippocampal and increase in the survival of cortical neurons [64]. Whereas, 

neural exosomes involved in the elimination of synapse and stimulation of microglial 

phagocytosis are also responsible for controlling the communication with glial cells [64].  

 

The function of Astrocytes-derived EVs: 

Astrocytes are the most common type of glial cells within the CNS that play various roles in 

the healthy nervous system starting from supporting and maintaining the homeostasis at the 

synapse, signalling regulation, controlling the blood flow, maintaining the blood-brain barrier 

(BBB), and protecting neurons against oxidative damage [74]. In addition to their roles in 

regulating the concentrations of neurotransmitter and ions, trophic factors’ production, 

maintaining the redox potential, and toxin and debris elimination from cerebrospinal fluid 

(CSF) [75]. While in brain injury and infection, they act as reactive immune cells and mediate 

inflammatory response through recruitment, instruct and restrict the immune and inflammatory 

cells at the injury and diseased sites [76]. In CNS, EVs are considered as a non-synaptic mode 

of communication contributing to the diffusion of signalling and brain codification [77]. 

Different studies illustrated that astrocytes secret exosomes into the culture medium under 

different conditions [78-82].  



Venturini and colleagues found that astrocytes-derived exosomes targeted neurons in the 

neuron-astrocytes network and carrying neuroglobin (NGB) a protein that functions as anti-

oxidant, anti-apoptotic, and anti-inflammatory, thus can act as neuroprotectant; moreover, their 

exosomes could contribute in signal transmission and by volume transmission they could travel 

near or long distances to hit the targets [83]. Another study found that microvesicles released 

from astrocytes transfer mitochondrial DNA (mtDNA) between cells; and these microvesicles 

were identified as exosomes by the presence of protein markers, such as ALIX, CD9 and 

TSG10 [78]. The excitatory amino-acid transporters (EAAT)-1 and -2 that are responsible for 

transporting glutamate required for neural homeostasis have been identified to be secreted by 

astrocyte-derived exosomes as studied by Gosselin and colleagues [84]. Also, exosomes 

released from astrocytes exposed to hypoxia and ischemic conditions carry prion protein (PrP) 

that protects neural cells and improve neural survival under these conditions [85].  

 

The function of Oligodendrocytes-derived EVs: 

Oligodendrocytes are the myelinating cells of the CNS, arise from oligodendrocyte progenitor 

cell (OPC). Oligodendrocytes play a crucial role in myelin generation [86] required to enwrap 

axons to promote fast saltatory conduction of action potentials, also provide metabolic support 

to the axon, and contribute to neuroplasticity [87]. Like astrocytes, oligodendrocytes release 

exosomes as a result of neurotransmitter glutamate stimulation through ionotropic glutamate 

receptors, the released exosomes carry various proteins, such as ALIX, TSG101, heat shock 

protein (HSP), tetraspanins, and myelin proteins proteolipid protein (PLP) and 2′, 3′-cyclic 

nucleotide 3′-phosphodiesterase (CNP), in addition to RNA are taken up by neurons through 

endocytosis [88]. Fröhlich and colleagues found various roles of oligodendrocytes-derived 

exosomes on neuron physiology; these exosomes increase the firing rate of the neurons action 

potential, activate the signal transduction pathways of the cells and change their transcriptome. 

Furthermore, in vitro model of cerebral ischemia were used to study oligodendrocyte-derived 

exosomes understroke condition which has neuroprotective effect by transferring protective 

proteins, for example, catalase and superoxide dismutase (SOD) [89]. Another study illustrated 

the exosomes that are delivered from oligodendrocytes influence axonal homeostasis and long-

term maintenance [90].  

 

The function of Microglia-derived EVs: 

On the other hand, microglia are the resident immune cells in the brain, which maintain brain 

homeostasis and innate immune response to CNS insult through interaction with neurons 



during development and adulthood [91]. Along with CNS-infiltrating macrophages act as a 

scavenger that facilitates removal of aged, necrotic tissues and damaged neurons and synapses 

[92]. Also, neurotrophic factors, such as insulin-like growth factor is released by microglia to 

support neural survival and differentiation during postnatal development [93]. 

Microglia release exosomes under serotonin stimulation as explained by Glebov et al., 

study; they found that under physiological conditions, serotonin released from neurons could 

stimulate the serotonin receptors (5-HT2a,b and 5-HT4) on microglia to release exosomes [94]. 

While the proteomic analysis of microglia-derived exosomes isolated from the murine brain 

showed a number of enzymes, chaperones, tetraspanins and membrane receptors similar to 

exosomes derived from the dendritic cell and B cell. Aminopeptidase CD13 and 

monocarboxylate transporter’s expression considered unique and used to distinguish them 

from other hematopoietic cells [95]. Also, microglia stimulated by ATP secrete EVs that have 

a set of proteins required for cell adhesion/organisation of extracellular matrix, degradative 

pathways and metabolism of energy, and promote few activation markers expression in the 

recipient astrocytes [96].  

 

The function of Neuronal-derived EVs: 

Exosomes are released from neurons in response to depolarization stimulation by potassium, 

or the use of Ca+2 ionophores to induce excitation as analysed from the tissue of embryonic 

and mature mammalian neurons [97, 98]. In addition to exosome markers, they carried 

subtypes of glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptors (AMPAR), miRNAs associated with neurite, for example, miR-124 and miR-1973, 

also microtubule-associated protein 1B. Thus, neurons-derived exosomes play a role in 

exporting miRNA, modulating the excitability of neurons, and neurotransmitter release [91]. 

Sharma and colleagues illustrated the role of neuronal exosomes in the development of neural 

circuit that leads to enhance the proliferation of neural progenitor, neuronal differentiation, and 

circuit connectivity [99]. Another study found that neuronal exosomes regulate synaptic 

pruning via microglial phagocytosis stimulation; incubation of the rat pheochromocytoma 

PC12 cells exosomes with microglia led to increasing complement component 3 (C3) 

expression level that enhanced the microglial phagocytic activity [100]. All these studies 

provide examples of the role of exosomes in cell-cell and glial-neuronal communications in 

maintaining CNS homeostasis. 

 

 



Role of EVs in neurodegenerative diseases: 

EVs are released by glial cells and neurons; they considered a mean to assemble and transport 

proteins that could contribute to healthy CNS development and also transport neurotoxic 

proteins that could participate in developing neurodegenerative diseases, such as Alzheimer, 

Parkinson, amyotrophic lateral sclerosis, Huntington, and prion diseases (Figure 2). 

 

Alzheimer’s disease 

AD is the most common and major type of dementia. It characterised by a reduction in memory 

cognition and executive function which hinders daily life. According to WHO, about 50 million 

people have dementia, and 60-70% of cases are contributed to Alzheimer disease in the world 

and it is predicted that this figure would double every 2 years . However, The primary cause is 

still unknown, but the widely accepted causes are β-amyloid (Aβ) peptides accumulation, 

intracellular neurofibrillary tangles formation that consist of hyperphosphorylated tau protein 

[101]. 

Genetically, the apolipoprotein E (APOE) ε4 allele is the most important risk factor for 

late-onset AD [102]. The human gene of APOE exists as three polymorphic alleles ε2, ε3 and 

ε4 which have an 8.4% worldwide frequency, 77.9% and 13.7% respectively. However, in 

patients with AD, the frequency of the ε4 allele is dramatically increased to ~40% [103]. A 

study in HeLa and N2a cells showed that Aβ is cleaved in early endosomes, then directed to 

multivesicular bodies (MVBs) and a small fraction of Aβ peptides found in the exosomes which 

indicate a new role of exosomes in the pathogenesis of AD [104]. While another study found 

in addition to Aβ peptides, exosomes contain the C-terminal fragments (CTFs) of the amyloid 

precursor protein (APP). Also, inhibition of γ-secretase increases the cleavage by α- and β-

secretase, thereby increasing the CTFs of APP in the exosomes. Moreover, members of the 

secretase family that catalyse the cleavage of APP were found in the exosomes. Thus exosomes 

could be used as a target for diagnosis and treatment [105]. Apoptosis could be induced by 

astrocytes surrounding amyloid plaques by caspase 3 activation; this his has been studied by 

Wang’s group, where they found that exosomes secreted from astrocytes induce proapoptotic 

effect through prostate apoptosis response 4 (PAR-4) which is a protein induces cell 

sensitisation to the sphingolipid ceramide and ceramide. Antibodies against ceramide and 

PAR-4 halts the astrocytes apoptosis induced by amyloid in vitro and in vivo [81]. Studies 

found that inhibition of exosomal secretory pathways and synthesis of exosome in microglia 

could stop the propagation of tau and a load of amyloid plaque in vitro and in vivo [106, 107]. 



As microglia has a role in tau pathology [108], Asai and colleagues found in the mouse model 

that depleting microglia halts tau propagation and decrease excitability in the dentate gyrus; in 

addition to inhibition of the synthesis of microglia-derived exosomes both in vitro and in vivo 

[106]. Results from this study suggested that propagation of tauopathy could be caused by 

microglia and exosomes [106]. A study by Crotti et al., showed that Despite Bridging Integrator 

1 (BIN1) which is a late-onset Alzheimer's disease-associated locus overexpression could lead 

to the release of EVs carrying Tau protein in vitro. At the same time, exacerbate the in vivo 

Tau pathology in PS19 mice [109]. 

A strong molecular background for biomarkers of blood AD is miRNA, several 

miRNAs have been proposed for involvement in AD pathogenesis in experimental models of 

AD or clinical trials (Table 1). Deregulated expression of miRNAs may help regulate key genes 

involved in AD including amyloid development [110-113]. Specific microRNAs have also 

been shown to play a key role in regulating the expression of APP and BACE1 which restricts 

the development of Aβ. Accumulating evidence shows that increased APP expression can 

promote Aβ development, leading to neurotoxicity, synaptic failure and ultimately dementia 

[114]. BACE1 division of APP is the first and rate-limit stage for Aβ formation, and 

upregulated levels of BACE1 expression and enzymatic activity in sporadic AD brains have 

been detected [115]. AD is one of today's most common neurodegenerative disorders, but sadly 

there is currently no treatment available [116]. Studies on microRNAs in AD have provided 

influential insights into our understanding of molecular processes by targeting different 

microRNAs to shed light on potential drugs. Given the lack of disease-modifying treatments, 

studies have consistently shown that successful management of AD and other dementias can 

improve quality of life for people with dementia and their caregivers through all stages of the 

disease [117, 118]. 

