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ABSTRACT 

Cycling efficiency is a measure of the ability to convert stored energy into power, 

and is considered a key determinant of cycling performance. Cycling efficiency has 

recently been manipulated with various techniques, but most prominently with high 

intensity training in habitual cyclists and using calorie restriction in sedentary obese 

participants. It was therefore the primary aim of this thesis to explore the efficacy of 

utilising a short- and medium-term calorie restriction intervention, to manipulate 

efficiency with participants accustomed to cycling. A secondary aim was to 

investigate the validity of measuring efficiency in a field-based environment. Male 

club level cyclists were recruited for the investigations, which comprised of a 

moderate -500 kcal.day-1 deficit, utilising portion control and measuring efficiency  

at both absolute and relative steady-state intensities. Seventeen participants 

completed the short-term, two-week intervention which utilised a randomised cross-

over design. Although a significant reduction in body mass was attained, RMR, gross 

and net efficiency across all intensities and TT power remained stable. Field and 

laboratory comparisons indicated that prior to statistical correction absolute 

efficiency was significantly lower in the field, but after accounting for differences in 

power, cadence and environmental conditions, no differences were present. Twenty-

nine participants conducted the medium-term study and were assigned either to 

calorie restriction or to no dietary intervention. Following a reduction in mass in the 

calorie restriction group and an increase in the group given no dietary intervention, 

a significant interaction between mass and efficiency was found across gross and net 

efficiency workloads. A six week follow-up period indicated that the process of 

calorie restriction and not absolute body mass reduction was the main mechanism 

for altering efficiency. This thesis suggests that efficiency can be manipulated both 

positively and negatively with calorie manipulation, and that these changes are 

linked to both laboratory and field based performance.  

 

 

 

 



ii  
 

ACKNOWLEDGEMENTS 
 
I would like to thank Canterbury Christ Church University for providing me the 
opportunity to conduct this research in a treasured environment ensuring that I could 
reach my potential. The University will always be held close to my heart along with 
the people that I have had the pleasure to meet.   
 
I am indebted to my first supervisor Dr Damian Coleman for his continuous 
guidance, inspiration, belief and data analysis solutions, without whom I may not 
have embarked on such an endeavour. I will continue to hold you in high esteem and 
will miss the weekly thought provoking discussions.  
 
This research would not have been possible without the numerous willing and 
enthusiastic cyclists that subjected themselves to some weird and wonderful 
protocols. I would like to offer my sincerest thanks and appreciation.   
 
I would like to express my gratitude to Margaret, Bob, Tracy, Mark and rangers; 
Kieron and Dean for allowing unprecedented access to the closed-road circuit at  
Fowlmead Country Park. I will remain forever grateful for making an ambitious task 
conceivable to orchestrate.  
 
I would like to thank Dr Mathew Brown for reviewing this thesis, Dr Jim Wiles and 
Dr Jamie O’Driscoll for their support during the final stages and fellow colleagues; 
Lucinda Howland, Philip Hurst, and more recently James Scales and Katrina Taylor 
for the numerous hours of company, light heartedness and all important hot chocolate 
outings. I would also like to extend my sincerest thanks to the laboratory technicians 
Dan Stretch and Dan Tolhurst for always being on hand during the crucial moments.   
 
A special thanks to some of my closest undergraduate friends; Johnny and Sarah 
Janman, Jay and Sarah Brewer and Stacey Borland for listening to the endless stories 
of how hard a PhD student really works and forever asking if I had finished it yet, 
you are true friends indeed.  
 
Lastly, but certainly not least to my parents Tina, Paul and my brother Mark, for their 
continued support, ensuring that I remained grounded and reminding me that I really  
have been a student for a very long time. I would not be the person I am without you. 
Thank you for all that you have done throughout the years.     
 

 
 
 
 
 



iii  
 

SUMMARY OF INVESTIGATIONS 

Cycling efficiency research has increased in popularity over the past decade and is 

currently regarded to be a key determinant of performance. Despite a strong rational 

for the link with performance, improvements in efficiency are rarely empirically  

confirmed with performance testing. Utilising research and theories from a health 

and weight loss perspective, in combination with the frequent practice of trained and 

elite cyclists to reduce mass prior to competition to improve power-to-weight ratio, 

body mass change as a result of calorie restriction was considered a valid and under 

researched intervention strategy. Therefore the primary aim of this thesis was to 

explore the short- and medium-term effects of body mass change on steady-state 

efficiency and time-trial performance. A secondary aim was to explore the efficacy  

of measuring efficiency in a field environment.  

 

Study 1 - Variability of body composition assessment, blood parameters, energy 
expenditure and time-tr ial performance.  
 
Within and between-day variability of the key variables were assessed prior to 

experimentation for the purpose of sample size calculation, to assess reliability and 

streamline protocols. Both within-day and between-day variation indicated that the 

Durnin and Womersley (1974) 4-site skinfold method had the lowest body fat % 

variability (CV: 1.12 %) and was the closest in absolute prediction of fat mass to an 

air-displacement plethysmography device (CV: 3.82 %). Between-day variability  

determined that RMR measurement could be streamlined to 20 min for subsequent 

experimental chapters, whilst body mass perturbations provided an insight into the 

level of mass stability amongst participants (CV: 0.54-0.82 %), equating to a weekly  

change in body mass of 0.38-0.57 kg for a 70 kg participant. The variability of 

efficiency was assessed across three workloads; 150 W, 50 % and 60 % Wmax. All 

three workloads showed a lower variability when calculated as gross efficiency (CV:  

2.89-6.17 %) opposed to net efficiency (CV: 4.30-8.83 %) and in turn the higher 

sensitivity to change. TT laboratory performance variability (CV: 2.28-3.89 %) was 

considered similar, although slightly higher to previous studies using trained 

participants (CV: 1.9-2.19 %, Smith et al., 2001). This indicated that club level 
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cyclists recruited for the reliability study were satisfactorily accustomed to TT 

performances. In regard to blood analysis, this assessment was also the first to 

demonstrate the natural weekly variability in a non-hospitalised population using a 

new portable device (i-STAT).  

 

Study 2 - The effect of short-term calorie restriction on cycling efficiency and 
performance.  

Little is known about the short-term effect of calorie restriction in a non-obese 

exercising population, where it is likely that a reduction in total kilocalorie intake 

will reduce carbohydrate availability, having a negative effect on both efficiency and 

performance. Therefore, the aim of this study was to explore the effect of a short-

term (two week), moderate calorie restriction (-500 kcal.day-1) on gross, net 

efficiency and TT performance.  Sixteen male cyclists (age 42 ± 9 yrs, body fat 22.3 

± 5 %) were recruited from local cycling clubs, completed a V̇O2max test and three 

efficiency and TT performance trials (16.1 km). The intervention consisted of a 

randomised crossover design where a significant reduction in body mass (-1.24 kg) 

and fat mass (-0.81 kg) was observed during the intervention period (P < 0.05, in all 

cases), with no significant reduction in lean mass (P > 0.05). There was also no 

significant difference in RMR, TT power or TT power expressed relative to body 

mass (P > .05). There was however a significant increase in TT economy (3 %) (P < 

0.01), but no significant changes in either gross or net efficiency across intensities 

following short-term calorie restriction. This data suggests that efficiency  

measurement is a reasonably robust measure to changes in body mass and 

composition and that TT exercise capacity is not compromised in club cyclists 

following a moderate calorie deficit for a two-week period.  

 

Study 3 - A field and laboratory comparison of gross efficiency and 
performance. 
 
Cycling efficiency and economy are frequently measured in a laboratory  

environment and assumed representative of outdoor cycling, despite limited 

empirical research in the field. Therefore, it was the aim of this study to develop  
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protocols to measure efficiency in a field environment and to further explore the link 

between efficiency and performance. Twenty-eight male club level cyclists 

completed a V̇O2max test in the laboratory prior to a randomised efficiency and TT 

performance measurement in both the field and laboratory (one week apart). 

Laboratory testing was performed on a stationary ergometer and field testing on the 

participants’ road bicycle fitted with a power wheel device. The results initially  

indicated that cyclists were less efficient in the field; however, after adjusting for 

differences in power, cadence and environmental factors, efficiency values were 

considered similar (P > .05). Field and laboratory TT power had a high positive 

relationship (r = 0.8, P < .001). This finding provided evidence to support the notion 

that laboratory gross efficiency measurement is representative of field efficiency . 