 

Parkinson’s disease 

PD is the second common neurodegenerative disease, caused by a decrease of dopamine level 

in the brain due to dopaminergic cell death [119]. The incidence of PD increases with age and 

affects 1 to 2 people per 1000 at any time [120]. The worldwide incidence ranges from about 

5 per 100,000 to over 35 per 100,000 new cases every year [121]. The most common clinical 

and pathological hallmark of PD is the aggregation of α-synuclein (αsyn) protein which is one 

of the Lewy bodies components; also it is a presynaptic protein that binds small synaptic 

vesicles and has dopaminergic neurotoxicity [63].  



According to a study by El-Agnaf and colleagues α-synuclein was detected 

extracellularly in human plasma, in CSF and also in the culture media of α-synuclein 

transfected and untransfected human neuroblastoma cells [122]. Another study explained that 

α-synuclein is secreted by exosomes by calcium-dependent mechanism and thus could 

propagate PD [123]. Alvarez-Erviti group showed how exosomes responsible for transporting 

α-synuclein from affected to healthy unaffected neurons via using SH-SY5Y cells, and also 

found that lysosomal dysfunction increases the exosomal transmission of α-synuclein to cells 

[124]. The type of α-synuclein that is present in exosomes and is considered to be more toxic 

to neighbouring cells is αsyn oligomers, as explained by the Danzer group’s study. Also, they 

found that autophagy is the mechanism used for αsyn oligomers degradation; thus, disruption 

of the mechanism could lead to increase exosome-associated αsyn oligomers [125]. A recent 

study found that αsyn oligomers’ exosomes present in the saliva of PD patients and the ratio 

of αsyn oligomers to total αsyn is higher in PD than in healthy controls; thus they suggested 

that salivary exosomes might be useful as a diagnostic biomarker for PD patients than plasma 

[126]. Chang and colleagues studied the microglial-exosomes from α-synuclein-induced 

mouse and found that the number of exosomes secreted from activated microglia was much 

higher compared to the control group; also these exosomes showed a high expression level of 

MHC II and mTNF-α and could induce abnormal apoptosis of neurons [127]. Thus these 

mechanisms could play a role in the pathogenesis of PD and might be a target for therapeutic 

approaches [127]. 

As mentioned by different studies that α-syn aggregates responsible for PD progression; a 

study by Cooper and colleagues explained the use of α-syn siRNA to decrease the level of total 

and aggregated α-syn in the mouse brain via peripheral injection of modified exosomes [128]. 

While another study used catalase-loaded exosomes, were catalase is a potent antioxidant to 

treat PD [129].  

Extracellular miRNAs are fairly stable as they are secured against degradation by binding 

to RNA-binding proteins and/or packaging into exosomes [130]. miRNA dysregulation may 

lead to the development of different diseases from brain disorders to cancers [131, 132]. 

Indeed, several studies have shown that the miRNAs expression profile is dysregulated in PD, 

and can lead to pathogenesis of PD [133] (Table 2). miR-34b and miR-34c have been shown 

to be downregulated in patients with PD and specifically in amygdala, SNpc, frontal cortex and 

cerebellum, combined with a substantial decrease in PARKIN and DJ-1 protein concentrations 

[134]. PRKN and PARK7 genes, encoding for the PARKIN and DJ-1 proteins respectively, are 

both associated with autosomal recessive PD pathogenesis [135]. PARKIN protein is found in 



neuronal as well as in non-neuronal cells. PRKN mutations cause autosomal recessive 

parkinsonism in juveniles (AR-JP). The AR-JP form of PD is associated with the loss of the 

activity of ubiquitin-protein ligase, suggesting that PRKN mutations cause PD insurgence [136, 

137]. PD is a significant neurodegenerative disorder, the prevalence of which increases with 

ageing. Understanding the dynamics of miRNA control in the brain represents a crucial goal 

and a very common topic in biomedicine, with significant implications for elucidating the 

pathophysiology of major neurodegenerative diseases, like PD [133].  

 

Prion disease 

Prion diseases are transmissible protein mismatching disorders in which a host-encoded prion 

protein (PrP) is misfolded. PrP is a protein of 253 amino acids (aa) composed predominately 

of alpha helix (42%) and a few beta sheets (3%) [138]. The prion protein usually contains 

regions called the prion domains (PrDs) necessary to form the prion state. With the exception 

of the Mod5p prion domain, where these domains are intrinsically disordered and rich in 

glutamine and asparagines [139]. During the early 1920s Creutzfeldt-Jakob disease (CJD) was 

first described [140, 141]. The predominant human prion disease subtype, sporadic Creutzfeldt-

Jakob disease, occurs equally in males and females with a peak starting age from 60 to 69 

years. The age of onset can vary, since CJD can occur in young age (in the 30s or 40s), but also 

in later life [142, 143]. Many of all human prion diseases (75%) were classified as sporadic 

CJD (sCJD), associated with rapid development of the disease, multifocal dementia, tiredness, 

insomnia, and depression [144]. Typical clinical symptoms include progressive dementia, 

accompanied by abnormalities in the visual and cerebellum function, myoclonia, pyramidal 

and extrapyramidal dysfunction or acinetic mutism [145]. Approximately 85–90 percent of 

cases of CJD occur sporadically and affect 1–1.5 persons per million per year [146]. Little is 

known about the pathogenesis of sporadic CJD (sCJD). Given that there are no specific 

therapeutic and prophylactic interventions available for prion diseases, active surveillance is 

critical to the control and prevention of human prion diseases, particularly those caused by 

animal-derived prion agents [138]. 

According to medicine, prion diseases are unusual in that they can occur by three 

mechanisms: random (sporadic), hereditary (family), and acquired (infectious / transmitted). 

The prion disease model is that PrPSc, the pathologic disease-causing misfolded form of the 

prion protein, acts as a template, so that it transforms PrPC into PrPSc when it comes into contact 

with a prion protein, PrPC, resulting in two prions [147]. Prion diseases occur in humans as a 

sporadic, genetic, and transmissible illness. To date, more than 40 different PrP gene mutations 



have been demonstrated to segregate with the heritable human prion diseases [148, 149]. The 

resulting diseases have been classified according to clinical symptoms as Gerstmann – 

Sträussler – Scheinker syndrome (GSS), Creutzfeldt-Jakob disease (CJD), or fatal family 

insomnia (FFI), although all result from prion protein (PrP) encoding gene, PRNP mutations 

[150]. 

The fatal neurodegenerative disorders of human prion diseases, also named transmissible 

spongiform encephalopathies result from the conformation of a normal cellular prion protein 

(PrPC) to an abnormally misfolded pathological (PrPSc) form [140, 141]. PrPSc accumulation 

leads to the onset of transmissible spongiform encephalopathies, which attack the central 

nervous system, leading to progressive neuronal degeneration and neuronal vacuolation [151].  

The human prion protein (PRNP) gene, is located in humans on chromosome 20p12 [152]. 

In the inherited type of the disease, a genetic mutation in the PRNP gene can induce a change 

in PrPC conformation [153]. These mutations include point mutations in the PRNP sequence, 

and repeat insertions or deletions of octapeptides in the N-terminus of PrP. Several 

epidemiological surveys report a lack of definite family history in certain patients with genetic 

prion diseases [154]. Many variants have been identified in the PRNP gene, the pathogenic 

existence of which has not been explained [155]. M129V and E219K are fairly common PRNP 

gene polymorphisms, and are complicated in their pathogenic nature [156]. In sCJD, iatrogenic 

CJD (iCJD), and classical CJD (cCJD), M129V are suggested to play a role [156]. 

The PrP open reading frame (ORF) is encoded inside a single exon in all identified PrP 

genes of different species, while the gene itself contains two to three exons [150]. The other 

exons include untraduced sequences including the sites of the promoter and termination [150]. 

To date, more than 40 different PrP gene mutations have been demonstrated to segregate with 

the heritable human prion diseases [150].  

Kuru is the first human prion disease that has been shown to be transmissible to 

chimpanzees through intracerebral introduction of kuru-patients 'brain homogenates [157]. 

Also, in 1955 Frank Earl, an emergency physician who accompanied Colman, identified the 

disease and proposed that kuru may be a type of encephalitis [158, 159]. In the 2000s after the 

discovery of kuru, Gajdusek said that only fully intoxicated will come to the conclusion that 

cannibals would transmit a disease endemic by eating bodies. According to Gajdusek, the 

theory was taken for granted, but it is also true that he said in his Nobel Prize lecture that kuru 

spread through conjunctival, nasal, and highly infectious brain tissue contamination [160]. 

Kuru has three clinical stages in the infected individual, namely ambulance (the person can still 

walk), sedentary (the person can only sit up), and terminal (the person cannot sit up 



independently). These stages may be preceded by an underdefined prodromal period 

characterised by headache and pain usually in the joints of the legs [138]. Numerous kuru 

plaques, spherical bodies with a rim of radiating filaments, are the neuropathological property 

which distinguishes kuru from sCJD. Kuru is thought to be caused by the use of a sCJD case 

and experimental transmission studies have shown similarity between the molecular and 

pathobiological properties of prions that cause kuru, sCJD and iCJD [161]. 

Several miRNAs are expressed selectively in the central nervous system (CNS) and were 

reported to be involved in the growth, function and pathogenesis of CNS [162]. The study of 

miRNAs with relation to prion pathogenesis has gained experimental traction as many miRNAs 

have been shown to be altered in in vivo and ex vivo models of prion diseases [163] (Table 3). 

A possible association between miRNAs and prion diseases was suggested based on the co-

location of PrPC in endosomes and multivesicular bodies within RISC components. The 

binding of PrPC to the type III RNase Dicer and Argonaute (Ago) proteins, which are important 

components of the RNA-induced silencing complex (RISC) loading complex, was proposed as 

a prerequisite for the effective repression of multiple miRNA targets [164]. 

Prion diseases arise when normal prion protein, which is present on several cells surface, 

is irregular and clumps inside the brain, causing brain damage. Prion diseases are lethal 

mammalian neurodegenerative conditions and increasing every year. There is no cure for these 

diseases as yet. The biggest problem with prion diseases is that the condition is still 

unrecognized. Therefore, the future research of prion disorders with miRNAs could provide 

further information for diagnostics and targeted therapy of other neurodegenerative diseases. 

 

Huntington’s disease 

In 19th century after George Huntington's lecture and explanation of the disease, it became 

known as Huntington's chorea. Huntington's chorea is a neurodegenerative disorder that goes 

from generation to generation within families starting in the middle ages and is characterised 

by excessive choreographic gestures, behavioural and psychiatric disorders and dementia 

[165]. It is disorder affecting the basal ganglia and cerebral cortex that usually develops in the 

middle of life but can occur as young as two or three years of age and as old as 80 years of age 

or older [166].   