But, these novel findings also highlighted the importance of controlling for variables 

(e.g. air speed < 3.0 m.s-1) and accounting for confounding variables in the analysis.  

 

Study 4 - The effect of medium-term body mass change on cycling efficiency 

and Performance.  

Changes in body mass have been previously described in studies reporting 

improvements in efficiency yet, it has not been investigated if greater body mass 

changes than seen in Study 2, could directly influence efficiency in a habitualised 

population. Twenty-nine male cyclists were either randomised to a six week body 

mass reduction group or given no dietary intervention. The study consisted of a pre, 

post and follow-up phase separated by six weeks. A V̇O2max test followed by an 

efficiency and TT performance trial were conducted during each phase of testing. 

Participants were divided on the basis of mass change, with the mass reduction group  

significantly reducing mass by -2.3 kg, fat mass by -1.0 kg and lean mass by -1.3 kg 

(P < .01). The participants that were given no dietary instruction gained a similar but 

opposing magnitude of body mass by 1.9 kg and fat mass by 1.2 kg (P < .05), with 

relative stability in fat-free mass 0.7 kg (P > .05). Significant interactions between 

group effects were present in gross efficiency measured at 150 W and 60 % Wmax, 

and net efficiency at 60 % Wmax. This was suggestive that body mass and by 

extension energy imbalance has the potential to have both a negative and positive 

influence on cycling efficiency with a greater negative effect on efficiency with mass 

gain. Performance power was also not significantly affected by the medium-term 
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intervention but did show a similar pattern to TT economy and steady-state 

efficiency, providing further evidence that efficiency and performance are indeed 

linked.  

 

Overall, the investigations demonstrated that efficiency could be manipulated in a 

trained population, with relatively small changes in body mass. Due to a return of 

efficiency following mass stability, the results indicated that the process of energy  

imbalance and not necessarily the absolute change in mass is the main cause for the 

changes in efficiency. The results also indicated that efficiency may only be 

temporarily altered with energy imbalance and that resting metabolism remains 

stable in an exercising population in the early stages of mass change.   
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CHAPTER 1 – INTRODUCTION 

 

1.1 Preface 

Exercise efficiency is a major factor associated with successful outcomes in sport 

and exercise performance (Joyner and Coyle, 2008). Theoretically to maximise 

performance of an individual, a high ratio of useful work compared to the total 

energy expended is key to successful outcomes; this is particularly relevant where 

competition winning margins are small, and the ‘cost’ of inefficiencies could account 

for the resulting differences in performance between individuals (Jeukendrup et al. 

(2000). Efficiency (or economy) is commonly cited as a differentiating factor 

between elite athletes in this context, and thus research in this field investigat ing 

methods to enhance efficiency and economy is advancing (Jobson et al., 2012, 

Bonacci, Chapman, Blanch and Vicenzino, 2009).   

Despite a clear theoretical link to sport and exercise performance, the increase in 

research surrounding efficiency and economy has a number of distinct limitations. 

Early published work did not necessarily use adequate numbers of participants, and 

a number of studies failed to use appropriate techniques in the collection of data to 

allow robust conclusions to be supported (Moseley and Jeukendrup, 2001). This led 

to research into different activities drawing different conclusions. For example, 

during running where there are very large inter-individual differences in economy , 

even research with small sample sizes and simplistic research design could identify  

differences which has led to substantial advances in research in this mode of exercise 

(Pereira & Freedson, 1997). This was not the case for cycling exercise however, 

where inter-individual differences appear to be substantially smaller compared to 

running, and thus conclusions indicated from many early papers that efficiency in 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Bonacci%20J%5BAuthor%5D&cauthor=true&cauthor_uid=19827859
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bonacci%20J%5BAuthor%5D&cauthor=true&cauthor_uid=19827859
http://www.ncbi.nlm.nih.gov/pubmed/?term=Blanch%20P%5BAuthor%5D&cauthor=true&cauthor_uid=19827859
http://www.ncbi.nlm.nih.gov/pubmed/?term=Blanch%20P%5BAuthor%5D&cauthor=true&cauthor_uid=19827859
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pereira%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=9081268
http://www.ncbi.nlm.nih.gov/pubmed/?term=Freedson%20PS%5BAuthor%5D&cauthor=true&cauthor_uid=9081268
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cycling was not different between trained and untrained individuals, and thus 

training could not change this parameter (Moseley, Achten, Martin and Jeukendrup , 

2004; Nickleberry and Brooks 1996). However, the consequences of the early  

conclusions that efficiency does not differentiate between trained and untrained 

cyclists resulted in the lower volume of literature and understanding of energy  

expenditure in the field of cycling compared to the research on runners.  

A review of the literature in Chapter 2 clearly identifies studies that have 

demonstrated differences between participant groups, or changes in efficiency with 

a specific intervention, however a substantial number of these studies have failed to 

include any performance marker in their experiments (Jobson, Hopker, Korff and 

Passfield, 2012). This is important to allow sport and exercise scientists to move 

away from a theoretical basis (of a particular intervention) to an evidence based 

approach derived from applied research. A further critical point regarding the 

performance parameter is the published data from a number of sources indicating a 

negative relationship between exercise efficiency/economy and maximal oxygen 

uptake. Because maximal oxygen uptake is the most cited performance indicator 

amongst all of the endurance literature (Sloth, Sloth, Overgaard & Dalgas, 2013; 

Jobson et al., 2012), any reduction in this parameter may not be beneficial to 

performance, and thus investigation in this field must consider performance 

assessments to clarify changes for the purposes of the application of any intervention.  

Beyond the lack of consistent performance data, there are other aspects of studies 

that have investigated exercise economy and efficiency that appear not to have been 

fully considered.  In the estimation of energy expenditure, the utilisation of oxygen 

and excretion of carbon dioxide are measured. These respiratory gases are indicat ive 

of substrate use during exercise and thus can be altered by nutritional intervention. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Sloth%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23889316
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sloth%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23889316
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sloth%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23889316
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dalgas%20U%5BAuthor%5D&cauthor=true&cauthor_uid=23889316
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It is therefore essential that there is tight control of pre-test nutritional intake; this 

again is not detailed in much of the previous literature when cross comparing groups 

of athletes, repeated measurement during competition and non-competition phases 

of training, and pre- post-interventions (Cole, Coleman, Hopker and Wiles, 2014; 

Hopker, Coleman & Passfield, 2009a). Associated with nutrition is energy balance 

and in the short, medium and long term has been shown to influence the substrate 

use estimations from the literature (and thus alter the energy expenditure of an 

individual). Primarily data derived from inactive participants, in the area of health 

intervention has demonstrated changes in resting metabolism with changes in 

exercise and with alterations in body mass/body composition (Poole and Hensen 

1988). More recently however, the changes in energy expenditure have been more 

apparent during exercise rather than at rest (Goldsmith et al., 2010; Amati, Dubé, 

Shay and Goodpaster, 2008; Rosenbaum et al., 2003) Indeed, in this field corrections 

for size differences between participant groups are often factored into analysis due 

to the impact upon primary outcome variables (such as energy expenditure). This is 

also be a very important concept to consider when assessing the sports performer; 

there can be substantial changes in body mass/body composition over relatively short 

periods of time due to the relatively high energy expenditures compared to inact ive 

participants. To date, health-related research has demonstrated fluctuations in energy  

expenditure at rest and to deliver mechanical work into ergometry systems following 

reductions and gains in body mass (Poole and Henson, 1988). This fundamental 

consideration has not been considered in any of the papers evident in the sports 

performance literature using laboratory based ergometry. The running literature has 

focussed on minimising body mass in this field, however this has primarily focussed 

upon minimising mechanical work, but the measurement of mechanical work during 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Cole%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24022570
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cole%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24022570
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hopker%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24022570
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wiles%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24022570
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Poole%20DC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Henson%20LC%22%5BAuthor%5D
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running is currently technologically challenging based on wide variations and 

changes in biomechanics (Boyer, Freedman-Silvernail, Hamill, 2014). If energy  

expenditure were altered during changes in body mass/composition, then for fixed 

mechanical workloads there theoretically would be changes in efficiency/economy 

measures; this has not been considered in the sport science literature, and is not 

reported in the papers published in this field to date (Hopker, Coleman and Passfield, 

2009a). More contemporary work, has begun to address some of these limitations 

and authors are now citing equipment developments, training practices, nutritional 

interventions and altitude exposure as potential interventions that could enhance 

efficiency and economy in sports including both running and cycling (Balsalobre-

Fernández, Santos-Concejero and Grivas, 2016; Barnes and Kilding, 2015; 

Williams, Raj, Stucas, Fell, Dickenson and Gregory, 2009).   