The disorder is caused by an expansion of CAG (glutamine) trinucleotide in the huntingtin 

(HTT) gene exon 1 located at 4p16.9 and the genetic mutation that induces the disorder is an 

change in the number of repetitions of three nucleic acids (C, A, and G) in the first HD gene 

exon's coding region [167]. The CAG trinucleotide repeat is usually repeated about 20 times, 



but an estimated doubling of the number of repetitions to 40 or more results in the disease 

expression [168]. HTT protein is commonly distributed in the central nervous system (CNS) 

and other non-neuronal tissues and spreads across the compartments and in human HTT protein 

is a large protein with a molecular weight of 350 kDa (3144 aa) [169].  

Expansions of CAG may mediate neurodegeneration through an abnormal expansion of 

polyQ and an inductive HD transgenic mouse model was created with the first HTT exon 

(HTTex1), which includes the expansion of the CAG. The behavioural and pathological defects 

of the mouse model emerged when HTTex1 was induced and could be reversed by eliminating 

the inducer and the HTTex1 levels [170].  

 Normal HTT is important for brain growth; HTT knock-out mouse embryos have 

significant defects in the development of the central nervous system and die soon after birth 

[171]. In addition, HTT is expressed during development in the brain and plays a crucial role 

in survival and cohesion of the neurons [172]. Moreover, HTT is important for the neural 

induction programme, progressive selection of neural progenitor cell types and subsequent 

creation of neural lineage organisms [173]. 

HD is characterised by widespread mis-regulation of mRNA, especially in striatum and 

cortical regions [174]. This deregulation is partially the result of aberrant nuclear localisation 

of the RE1-Silencing Transcription Factor (REST) transcriptional repressor [175, 176]. 

According to recent studies, RE1-Silencing Transcription Factor regulates the expression of 

large neuronal (macroRNAs) and small non-coding (miRNAs) RNAs, with specific functions 

in the regulation of gene expression [177, 178]. Increased REST repression contributes to 

improvements in the expression of different neuronal miRNAs in HD patients and HD mouse 

models and HTT interacts with Argonaute proteins, which are main members of the RNA-

induced silencing complex (RISC) with the possibility that small-RNA silencing-dependent 

mechanisms may be involved in HD neuropathology [179].  

The HD Research Crossroads database nowadays contains information around 800 genes 

for which the available evidence suggests a direct or indirect significance to HD 

pathophysiology. Therefore, these genes may be considered as targets for therapy production, 

which is a prime objective of HD research. The goal information is collected by the evaluation 

of existing studies and in-house screens [180]. 

Sadly, there are currently no effective therapies for HD which change the disease. The latest 

accepted treatments are only symptomatic, and do not change the course of the disease [181]. 

Within each mechanistic category, treatments approved by FDA are classified first (A), 



followed by those showing promise in human studies (B), followed by those failing in human 

studies (C), and lastly, treatments with convincing evidence in rodent or cell models (D) [182]. 

MiRNAs have recently been found to have an aberrant expression or deregulation that plays 

a major role in the pathogenesis of many Poly Q diseases [183] (Table 4). A large number of 

studies using different human samples have recorded aberrant miRNA expression in HD by 

applying RNA sequencing, microarray, and qRT-PCR techniques [184]. A large number of 

HD cell models and animal studies have shown in recent decades that miRNAs can affect the 

pathogenesis, progression, and prognosis of patients through various pathways [177]. For 

example, in a monkey model, the miR-128 has been down-regulated in the brain of pre- and 

post-symptomatic HD monkeys; by suppressing HIP-1, HTT and SP-1, they conclude the miR-

128 may play a pivotal role in HD pathogenesis [185]. Poly Q expansion of mutant HTT protein 

will inhibit the interaction between REST and HTT protein and thus promote REST 

aggregation in the nucleus of HD patients and inhibit the expression of related genes [186]. 

As indicated above polyQ disorders, especially Huntington's disease is a debilitating illness 

mentally, psychologically in the world. The genetic mutation causing all of the HD results in 

an irregular expansion of a polyQ tract in the HTT protein. Huntington disease is not yet fully 

understood. 

 

Amyotrophic lateral sclerosis 

Amyotrophic lateral sclerosis (ALS) is a lethal neuronal motor disease that is characterised by 

progressive spinal or bulbar-level failure of the upper and lower motor neurons with a mean 

death from respiratory failure of 2–3 years [187, 188]. Given the poor prognosis, the survival 

rate varies significantly and up to 10 percent of people with ALS have been surviving from the 

first symptoms for more than 8 years [189]. It is still unclear what causes ALS. Notable 

progress has been made in identifying the disease's genetic and environmental components 

[190].  

The French neurologist Jean-Martin Charcot coined the term "amyotrophic lateral 

sclerosis" in the 1800's: "amyotrophic" refers to muscle atrophy, and "lateral sclerosis" 

describes the scarring or hardening of tissues in the lateral spinal cord. The key 

neuropathological symptoms of ALS are extensive loss of lower motor neurons from anterior 

spinal cord and brain stem horns [190, 191]. The most common signs of ALS are muscle 

fatigue, twitching and cramping, which can ultimately lead to muscle failure [192, 193]. 

Symptoms of dyspnea and dysphagia may develop in ALS patients at the most advanced stages 



[194, 195]. Other prominent ALS symptoms are fatigue and a decreased capacity for exercise 

[196]. When the illness progresses, patients need routine core tasks to assist [196]. 

Actually, more than 20 ALS genes have been identified including superoxide dismutase 1 

(SOD1), TAR DNA-binding protein (TARDBP), fusion protein (FUS), chromosome 9 open 

reading frame 72 (C9ORF72), Optineurin (OPTN), Valosin-containing protein (VCP), 

ubiquitin-like protein (UBQLN2), Profilin-1 (PFN1), Threonine-Protein Kinase (TBK1) and 

Coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10) [197, 198]. 

French neurologist Jean-Martin Charcot first identified ALS in 1869, then the disease became 

well known in the United States when baseball player Lou Gehrig was diagnosed with the 

disease in 1939 [199].   

Partly since ALS demonstrated great clinical variation in presentation and prognosis, 

diagnosis may be difficult at an early stage [200]. Since ALS is a disabling and life-threatening 

illness, misdiagnosis can have serious implications for patients and carers [201]. While the 

pathogenesis of ALS remains largely unclear, the aetiology of the condition has shed 

considerable light on neuropathological characteristics and gene mutations associated with 

ALS.  

In 1993 the first gene of ALS, cytosolic superoxide dismutase or SOD1, was identified 

[202]. In most ALS cases, a protein named TDP-43 is the primary component of these 

aggregates including cases induced by repeated expansions of C9orf72 [203, 204]. It is thought 

that the penetration of C9orf72-related ALS by the age of 80 is nearly 100 per cent. No 

prediction of single phenotype, i.e. ALS, FTD or ALS / FTD, the exact age at the onset, the 

severity of the disease and the length of the disease are theoretically unknown [205]. The repeat 

expansion of C9orf72 may be correlated with aberrant RNA metabolism due to the 

sequestration of RNA binding proteins, the development of abnormal RNA species or the 

formation of increased DNA instability [206]. Cases of ALS caused by SOD1 and FUS 

mutations are pathologically distinct in that they do not show TDP-43 pathology, but instead 

irregular SOD1 and FUS protein inclusions, respectively [207]. 

Dysfunctional mitochondria contribute to impaired neuronal energy production and 

eventually results in neuronal cell death [208]. In neurodegenerative diseases, especially in 

ALS is the key marker of mitochondrial dysfunction [209]. ALS transgenic mice (SOD1G93A) 

reveals its effectiveness against ALS-related neuronal cell death (anti-apoptotic) and 

stabilisation of mitochondria by in vivo investigations affecting the PI3K-AKT signalling 

pathway [210]. One of the crucial steps in normal brain physiology is the clearance of 



glutamate in the synapse. Astrocytes in the brain provide an agitating amino acid transporter 

of glutamate 2 [211]. Some researchers have demonstrated low levels of these transporters in 

ALS patients 'spinal cord and cortex due to aberrant EAAT2 mRNA transcript synthesis and 

altered expression of EAAT2 causes glutamate to increase, leading to death and degeneration 

of the motor neurons [212]. 

ALS contains misfolded proteins, such misfolded proteins form aggregates that in effect 

change the functioning of motor neurons. Some molecular components or proteins such as 

optineurin, TDP43, UBQLN2 (ubiquilin) and sarcoma fused (FUS) are associated with the 

aggregation of cellular proteins in ALS [213]. 

The metabolism of dysregulated RNA is related to protein aggregation. Various 

aggregation-prone RNA-binding proteins (RBPs) such as Ataxin2, TDP43, hnRNPs, FET 

(FUS, EWSR1, TAF15) become mislocalized and ultimately form an aggregation complex. 

Some miRNAs were found in ALS which control motor neuron apoptosis, necroptosis and 

autophagy [214] (Table 5).  

It has been proposed that many distinct neurological disorders including Parkinson's disease 

(PD), frontotemporal dementias (FTD), and ALS have common environmental and genetic 

susceptibilities [215, 216]. Additionally, due to their tau hyperphosphorylation, work has 

indicated a correlation in the etiology of both Down syndrome and SOD1-related ALS disease. 

Better understanding of how these mechanisms are related may play a key role in improving 

patient care and management [217]. ALS and FTD share similar genetics and exist on the same 

continuum of pathologies. Clinically, it is now known that up to 50% of ALS patients have a 

degree of cognitive or behavioral disability and up to 33% of FTD patients have evidence of 

interference with motor neurons [216, 218, 219]. 

Extracellular vesicles bear donor cargo to recipient cells. Mutant proteins causative in ALS 

were recovered in EVs and transmitted via the brain cells as a way of transmitting the 

disease[220]. SOD1 is an abundant enzyme, or superoxide dismutase one, which transforms 

superoxide molecules into hydrogen peroxide and dioxygen. SOD1 was the first ALS-

associated protein identified in EVs from healthy neuron-like mouse motor (NSC-34) cells that 

over-expressed human wild-type and mutant SOD1 [221]. Grad and his colleagues further 

characterized the aggregation state of mutant SOD1 in EVs and indicated that misfolded SOD1 

in EVs lead to the prion-like spread of pathology in the CNS [222]. Many studies have 

examined miRNA in ALS patients with CSF, urine, serum or plasma, but no biomarkers are 

yet available for this condition, possibly due to the technical variation in circulating miRNA 

analysis [222]. 



Dysregulation of the RNA pathway actually seems to be a significant contributor to 

ALS etiopathogenesis. C9ORF72 mutations are the most common gene associated with ALS, 

resulting in toxic mRNA gain in function through the formation of RNA foci, and subsequent 

sequestration and altered behaviour of RNA-binding proteins (RBPs) [223]. TDP-43 and FUS 

is active in the synthesis of miRNA [224]. For example, TDP-43 and FUS facilitate miRNA 

biogenesis by interacting with Drosha and Dicer, two primary enzymes used to transfer 

miRNAs from precursors to mature molecules [225, 226]. Mutations in TDP-43, FUS, and 

SOD1 activate a stress response pathway leading to generally decreased levels of miRNA most 

likely contributing to motor neuron (MN) degeneration [227]. ALS is a motor neuronal disorder 

and it has been shown in numerous studies that ALS can be caused by miRNA dysregulation 

and thus protein expression in the cells.  In ALS, reduced pre-miRNA processing and decreased 

levels of various miRNAs are caused by the remodelling in cytoplasm of the Dicer complex 

[228]. ALS can come from a variety of causes as genetic, epigenetic, environmental and 

internal. ALS is a consistently a lethal condition and rapid improvement in our understanding 

gives us hope that this debilitating disease can be handled effectively. 

 
Multiple sclerosis 

Multiple sclerosis (MS), the most common neurological disease, is an autoimmune-mediated 

condition affecting the central nervous system (CNS) and sometimes leading to significant 

physical or cognitive impairment and neurological disorders in young adults [229]. MS targets 

the myelinated axons in the CNS, killing to various degrees the myelin and axons [230]. The 

[231]cause is unclear, but it appears to include a combination of genetic susceptibility and a 

non-genetic trigger, such as a virus, metabolism or environmental factors, which together 

contribute to a self-sustaining autoimmune condition leading to repeated immune attacks on 

the CNS. Approximately, 2.5 million people in the world are affected by MS with young people 

between the ages of 20 and 40 most affected [232]. The higher prevalence of MS is seen in 

women who suffer twice as much as men [233]. MS may require a genetic predisposition. 

Studies indicate that the likelihood of MS in a patient's family members depends on how much 

genetic information they share [234]. MS is considered to be the most common cause of 

neurological impairment, because MS-related inflammatory lesions can affect a wide variety 

of systems to varying degrees and cause a multitude of neurological symptoms and 

comorbidities. Those include sensory impairment, visual confusion, double vision, muscle 

weakness, ataxia and impaired balance, which can dramatically decrease the quality of life of 

people affected [235, 236]. MS is difficult to handle and requires many medications working 



through various pathways. The diagnosis depends fundamentally on the nature and form of the 

disease [237].  

MS targets the myelinated axons in the CNS, killing to various degrees the myelin and 

axons [238, 239]. Subtypes of MS are deemed important not just for prognosis but also for 

treatment decisions and include; recurrence of MS (RRMS), primary progressive MS (PPMS), 

secondary progressive MS (SPMS), and progressive recurrence of MS (PRMS). RRMS is the 

most common subtype (about 87%) with sporadic acute attacks accompanied by periods of 

remission [240].  

Inflammation of the white and grey tissue in the CNS due to focal immune cell infiltration 

and its cytokines is the initiating cause of MS damage. Many researchers have indicated T-

helper (Th) cell involvement (also known as CD4+ T cells) and adaptive immune responses 

that are mediated by antigen-presenting cells (APCs) association with T lymphocytes play an 

important role in the initiation and progression of MS [241, 242]. This is evident as many 

studies have shown that CD8 + T cells (or cytotoxic T cells) can be present in MS lesions apart 

from the above listed cells [243]. Such cells mediate suppression and inactivation of CD4+ T 

cells through the development of cytolytic proteins such as perforin. In addition, these cells 

extensively increase vascular permeability, kill glial cells and cause oligodendrocyte death 

plays a significant role in MS pathogenesis [242]. 

EVs exhibit both defensive and harmful roles in MS pathogenesis. EVs may, in addition, 

be considered helpful during neurological processes by restoring trophic factors, removing 

damaged cells, regulating synaptogenesis, and monitoring the functional status of synapses as 

mentioned above [244-246]. We have recently recorded a high number of microvesicles 

produced by monocytes of MS patients compared to healthy donors [247]. Various types of 

RNA in several studies tend to be found in EVs or conjugates with lipoprotein as a mechanism 

for preventing degradation. MiRNA circulating in the blood or present in saliva, for example, 

is stated to be integrated into exosomes [70, 248-251] (Table 6). Extracellular vesicles play 

important roles in MS growth, in particular by stimulating cells during relapses, leading to 

migration through the BBB, and spreading inflammation in CNS tissue. At the other hand, a 

protective effect of EVs was identified with the induction of oligodendrocyte precursor cells 

maturing and migrating [252]. 

miRNA expression has been dysregulated in various immunological diseases, such as MS 

and others [253]. Some researchers have shown that miRNAs can contribute to the 

development of MS and to treatment responses [254]. Multiple sclerosis (MS) serves as an 

example of a chronic and organ-specific autoimmune syndrome in which miRNAs modulate 



immune responses in the peripheral immune compartment and the neuroinflammatory cycle 

throughout the brain [255]. miRNAs are also involved in adult neurogenesis that can suggest 

the possible role of some miRNAs in endogenous repair mechanisms in MS [256]. A Th17 

cell-associated miRNA, miR-326, was described in the recent study as a major determinant of 

MS in a Chinese population but not of optica neuromyelitis [257]. Genetic predispositions 

combined with environmental factors play a significant part in the pathogenesis of multiple 

sclerosis. MS is a chronic disease so far without cure and the exact cause of MS is still 

unknown. Therefore, this review for a detailed study of the MS in genetic context will be 

crucial way. 
 

Role of trinucleotide repeats in neurodegenerative diseases 

Microsatellites are generally defined as simple sequences of 1-6 nucleotides repeated multiple 

times, and present in the genome's coding and non-coding regions. Repetitive sequences are 

well represented in the eukaryotic genome and are reported to be recombination hot spots as 

well as random integration sites [258-260]. Repetitive sequences make up 30% of the human 

genome and are often deleted and inserted sites. The incidence of repetitive elements is 

significantly higher than that of random sequences of the same base composition, and the 

various microsatellites are represented at different frequencies in the genome. For example, in 

all eukaryotes, repeats of di - and tetranucleotides are more abundant than repetitions of 

trinucleotide repeats (TNR) [261].  

Simple TNRs have taken on special significance in this regard, as genomic 

amplification of TNR is the underlying genetic defect in a number of human diseases, including 

neurodegenerative and neuromuscular diseases and mental retardation [262]. Simple DNA 

repeat expansions underlie ~20 serious neuromuscular and neurodegenerative disorders. 

Although our understanding of pathogenic mechanisms for expansion diseases of TNR has 

advanced significantly in recent years, but many aspects of the mutational mechanism remain 

enigmatic [263].  

Five other neurological diseases caused by untranslated triplet repeats found in the 

3′(myotonic dystrophy), the 5′(fragile XE mental retardation and spinocerebellar ataxia (SCA) 

type 12), the intronic Friedreich ataxia (FRDA) and even potential antisense sequences (SCA 

type 8 (SCA8)) were identified in the following years [264]. In addition, it is now known that 

seven other neurodegenerative diseases result from the expansion of (CAG)n repeats coding 

for polyglutamine tracts in the respective proteins: Huntington disease (HD), Dentatorubral-

pallidoluysian atrophy (DRPLA), and SCA types 1, 2, 3, 6, and 7. In general, repeat disorders 



of trinucleotides are either dominantly inherited or X-linked, with the one exception being 

FRDA, which is autosomal recessive [265].  

Neurodegenerative disorders are caused by a wide array of genetic mutations and 

epigenetic and environmental factors, and repeat expansion of trinucleotides is increasingly 

recognised as the cause of many neurodegenerative diseases. To date, more than thirty 

neurological and neuromuscular diseases account for trinucleotide repeat expansions [266]. 

Pathogenic expansions may occur in gene coding or noncoding regions. In disorders such as 

Huntington's disease (HD) and six spinocerebellar ataxias (SCA1, 2, 3, 6, 7, and 17), 

expansions of trinucleotides in the protein-coding region result in the synthesis of expansions 

of polyglutamine (poly Q), which accumulate in ubiquitin-positive inclusions and interfere 

with cellular homeostasis, leading to cellular homeostasis [266]. In different intragenic the non-

coding repeat expansions involve different sequence motifs. For example, the expansion is a 

repeat of CGG in fragile X mental retardation 1's 5′ untranslated region (UTR) in fragile X 

syndrome, a repeat of GAA in Frataxin's first intron in FRDA, and a repeat of CTG in DMPK's 

3′ UTR in myotonic dystrophy type 1 [267].  

Polyglutamine diseases constitute a representative and largely studied group of 

neurodegenerative disorders in which significant amounts of data were collected on the role of 

expanded polyQ in pathogenesis of diseases [268]. More than 20 years ago, the finding that the 

expansion of CAG repeats in the androgen receptor gene coding sequence was the genetic basis 

of Spinobulbar Muscular Atrophy was a hallmark in the discovery of these novel dynamic 

mutations and their association with human disease. A few years later, the identification of 

intracellular inclusions containing the expanded proteins provided an indication of 

pathogenesis, leading field research into extensive research into the mechanisms of aggregation 

of polyQ-induced proteins [269].  

Neurodegenerative syndromes have been associated with the following triplets (when 

present on the coding strand): CAG, CTG, GAA, CCG, and CGG. Most exhibit a negative 

correlation between repeat length and disease onset and/or disease progression severity [270]. 

There is convincing evidence that RNAi-active small RNAs can be formed by CAG / CUG 

TNRs. In human neuronal cells, expression of the CAG expanded HTT exon 1 (above the 

threshold for complete penetration which is > 40) caused an increase of about 21nt in length of 

small CAG repeat-derived RNAs (sCAG). The CAG / CUG repeats were found to be cleaved 

by Dicer over a certain length and have RNAi activity. To be cleaved by Dicer, a TNR sequence 

must form a hairpin stem structure which is similar to a miRNA. CNG-type TNRs (CAG, CUG, 



CCG and CGG) have been shown to be capable of forming stable hairpins which Dicer can 

cleave [271]. 

miRNAs are abundant within the central nervous system (CNS), as brain-specific 

miRNAs assist in various neuronal processes such as synaptic development, maturation, and 

plasticity [268, 269]. Altered miRNA expression has been observed in CNS diseases, 

especially age-dependent neurodegenerative diseases, suggesting that miRNA expression may 

contribute to neuropathogenesis. In HD, miRNAs dysregulation was reported in HD in vitro 

models, transgenic HD animals, and the human HD brain [272]. 

The problem of predicting miRNA binding sites with messenger RNA (mRNA) has arisen 

following the discovery of the important role of miRNAs (miRNA) in regulating gene 

expression. Several programs that predicted binding sites to miRNA were created. Yet, when 

searching for binding sites, many of them had unreasonable restrictions. Using some 

bioinformatics programs like MirTarget program to identify binding sites of miRNAs with 

mRNA genes having nucleotide repeats.  The program identifies the initiation of miRNA 

binding to mRNA, the localization of miRNA binding sites in mRNA regions, and the free 

energy from the binding of all miRNA nucleotides with mRNA. The MirTarget program found 

hydrogen bonds between adenine (A) and uracil (U), guanine (G) and cytosine (C), G and U, 

and A and C [273].  