The small inter-individual differences present in cycling provide arguably the most 

consistent and controlled mode of exercise to accurately assess the effectiveness of 

an intervention. This is particularly relevant for an intervention hypothesised to alter 

energy expenditure. Cycling therefore makes it possible to detect small and relevant 

changes in economy/efficiency, which has the potential to directly affect 

performance. This thesis will initially discuss energy expenditure from a basic and 

fundamental standpoint of ‘energy’, to provide a unique perspective highlighting the 

assumptions and limitations associated with energy measurement, which are 

frequently overlooked. Exploring energy from this level will lead to a more 

comprehensive understand of the implications of changes in whole organism 

efficiency, and the limitations with determining exactly where improvements or 

reductions occur along the energy transfer chain.  

  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Boyer%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=25010386
http://www.ncbi.nlm.nih.gov/pubmed/?term=Boyer%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=25010386
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hamill%20J%5BAuthor%5D&cauthor=true&cauthor_uid=25010386
http://www.ncbi.nlm.nih.gov/pubmed/?term=Balsalobre-Fern%C3%A1ndez%20C%5BAuthor%5D&cauthor=true&cauthor_uid=26694507
http://www.ncbi.nlm.nih.gov/pubmed/?term=Balsalobre-Fern%C3%A1ndez%20C%5BAuthor%5D&cauthor=true&cauthor_uid=26694507
http://www.ncbi.nlm.nih.gov/pubmed/?term=Santos-Concejero%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26694507
http://www.ncbi.nlm.nih.gov/pubmed/?term=Grivas%20GV%5BAuthor%5D&cauthor=true&cauthor_uid=26694507
http://www.ncbi.nlm.nih.gov/pubmed/?term=Barnes%20KR%5BAuthor%5D&cauthor=true&cauthor_uid=25164465
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kilding%20AE%5BAuthor%5D&cauthor=true&cauthor_uid=25164465
http://www.ncbi.nlm.nih.gov/pubmed/?term=Williams%20AD%5BAuthor%5D&cauthor=true&cauthor_uid=19417225
http://www.ncbi.nlm.nih.gov/pubmed/?term=Williams%20AD%5BAuthor%5D&cauthor=true&cauthor_uid=19417225
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stucas%20KL%5BAuthor%5D&cauthor=true&cauthor_uid=19417225
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stucas%20KL%5BAuthor%5D&cauthor=true&cauthor_uid=19417225
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dickenson%20D%5BAuthor%5D&cauthor=true&cauthor_uid=19417225
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gregory%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=19417225
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CHAPTER 2 – REVIEW OF LITERATURE 

 

2.1 Energy 

Energy is defined as the capacity for doing work and in biological systems is 

measured in kilocalories (kcal) or kilojoules (Kj), where one kcal is the amount of 

heat required to raise the temperature of 1 kilogram (kg) of water by 1 ºC (National 

Research Council, 1989). Work has been defined by Wiser (2000, pp. 7) as ‘the 

product of a force acting upon a body, times the distance the body moves in response 

to that force’. The laws of thermodynamics are used to understand the conversion of 

potential energy into usable energy to achieve work. The first law of 

thermodynamics adapted from the law of conservation of energy and described by 

Sadava, Heller, Orians, Purves and Hillis (2013), detailed that in an isolated system 

the total amount of energy is constant, where energy can be transformed but not 

created nor destroyed. This law explains how energy is always conserved but may  

appear as if it is absent due to the transference of energy. The second law of 

thermodynamics explains that when energy is converted, although the total energy  

does not change the amount of energy to do work is always less than the original 

amount of energy (Sadava et al., 2013). This law brings about the notion of usable 

and unusable energy that is attributed to molecular disorder. Due to the phenomenon 