According to the results of the MirTarget program some studies have identified the 

binding sites of miRNAs with mRNA genes to have trinucleotide repeats. For example, in the 

coding regions the count of 2567 human miRNAs and their binding sites with 102 mRNAs of 

human genes having nucleotide repeats has been fulfilled. From these results, the binding sites 

of miR-1181 and miR-1908-3p in mRNA of ATXN7 and ZIC2 genes interact with free energy 

more than -112 kJ/mole. There trinucleotide repeats of (CGG) located between 599 and 670 

nucleotides in the ATXN7 gene and miR-1181 bind in this region with a start at 593 nt. 

Trinucleotide repeats of (CGG) in the ZIC2 gene repeat between 1786 to 1816 nt and miR-

1908-3p binding sites located from 1787 nt (Table 7) [274].   

 

Current developments in Stem cell therapy 

Stem cells have the capacity to develop into any cell/ or tissue in the human body, and hence 

have tremendous potential for therapeutic applications in the regeneration and reconstruction 

of tissues [275]. It is not only possible to postpone the progression of incurable 

neurodegenerative diseases such as PD, AD, and HD thanks to stem cell therapy, but also, most 

significantly, to eliminate the source of the problem [276].   



Pluripotent and multipotent stem cells have their benefits and drawbacks, respectively. 

Theoretically they may be used to treat diseased or aged tissues where there are insufficient 

multipotent stem cells [277]. Pluripotent stem cells have not yet been used therapeutically in 

humans because several of the early animal experiments have resulted in the undesirable 

development of rare solid tumours, called teratomas, made up of a mixture of cell types from 

all early germ strata. Animals were successfully treated with cells originating from pluripotent 

cells [278]. There has also been substantial progress in identifying the transcriptional circuitry 

and the epigenetic modifications associated with pluripotency [279]. This research area is 

moving very rapidly as a result of tremendous advances in DNA sequencing technology, 

bioinformatics and computational biology. The main pluripotency transcription factors also 

regulate the microRNAs involved in controlling self-renewal and differentiation of ES cells, 

again positively and negatively [280]. 

 Multipotent stem cells harvested from the bone marrow were used to treat leukaemia, 

myeloma and lymphoma since the 1960s. Recently some progress in the use of bone marrow-

derived cells to treat certain diseases has been identified [281]. A team led by Professor 

Madrazo in 1987 recognised neural grafting as a novel approach to the replacement of damaged 

dopaminergic cells. Since then, neural transplantation and cell-based therapy have been 

considered potential therapies for PD because it is a successful candidate as a focal 

degeneration condition [282]. Clinical experiments of dopamine neurons derived from stem 

cells have undergone a new and groundbreaking age in stem cell treatment for PD. Guidelines 

and guidelines for clinical translation to patients were then set [283, 284].  

 Despite the long-term emphasis on AD diagnosis, there is still no successful therapy 

which can interrupt or reverse the disease progression [285]. Stem cell therapy was first 

conducted on animal models as an approach to treat AD [286]. Neural stem cells originating 

from the hippocampus of neonatal rats were implanted in the brain of AD rats and were able 

to develop into the new cholinergic neurons enhancing spatial learning and memory 

capabilities of AD rodent models [287]. While stem cells hold great promise in therapeutics, 

scientific evidence on the safety and efficacy of their use is needed [288]. Treatment of 

neurodegenerative disorders involves simultaneous targeting of several impaired pathways that 

indicate the need for combinatorial therapy. Choosing the best therapies to combine remains a 

big obstacle to be addressed [289].  

 Mesenchymal stem cells (MSCs) are a group of non-hematopoietic adult stem cells that 

derive from the mesoderm, also called mesenchymal stromal cells [290]. MSCs have been 

shown to possess the capacity to differentiate into a range of cell types, including adipocytes, 



osteoblasts, chondrocytes, myoblasts and neuron-like cells, as typical multipotent stem cells 

[291]. MSCs can differentiate into neuron-like cells by modulating the plasticity of damaged 

host tissues; secrete growth factors that inhibit apoptosis and promote neurogenesis by 

neurotrophic and survival promoters; [292, 293]. There is currently a great deal of interest in 

the use of MSCs in pioneering therapies for the treatment of chronic and progressive 

neurodegenerative diseases which are currently incurable and whose attempts to find disease-

modifying therapies such as AD, PD, ALS and HD have failed [294]. Furthermore, MSC-

induced functional recovery from stroke and brain injury is not due to MSCs that replace 

damaged neurons, but rather to MSCs that induce growth factor production and promote 

intrinsic neurorestorative brain functions [295-297]. Exogenously administered MSCs can 

selectively target damaged tissue by a homing mechanism, interact with brain parenchymal 

cells, reduce the expression of axonal inhibitory molecules [298]. In addition, the MSCs can 

stimulate the development of positive growth and plasticity factors that increase neuritis 

outgrowth, promote neurological restauration and recovery after brain injury [298]. 

Administration of MSC-derived cell-free exosomes is sufficient to exert similar therapeutic 

effects to intact MSCs following brain injury [299]. Functional miRNAs transferred from 

MSCs to neural cells through exosomes promote neurite remodelling and functional recovery 

in a co-culture stroke rat model [300]. Provided that MSC-conditioned culture medium is rich 

in EVs, the most likely candidate of therapeutic effects is a complex cargo of lipids, proteins, 

and RNAs in EVs [301]. Exosomes derived from MSC may transfer proteins and RNAs to 

recipient cells and may have several effects on the growth of different tumour cells [302] (Table 

8). MSCs generate exosomes that can perform as paracrine mediators by transferring signalling 

molecules that regulate tumour cell proliferation, angiogenesis, and metastasis via a number of 

regulated cellular pathways [11, 303]. In addition, some studies show that MSC-derived 

exosomes provided dual miRNA mimics (miR-124 and miR-145) and decreased glioma cell 

migration and cancer cell stem cell proprieties [304]. 

 Untreatable neurodegenerative diseases currently have the potential to become treatable 

with stem cell therapy. Stem cell research helps scientists understand how an organism grows 

from a single cell, and how healthy cells in humans and animals replace damaged cells. This 

procedure could also reverse the ageing process, which is a natural phenomenon. Also, the use 

of these cells will truly open the way to personalised medicine in future clinical practise. This 

technology has revolutionised the laboratory cell biology and will provide much improved 

models of cell culture for drug discovery and development, as well as fundamental genetic 

basis studies of the disease. Neurodegenerative diseases have devastating sequelae with 



conventional pharmacological therapies and, to date, stem cell therapy is probably the only 

possible treatment method that may provide a 'cure' for neurodegenerative diseases. 

 

Trinucleotide repeat therapy 

The mutation, called the trinucleotide repeat expansion disorders  (TREDs), occurs when the 

number of triplets present in a mutated gene is greater than the number found in a normal gene 

[305]. Repeats of trinucleotides belong to simple sequence repeats, also known as short tandem 

repeats or microsatellites, and are common grounds in the human genomes and many other 

organisms [260]. RNA interference (RNAi) or antisense oligonucleotides (AON), utilizes 

repeat hairpin-specific small compounds and targeting repeats with mutant siRNAs acting as 

miRNAs use expanded repeat RNA as a target has been studied as experimental therapies for 

trinucleotide repeat expansion disorders [306]. 

RNAi reagents need a complementary sequence of ~20nt for successful silencing, 

which is only 7 repeats of CAG. Although normal CAG-bearing transcript alleles typically 

have 10–20 repeats, their mutant versions have 40–100 CAG repeats which means that 

transcripts from both alleles can be attacked by triplet duplexes of siRNA repeats [307]. RNA 

interference is currently being studied as a biological process as a potential therapy for 

Huntington's disease [308].  

Different groups have employed various strategies to identify ligands that explicitly 

bind CUG and CAG repeat hairpins for the treatment of certain TREDs [309]. Screening a 

library of approximately 11 000 compounds yielded a few molecules which showed selectivity 

to bind to either short or extended CUG repeat hairpins [310]. These ligands were able to avoid 

in vitro interaction of the CUG repeat / muscleblind Like Splicing Regulator 1 (MBNL1) with 

a low constant of micromolar inhibition. In another research it has been shown that the small 

molecule inhibitors, pentamidine and neomycin B inhibit the interaction of short CUG repeat 

RNA with MBNL1 in vitro [311]. Multiple disorders of trinucleotides are not the only 

neurodegenerative condition that have withstood the production of successful therapies. 

Progress in curative therapy has also been sluggish for Alzheimer's, Parkinson's and other 

illnesses [270]. However, the production of therapies for repeat diseases with trinucleotides 

has one advantage: each disorder is caused by a defect in a single known gene [312]. Nucleic 

acid-based gene silencing has been used successfully in animals such as treatment of mice with 

virally expressed small hairpin (sh)RNAs, which decreases mutant human HTT mRNA or 

protein [312, 313]. 



Different therapeutic approaches were explored to achieve diseases with TNR. Some 

involve the use of RNAi or AONs to target and degrade transcripts that could trigger disease 

growth, (ii) antisense oligomers and small molecules to inhibit RNA – protein interactions, and 

(iii) modified antisense oligomers, siRNAs or miRNAs to prevent protein synthesis [306]. CCG 

repetitions in the RNA cause various neurological disorders and very little is understood about 

the treatment of these disorders and targeting the induction of the CCG with small molecules 

may be a beneficial approach to treating these conditions. Most of those small molecules are 

only successful repeats (CCG)exp for detection and may only be used for the aims of the 

treatment [314]. Expansion of GAA repeats on chromosome 9q13-q21.1 in the X25 frataxin 

gene causes Friedreich's ataxia (FRDA) disease [315]. Some of the therapeutic strategies for 

treating FRDA may be the reversal of the reduction of frataxin protein levels [316]. Additional 

small therapeutic molecules include the use of nicotinamide, dyclonine, and gene therapy to 

treat FRDA diseases [317-319].  

Some other therapeutic approaches include the use of heat shock proteins (HSPs), 

which help the disease-causing polyQ proteins refold and solubilise [320, 321]. Therapeutic 

approaches for Spinal-bulbar muscular atrophy (SBMA) include either inhibiting the 

aggregation of causative androgen receptor (AR) protein or minimising the downstream 

pathological events, but a combination of both may be more successful as both therapies have 

their limitations recorded [322]. Small molecules such as epigallocatechin gallate (EGCG) 

have been reported to inhibit polyQ aggregation, and recent studies have shown that toxic RNA 

also participates in pathogenesis of the disease and that small molecular-based therapies may 

be suggested for targeting HD [323]. Patients with DRPLA suffer from choreoathetosis, 

autism, cerebellar ataxia, dementia, myoclonus and intellectual retardation [324, 325]. No cure 

for DRPLA is currently available, and only symptomatic treatments is provided to patients with 

DRPLA. Earlier attempts however suggest the use of ASOs to block mutant atrophin-1 

expression [326]. Advances in the area of molecular pathogenesis of the condition and 

alternatives to the production of Myotonic Dystrophy therapies [327]. AONs shRNAs, and 

siRNAs were developed as the oculopharyngeal muscular dystrophy (OPMD) therapeutics. 

Some of the pharmacological inducing agents HSP70 such as 8- hydroxyquinolone and anti-

inflammatory drugs such as ibuprofen and indomethacin have been documented to be 

successful in reducing polymutant alanine-mediated cytotoxicity of mutant alanine-exp 

PABPN1 expressing cells [328].  

Expansion of the trinucleotide repeats is one of the main causes of neurodegenerative 

diseases. Nowadays have seen rapid progress in various cellular and animal model systems 



developing experimental therapies for TREDs and tools for the study of disease processes and 

useful for the screening and evaluation of new therapeutic strategies. Conclusively, efforts by 

various research groups for a thorough understanding of RNA recognition and structure as well 

as commercial, clinical cooperation are crucial in developing small molecule based TRED 

therapies.  

 

Conclusion 

In summary, the intercellular communication of MSCs EVs carry a specific cargo of miRNAs 

secreted into the nervous system. Their role is to maintain physiological function and providing 

neuroprotection. In addition, MSCs EVs help promote tissue repair and regeneration. While 

deregulation of this intercellular communication may promote the progression of a number of 

neurodegenerative diseases such as AD, PD, ALS, MS, prion disease and HD. Herein, we have 

reviewed EV miRNA profiling studies to date and their role in neurodegeneration. This 

information is necessary to understand as it may provide clues on how these diseases progress. 

At the same time, providing a potential early diagnostic strategy. There are a few clinical trial 

studies detailing the therapeutic effects of miRNA in the treatment of neurodegeneration. 

Therefore, studies investigating the miRNA profiling of EVs will allow the development of 

novel diagnostic strategies available to the clinic and provide alternative therapeutic routes for 

treating neurodegeneration. 

 

 

 

  



Table 1 

[329-331], [110, 332] [333, 334], [335, 336], [337-339], [340, 341], [337, 338, 342], [343], 

[344], [344, 345], [345], [345], [329, 346, 347], [333, 348, 349], [333, 348, 349], [329], 

[329], [346], [346], [350] [110], [332, 351, 352], [353], [333, 354], [355], [335, 356], [335, 

357], [336],  

 

Table 2 

[358], [359], [360-363], [364], [358], [365], [358], [358], [134, 366], [366-369], [362, 370], 

[358], [358], [358], [358], [371],  [365],  [372],  [373], [374], [364], [364], [364], [364] 

 

Table 3 

[214], [375], [375], [376, 377], [378, 379], [377], [376, 380], [381, 382], [382], [376, 382], 

[380, 382, 383], [380, 382], [382, 384], [376, 378, 382], [377, 380, 382, 385], [382, 386], 

[382, 385, 386], [376-378, 382, 385], [382, 387], [376, 382, 388], [382, 384], [382, 389], 

[377, 382, 386], [379, 382], [382, 388] 

 

Table 4 

[390, 391], [255, 392], [391, 393], [393], [393], [394], [395-397], [398], [394], [394, 399], 

[400, 401], [400, 401], [401], [402], [403], [403], [404], [404], [405], [383, 406], [383], [383, 

407], [383, 408, 409], 

 

Table 5 

[410, 411], [412-415], [416, 417], [412, 418], [412, 419-421], [412, 422, 423], [412, 424], 

[425-427], [428], [429-431] 

 

Table 6 

[432, 433], [330, 434], [435, 436], [437-439], [272, 440-442], [443-445], [446, 447], [446], 

[446], [446], [448], [185], [184] 

 

Table 8 

[449], [450], [451], [452], [453], [454] 

  



Figure legends 

 

Figure 1. Overview of miRNA synthesis and extracellular vesicle miRNA transfer to 

recipient cell.  miRNA genes are transcribed by RNA polymerase II (Pol II) in the nucleus of 

the donor cells as main miRNAs (pri-miRNAs). Microprocessor cleaved the long pri-miRNAs, 

which includes DROSHA, to create the miRNAs (pre-miRNAs) precursor. The pre-miRNAs 

are then exported by exportin 5 from the nucleus into the cytoplasm and further processed by 

DICER, a ribonuclease III (R III) enzyme that produces RNA-induced silencing complex 

(RISC) to form mature miRNA. After that, the mature miRNAs can be loaded into 

multifunctional bodies (MVBs) produced via early-endosomal membrane invagination. Then 

these MVBs dock on the cell membrane and release positive exosomes in serum and other 

biological spaces into the extracellular space. The exosomal fusion with the target cell's plasma 

membrane results in miRNA cargo being released into the cytosol and translational repression. 

 

Figure 2. EVs contents derived from normal versus ND affected brain tissue. Normal brain 

secretes EVs that carry cargos, including lipids, nucleic acids, and proteins, while 

neurodegenerative EVs carry specific proteins that are associated with the disease. Alzheimer’s 

disease derived-EVs carry phosphorylated tau and β-amyloid, while EVs secreted from 

Parkinson’s disease have α-synuclein protein. Prion disease-derived EVs carry both the normal 

PrPc and misfolded PrPSc of the prion protein, whereas EVs secreted from Huntington and 

ALS diseases carry polyQ proteins and CAG-repeat RNA and SOD1 mutant form and TDP-

43 protein, respectively. EVs, extracellular vesicles; PrPc, cellular prion protein; PrPSc, 

Scrapie prion protein; ALS, amyotrophic lateral sclerosis, SOD, superoxide dismutase. 

 

Table 1. Alzheimer’s Disease Micro RNAs and possible targets All miRNA–target 

relationships shown here are in humans unless indicated. The miRNAs and genes mentioned 

in the table has shown direct or indirect relationship in the pathogenesis and progression of the 

disease.15-LOX- Arachidonate 15-Lipoxygenase; ApoE- Apolipoprotein E; APP- Amyloid 

Precursor Protein; Atg4d- Autophagy Related 4D Cysteine Peptidase; BACE1- Beta-Secretase 

1; BECN1- Beclin1; BTBD3- BTB Domain Containing 3; CDKN2- Cyclin Dependent Kinase 

Inhibitor 2A; CFH- Complement Factor H; CSF- Cerebrospinal Fluid; ECF- Extracellular 

Fluid; GMEB2- Glucocorticoid Modulatory Element Binding Protein 2; IDH2- Isocitrate 

Dehydrogenase (NADP(+)) 2; p250GAP- p250 GTPase Activating Protein ; PTBP2- 

Polypyrimidine Tract Binding Protein 2; PTPN1- Protein Tyrosine Phosphatase Non-Receptor 



Type 1; SIRT1- Sirtuin 1; SNAP25- Synaptosome Associated Protein 25; SPT- Suppressor of 

Ty; STX1A- Syntaxin 1A; SYN-2- Synapsin II; SYNJ1- Synaptojanin 1; SYNPR- 

Synaptoporin; SYT1- Synaptotagmin 1; TGFBI- Transforming Growth Factor Beta Induced; 

TLR- Toll Like Receptor; TRIM2- Tripartite Motif Containing 2; UNC13B- Unc-13 

HomologB  

 

Table 2. Parkinson’s Disease- Micro RNAs and possible targets All miRNA–target 

relationships shown here are in humans unless indicated (e.g. cultured neuronal cells). The 

miRNAs and genes mentioned in the table has shown direct or indirect relationship in the 

pathogenesis and progression of the disease. ATP5G3- ATP Synthase Membrane Subunit C 

Locus 3; Bax- BCL2 Associated X, Apoptosis Regulator; DRAM- DNA damage regulated 

autophagy modulator 1; GLUT3- Glucose Transporter Type 3, Brain; HSC70- Heat Shock 

Protein Family A (Hsp70) Member 8; HSP70- Heat Shock Protein Family A (Hsp70) Member 

4; KEAP1- Kelch Like ECH Associated Protein 1; LAMP2a- Lysosomal Associated 

Membrane Protein 2; LRRK2- Leucine Rich Repeat Kinase 2; MTFMT- Mitochondrial 

Methionyl-TRNA Formyltransferase; NFĸB- Nuclear Factor Kappa B Subunit 1; NLRP3- 

NLR Family Pyrin Domain Containing 3; PARK2- Parkinson Disease (Autosomal Recessive, 

Juvenile) 2, Parkin; PARK7- Parkinson Disease (Autosomal Recessive, Early Onset) 7; 

PARK8 - Parkinson Disease (Autosomal Dominant) 8; RELA- v-rel reticuloendotheliosis viral 

oncogene homolog A (avian); SIAH1- Seven In Absentia Homolog 1; SNCA- Synuclein 

Alpha; TFEB- Transcription Factor EB; TNF-α- Tumor Necrosis Factor-Alpha ; VDAC1- 

Voltage Dependent Anion Channel 1; XIRP2- Xin Actin Binding Repeat Containing 2; 

ZNF440- Zinc Finger Protein 440; α-SYN- Synuclein Alpha  

 

Table 3 Prion Disease Micro RNAs and possible targets All miRNA–target relationships 

shown here are in humans unless indicated (e.g. mouse brain). The miRNAs and genes 

mentioned in the table has shown direct or indirect relationship in the pathogenesis and 

progression of the disease. CFH- Complement Factor H; DCX- Doublecortin; E2F1- E2F 

Transcription Factor 1; ERK1 - Extracellular Signal-Regulated Kinase1; IL-8- Interleukin 8 ; 

IRAK-1- Interleukin 1 Receptor Associated Kinase 1; MAPK1-Mitogen-Activated Protein 

Kinase 1; ERK2- Extracellular Signal-Regulated Kinase 2; MAPK3- Mitogen-Activated 

Protein Kinase 3; PLCE1- Phospholipase C Epsilon 1; ROCK2- Rho Associated Coiled-Coil 

Containing Protein Kinase 2; TREM2- Triggering Receptor Expressed On Myeloid Cells 2; 



ULK1- Unc-51 Like Autophagy Activating Kinase 1; VEGF- Vascular Endothelial Growth 

Factor A  

 

Table 4. Huntingtons Disease Micro RNAs and possible targets All miRNA–target 

relationships shown here are in humans unless indicated (e.g. STHdhQ111/HdhQ111 cells; 

monkey brain). The miRNAs and genes mentioned in the table has shown direct or indirect 

relationship in the pathogenesis and progression of the disease. Ago2- Argonaute RISC 

Catalytic Component 2; BDNF- Brain Derived Neurotrophic Factor; CREB1 - CAMP 

Responsive Element Binding Protein 1; Foxg1- Forkhead Box G1; HIP-1- Huntingtin 

Interacting Protein 1; HDAC4- Histone Deacetylase 4; HTT- Huntingtin; MeCP2- Methyl; 

CpG Binding Protein 2; p250GAP- p250 GTPase Activating Protein; PGC1- PPARG 

Coactivator 1 Alpha ; PTB1- Polypyrimidine tract-binding protein 1; REST- RE1 Silencing 

Transcription Factor; Rgs2- Regulator Of G Protein Signaling 2; Rgs8- Regulator Of G Protein 

Signaling 8; SOX9- SRY-Box Transcription Factor 9; SP-1- Sp1 Transcription Factor; TBP- 

TATA-Box Binding Protein; VEGF-A- Vascular Endothelial Growth Factor A  

 

Table 5. Amyotrophic lateral sclerosis-Micro RNAs and possible targets All miRNA–

target relationships shown here are in humans unless indicated. The miRNAs and genes 

mentioned in the table has shown direct or indirect relationship in the pathogenesis and 

progression of the disease. 43TARDBP- TAR DNA-Binding Protein 43; ABCG1- ATP 

Binding Cassette Subfamily G Member 1; ARHGDIA- Rho GDP Dissociation Inhibitor Alpha; 

BAX- BCL2 Associated X, Apoptosis Regulator; BBC3- BCL2 Binding Component 3; BSG- 

Basigin (Ok Blood Group); C9orf72- Chromosome 9 Open Reading Frame 72; CD151- CD151 

Molecule (Raph Blood Group); CDKN2D- Cyclin Dependent Kinase Inhibitor 2D; CTDSP1- 

Carboxy-Terminal Domain RNA Polymerase II Polypeptide A Small Phosphatase 1; FLOT1- 

Flotillin 1; FUS- Fused In Sarcoma; GRB10- Growth Factor Receptor Bound Protein 10; 

HAX1- HCLS1 Associated Protein X-1; HDGF- Heparin Binding Growth Factor; HMGA1-  

High Mobility Group AT-Hook 1; IER2- Immediate Early Response 2; ITGA5- Integrin 

Subunit Alpha 5; LGALS3- Galectin 3; MAPK3- Mitogen-Activated Protein Kinase 3; 

MIEN1- Migration And Invasion Enhancer 1; MT2A- Metallothionein 2A; MT-CO2- 

Mitochondrially Encoded Cytochrome C Oxidase II; MYL9-Myosin Light Chain 9; MYO1F- 

Myosin IF ; NFKBIB- NF-Kappa-B Inhibitor Beta; OTUB1- OTU Deubiquitinase, Ubiquitin 

Aldehyde Binding 1; PFN1- Profilin 1; PHB- Prohibitin; PINK1- PTEN Induced Kinase 1; 

PKM- Pyruvate Kinase M1/2; PRKCD- Protein Kinase C Delta; PTMS- Parathymosin; PTPA- 



Protein Phosphatase 2 Phosphatase Activator; PTTG1- Pituitary Tumor-Transforming Gene 1 

Protein; RAB40C- Ras-Related Protein Rab-40C; RHOC- Ras Homolog Family Member C; 

SMARCD3- SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, 

Subfamily D, Member 3; SNAI3- Snail Family Transcriptional Repressor 3; SOD1- 

Superoxide Dismutase 1; TACC3- Transforming Acidic Coiled-Coil Containing Protein 3; 

UCP2- uncoupling Protein 2; VIM- Vimentin; ZYX- Zyxin  

 

Table 6. Multiple Sclerosis Micro RNAs and possible targets All miRNA–target 

relationships shown here are in humans unless indicated (e.g. Th17 cell line; EAE mice). The 

miRNAs and genes mentioned in the table has shown direct or indirect relationship in the 

pathogenesis and progression of the disease. ABCA1- ATP Binding Cassette Subfamily A 

Member 1; ADD2- Adducin 2; AID- activation induced deaminase; AKR1C1- Aldo-Keto 

Reductase Family 1 Member C1; AKR1C2- Aldo-Keto Reductase Family 1 Member C2; 

BACH1- BTB Domain And CNC Homolog 1; BACH2- BTB Domain And CNC Homolog 2; 

BCL2- BCL2 Apoptosis Regulator; CEBPB- CCAAT Enhancer Binding Protein Beta; CFH- 

Complement Factor H; c-MAF- C-Maf Inducing Protein; CSFR- Colony Stimulating Factor 1 

Receptor ; DIP2A- Disco Interacting Protein 2 Homolog A; Dnaja2- DnaJ Heat Shock Protein 

Family (Hsp40) Member A2; Dnajb1- DnaJ Heat Shock Protein Family (Hsp40) Member B1; 

E2F2- E2F Transcription Factor 2; FADD- Fas Associated Via Death Domain; FOXO1- 

Forkhead Box O1; GPX3- Glutathione Peroxidase 3; HSP40- Heat Shock 40 KDa Protein; 

IKZF1- Ikaros family zinc finger 4; IL-17- Interleukin 17A; Il23r- Interleukin 23 Receptor; 

IRAK-1- Interleukin 1 Receptor Associated Kinase 1; IRAK-2- Interleukin 1 Receptor 

Associated Kinase 2; JARID2- Jumonji And AT-Rich Interaction Domain Containing 2; 

MMP-9- Matrix Metallopeptidase 9; Myb- MYB Proto-Oncogene, Transcription Factor; 

Mef2- Myocyte enhancer factor-2; NKRF- NFKB Repressing Factor; PGC-1α- PPARG 

Coactivator 1 Alpha; PIAS3- Protein Inhibitor Of Activated STAT 3; PTEN - Phosphatase And 

Tensin Homolog; Ripk1- Receptor Interacting Serine/Threonine Kinase 1; SOCS1- Suppressor 

Of Cytokine Signaling 1; tab2- TGF-Beta Activated Kinase 1 (MAP3K7) Binding Protein 2; 

Tbx21- T-Box Transcription Factor 21; TMED7- Transmembrane P24 Trafficking Protein 7; 

TRAF6- TNF Receptor Associated Factor 6  

 

Table 7 – Characteristics of miRNAs binding sites in CDS mRNA genes with nucleotide 

repeats 

 



Table 8 Current stem cell development 
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Table 1 Alzheimer’s disease Micro RNAs and possible targets 

 miRNA Regulation Region Target Reference 

1 miR- 132 Downregulated Brain tissue p250GAP mRNA; PTBP2 [329-331]  

2 miR-101 Downregulated Brain Tissue APP, Beclin1 and Atg4d [110, 332] 

3 miR-106b5p Downregulated Serum-AD patients APP [333, 334] 

4 miR-135a Downregulated Serum Exosome_ AD Patients BACE1, APP [335, 336] 

5 mir146a Upregulated Neocortical extracellular fluid (ECF) 
and in the cerebrospinal fluid (CSF)  

APP/Tau; complement factor H 
(CFH) 

[337-339] 

6 miR-153 Downregulated Brain Tissue APP [340, 341] 

7 miR-155 Upregulated Neocortical extracellular fluid (ECF) 
and in the cerebrospinal fluid (CSF)  

APP/Tau; complement factor H 
(CFH) 

[337, 338, 342] 

8 miR-16 Downregulated Brain Tissue APP [343] 

9 miR-17-5p Downregulated Brain Tissue APP [344] 

10 miR-20a Downregulated Brain Tissue APP [344, 345] 

11 miR-644  Downregulated Cultured Neuronal Cells APP [345] 

12 miR-655 Downregulated Cultured Neuronal Cells APP [345] 

13 miR-9 Downregulated  AD- hippocampus and medial frontal 
gyrus, Serum_ AD Patients 

TGFBI, SYNJ1, SYNPR, GMEB2, 
p250GAP mRNA, SPT, APP 

[329, 346, 347] 

14 miR-298 downregulated Cultured Neuronal Cells BACE1 [333, 348, 349] 

15 miR-328 downregulated  Serum- AD Patients BACE1 [333, 348, 349] 

16 miR-423 Upregulated Hippocampus_ Human IDH2 [329] 

17 miR-98 Downregulated Cerebellum_ Human IDH2 [329] 

18 miR-125b Down 
regulated 

Serum_ AD Patients CDKN2, SYN-2, 15-LOX [346] 

19 miR-181  Down 
regulated 

Serum_ AD Patients BTBD3, TRIM, SIRT1 [346] 

20 miR-146b Downregulated Hippocampus_ Human TLR signaling [350] 

21 miR-107  Down 
regulated 

AD Brain BACE1 [110] 

22 miR-124  upregulated AD Brain PTPN1, BACE1 [332, 351, 352] 

23 miR-195  Upregulated AD Brain ApoE/PPI Pathway [353] 

24 miR-29 (a/b) Downregulated AD Brain BACE1, APP [333, 354] 

25 miR-34  Upregulated Brain Tissue  SYT1, SNAP25, STX1A, SNAP25, 
and UNC 13B 

[355] 

26 miR-200b Downregulated CSF_ AD Patients BACE1, APP [335, 356] 

27 mir-429 Downregulated CSF_ AD Patients BACE1, APP [335, 357] 

28 mir-384 Downregulated Serum_Exosome_ AD Patients BACE1, APP [336] 



 
Table 2. Parkinson’s Disease- Micro RNAs and possible targets 
 
 
 
 
 
 
 
 
 
 

 miRNA Regulation Region Target Reference 
1 miR-106a Upregulated PD brain samples HSC70 [358] 
2 miR-16-1 Upregulation Neuronal Cells HSP70,  α-SYN [359] 
3 miR-214 Downregulation PD-SERUM α-SYN [360-363] 
4 miR221 Upregulation PD- anterior cingulate gyri SNCA, PARK2 [364] 
5 miR-26b upregulated PD brain samples HSP70 [358] 
6 miR-27 Upregulated neuronal cells ATP5G3 [365] 
7 miR-29b Upregulated neuronal cells HSC70 [358] 
8 miR-301b Upregulated neuronal cells HSC70 [358] 
9 miR-34b/c Downregulation neuronal cells α-SYN, PAKN, 

PARK7 
[134, 366]  

10 miR-7 Downregulation neuronal cells α-SYN, NLRP3, 
VDAC1,KEAP1, 
Bax, SIR2, 
RELA, GLUT3, 
NFĸB 

[366-369]  

11 miR-153 Down regulation neural tissue SNCA [362, 370] 
12 miR-21 Upregulated neuronal cells LAMP2a [358] 
13 miR-224 Upregulated neuronal cells LAMP2a [358] 
14 miR-373 Upregulated neuronal cells LAMP2a [358] 
15 miR-379 Upregulated neuronal cells LAMP2a [358] 
16 miR-128 Upregulated brain tissue TFEB [371] 
17 miR- 155 Upregulated Neuronal Cells ATP5G3 [365] 
18 miR-494 Upregulated Mice brain tissues PARK7 [372] 
20 miR-205 Down regulation PD-frontal cortex  PARK8 ( 

LRRK2) 
[373] 

21 miR-138-2-
3p 

 rs66737902 T 
sequence 
binding 

PD-Brain PARK8 
(LRRK2) 

[374] 

22 miR-144 upregulated PD- anterior cingulate gyri LRRK2, DRAM [364] 
23 miR-488 upregulated PD- anterior cingulate gyri PARK2, 

MTFMT 
[364] 

24 miR-199b upregulated PD- anterior cingulate gyri ZNF440 [364] 
25 miR-544a upregulated PD- anterior cingulate gyri XIRP2 [364] 



 miRNA Regulation Region Target Reference 
1 miR-34 Upregulated Brain TREM2 [410, 411] 
2 MiR-342-3p upregulated CJD brain  E2F1 [412-415] 
3 miR-146a upregulated CJD Brain TLR/IL1-R, CFH, 

IRAK-1 
[416, 417] 

4 miR-139-5p upregulated MicroGlial Cells ROCK2 [412, 418] 
5 miR-320 upregulated Mouse Brain MAPK1/ERK2 and 

MAPK3/ERK1 
[412, 419-421] 

6 miR-128 upregulated Mouse Brain DCX [412, 422, 423] 
7 miR-328 upregulated Mouse Brain PLCE1 [412, 424] 
8 miR-26a-5p upregulated CJD Brain ULK1 [425-427]  
9 miR-16 Upregulation Mouse brain Neurotrophin 

receptor-mediated 
MAPK/ERK pathway 

[428] 

10 hsa-miR-93-
5p 

down regulation CJD-Blood samples IL-8, VEGF [429-431] 

 
Table 3 Prion Disease Micro RNAs and possible targets 



  
miRNA Regulation Region target Reference 

1 miR-22 Downregulated HD-Brain HDAC4, 
REST, Rgs2 

[432, 433] 

2 miR-132 Downregulated HD- Cortices p250GAP, 
MeCP2, 
REST, Ago2 

[330, 434] 

3 miR-124 Downregulated HD-Brain SOX9, PTB1, 
PGC1 

[435, 436]  

4 miR-196a Upregulated HD-Prefrontal Cortex Mutant HTT, 
ANX1A, 
BDNF 

[437-439] 

5 miR-10b-
5p 

Upregulated HD-Prefrontal Cortex Mutant HTT, 
BDNF, 
CREB1  

[272, 440-
442] 

6 miR-146a Upregulated HD-Brain HTT, TBP [443-445] 
7 miR-214 upregulated STHdhQ111/HdhQ111 

cells. 
HTT [446, 447] 

8 miR-150 upregulated STHdhQ111/HdhQ111 
cells. 

HTT, Rgs8, 
VEGF-A 

[446] 

9 miR-146a upregulated STHdhQ111/HdhQ111 
cells. 

HTT [446] 

10 miR-125b upregulated STHdhQ111/HdhQ111 
cells. 

HTT [446] 

11 miR-10b-
5p 

Upregulated HD-Brain BDNF [448] 

12 miR-128 Down regulated HD Monkey--Brain g HIP-1, HTT 
and SP-1 

[185] 

13 miR-9 Down regulated  HD peripheral 
leukocytes 

Foxg1 [184] 

 
Table 4 Huntington’s Disease Micro RNAs and possible targets 



 miRNA Regulation Region target Reference 

1 miR-155 Upregulated human ALS Cells SOD1 [214] 

2 miR-132-3p Downregulated CSF  43TARDBP, FUS and 
C9ORF72 

[375] 

3 miR-132-5p Downregulated CSF  43TARDBP, FUS and 
C9ORF72 

[375] 

4 let-7a-5p Downregulated CSF HMGA1, MYO1F, PKM, 
RAB40C 

[376, 377] 

5 miR-128-3p Downregulated AL-Muscle Tissue ABCG1, BAX, CTDSP1, 
LGALS3 

[378, 379] 

6 miR-130b-3p Downregulated CSF SNAI3 [377] 

7 miR-148a-3p Downregulated CSF BAX, ITGA5 [376, 380] 

8 miR-15a-5p Downregulated Peripheral Blood HMGA1, UCP2 [381, 382] 

9 miR-151a-5p Downregulated Peripheral Blood ARHGDIA, OTUB1 [382] 

10 miR-16-5p Downregulated Peripheral Blood ARHGDIA, HDGF, HMGA1, 
ZYX 

[376, 382] 

11 miR-182-5p Downregulated Peripheral Blood FLOT1, NFKBIB, PFN1, 
SMARCD3 

[380, 382, 383] 

12 miR-183-5p Downregulated Peripheral Blood PTPA [380, 382] 

13 miR-186-5p Downregulated Peripheral Blood PTTG1 [382, 384] 

14 miR-22-3p Downregulated Peripheral Blood BSG, CD151, LGALS9, PTMS [376, 378, 382] 

15 miR-221-3p Downregulated Peripheral Blood BBC3, GRB10 [377, 380, 382, 
385] 

16 miR-223-3p Downregulated Peripheral Blood HAX1, MYL9 [382, 386] 

17 miR-23a-3p Downregulated Peripheral Blood MT2A [382, 385, 386] 

18 miR-26a-5p Downregulated Peripheral Blood HMGA1, ITGA5, PHB, 
PRKCD 

[376-378, 382, 
385] 

19 miR-26b-5p Downregulated Peripheral Blood MIEN1, MT-CO2 [382, 387] 

20 miR-27b-3p Downregulated Peripheral Blood PHB, PINK1 [376, 382, 388] 

21 miR-30c-5p Downregulated Peripheral Blood IER2, VIM [382, 384] 

22 miR-425-5p Downregulated Peripheral Blood TACC3 [382, 389] 

23 miR-451a Downregulated Peripheral Blood CDKN2D [377, 382, 386] 

24 miR-550a-3p Downregulated Peripheral Blood MAPK3 [379, 382] 

25 miR-93-5p Downregulated Peripheral Blood RHOC [382, 388] 

 

Table 5 Amyotrophic lateral sclerosis-Micro RNAs and possible targets 



miRNA Regulation Region Target Reference 
miR-146a upregulated CSF IRAK-1, IRAK-2, TRAF6, 

CFH 
[390, 391] 

miR-150 upregulated MS serum and 
CSF 

Myb, AID, BACH1, 
CEBPB, CSFR 

[255, 392]  

miR-155 upregulated Serum cMAF, FADD, IKK, 
JARID2, PU.1, Ripk1, 
SOCS1, tab2, ARK1C1, 
ARK1C2 

[391, 393] 

miR-342-3p downregulated MS-Brain 
Tissue 

AKR1C2 [393] 

miR-183 upregulated MS-Brain 
Tissue 

AKR1C1 [393] 

miR-320a downregulated MS-PBMC MMP-9 [394] 
miR-30b-5p downregulated PRMS-

Erythrocytes 
PGC-1α [395-397] 

miR-301a upregulated RRMS-PBMC PIAS3, NKRF [398] 
miR-15a upregulated MS-PBMC BCL2 [394] 
miR-16-1 upregulated MS-Blood 

Samples 
BCL2 [394, 399] 

miR-23a Downregulated MS-Serum 
Samples and 
Brain lesions 

Myocyte enhancer factor-2 [400, 401] 

miR-223 Downregulated MS-Serum 
Samples and 
Brain lesions 

Myocyte enhancer factor-2 [400, 401] 

miR-27 Downregulated MS Brain 
Lesions 

Myocyte enhancer factor-2 [401] 

miR-155-3p upregulated CD4+ Tcells Dnaja2 and Dnajb1, HSP40 [402] 
MiR-19b Downregulated CD4+ Tcells PTEN  [403] 
miR-17 Downregulated CD4+ Tcells Ikaros family zinc finger 4 [403] 
miR-183C upregulated Th17 Cells FOXO1 [404] 
miR-96 upregulated Th17 Cells Il23r, Tbx21 and Ifng [404] 
miR-132 upregulated EAE Mice IL-17, IFN-γ [405] 
miR-125a-5p upregulated MS-Blood 

Samples 
DIP2A, E2F2, ADD2 [383, 406] 

miR-185-5p upregulated MS-Blood 
Samples 

BACH2, GPX3 [383] 

miR-25-3p upregulated MS-Blood 
Samples 

ABCA1 [383, 407] 

miR-148b-3p Downregulated MS-Blood 
Samples 

TMED7 [383, 408, 
409] 

 
Table 6 Multiple Sclerosis Micro RNAs and possible targets 



Table 7 – Characteristics of miRNAs binding sites in CDS mRNA genes with nucleotide 
repeats 
 

Genes miRNA The 
beginning of 
binding site 

Free 
energy 
change 

(∆G, 
kJ/mole 

The 
ΔG/ΔG

m 
values 
(%) 

Schemes of miRNA binding with mRNA 
genes 

ATXN7  miR-1181  593 -112 88 5’ – CGCCGCGCGGCGGCGGCGGCGG – 3’  
     || | || ||||||||||||||  
3’ – GCCGAGC-CCACCGCCGCUGCC – 5’ 
 

ZIC2 miR-1908-
3p 

1787 -116 88 5’ – CGGCGGCGGGGCGGGCGGCGGG – 3’ 
     ||| |||||||| |||||| ||  
3’ – GCC-CCGCCUCGGCCGCCGGCC – 5’ 
 

 
 
 



Table 8 Current stem cell development 
 

Disease Therapy Phase Reference 
Alzheimer’s disease Exosomes Derived from Allogenic Adipose Mesenchymal 

Stem Cells（MSCs-Exos） 
I/II [449] 

Parkinson's Disease The Effect of Adrenergic Blocker Therapy on Cardiac and 
Striatal Transporter Uptake in Pre-Motor and Symptomatic 

Parkinson's Disease 

II [450] 

Huntington Disease Cellavita HD is a stem-cell therapy I [451] 
Prion diseases Effectiveness of the medication quinacrine on survival in 

sporadic Creutzfeldt-Jakob disease (sCJD) 
II [452] 

Amyotrophic 
Lateral Sclerosis 

Intra-spinal Cord Delivery of Human Neural Stem Cells I [453] 

Multiple Sclerosis Neural Stem Cell Transplantation I [454] 
 

 