where energy is required to bring order, the conversion of energy be it chemical or a 

physical process can never be 100 % efficient. Biological systems are rarely closed 

or isolated; therefore, the total amount of energy stored can be calculated by 

subtracting the amount of energy that crosses the system boundary (Serway and 

Jewett, 2015). In humans, the system boundary would be the epidermis also known 

as the cuticle or skin. Understanding the conversion of energy is imperative to 

https://www.google.co.uk/search?tbo=p&tbm=bks&q=inauthor:%22David+E.+Sadava%22
https://www.google.co.uk/search?tbo=p&tbm=bks&q=inauthor:%22H.+Craig+Heller%22
https://www.google.co.uk/search?tbo=p&tbm=bks&q=inauthor:%22Gordon+H.+Orians%22
https://www.google.co.uk/search?tbo=p&tbm=bks&q=inauthor:%22William+K.+Purves%22
https://www.google.co.uk/search?tbo=p&tbm=bks&q=inauthor:%22David+M.+Hillis%22
https://www.google.co.uk/search?tbo=p&tbm=bks&q=inauthor:%22David+E.+Sadava%22
https://www.google.co.uk/search?tbo=p&tbm=bks&q=inauthor:%22Raymond+Serway%22
https://www.google.co.uk/search?tbo=p&tbm=bks&q=inauthor:%22John+Jewett%22
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determine how best to try to improve usable energy and reduce unusable energy  

while cycling. Energy conversion can be described with five main types; chemical, 

potential, kinetic, mechanical and heat energy (Wiser, 2000). Frictional forces and 

fluid resistance will be discussed later in this thesis (Chapter 3) as they have a 

greater bearing on efficiency and performance. 

 

2.1.1 Chemical energy  

Food intake is mainly comprised of three individual molecules (carbon, hydrogen 

and oxygen) which in combination create the macronutrients; carbohydrates (CHO), 

lipids (FAT) and proteins (PRO), with the addition of Nitrogen to form PRO. 

(Turner, Cooney, Kraegen and Bruce 2014). During the process of digestion and 

absorption, the macronutrient bonds are broken with the aid of enzymes, to transfer 

energy by phosphorylating adenosine diphosphate (ADP) with an inorganic 

phosphate (Pi) to adenosine triphosphate (ATP). Transferring the energy to ATP 

ensures the conservation of the energy in a universal format that can be used 

throughout the body as potential kinetic energy, and as such is commonly referred to 

as the energy currency. Energy can then be released from ATP with the addition of 

H2O (hydrolysis) and in the presence of ATPase enzymes. This fundamental 

conversion transfers chemical energy into potential kinetic energy (Winter and 

Fowler 2009). Even at this most basic level of synthesising and degrading ATP, the 

exact efficiency of energy conversion within a biological system is unknown. The 

energy available from an ATP nucleotide has been determined with in vitro studies 

(externally  controlled environment) studies, which ascertained that 7.3 kcal.mol-1 of 

energy is available from the hydrolysis process. However it is suggested that in vivo 

(within a biological system) this value can be as much as 10 kcal.mol-1, due to the 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Turner%20N%5BAuthor%5D&cauthor=true&cauthor_uid=24323910
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cooney%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=24323910
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bruce%20CR%5BAuthor%5D&cauthor=true&cauthor_uid=24323910
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presence of free energy released from on-going phosphorylation (Akinterinwa and 

Cirino, 2009). This issue is further compounded by several different mechanisms to 

achieve ADP phosphorylation and ATP hydrolysis, with the efficiency of the process 

dependent on; the type of macronutrient, the availability of O2, the ratio of 

ATP:ADP:Pi and quantity of H+ (hydrogen ions) within the inter-membrane space 

per unit of O2 consumed (Salin, Auer, Rey, Selman and Metcalfe, 2015). 

Additionally, the energy conversion efficiency of macronutrients is also dependent 

on the coefficient of digestibility where the proportion of energy that can be 

processed is reduced by a greater amount of dietary fibre (Hendriks, van Baal 

and Bosch, 2012). Dietary fibre can reduce the absorption of kcal’s by as much as 4 

% in the average omnivore diet (2500 kcal.day-1, macronutrient ratio 

[CHO:FAT:PRO] 60:20:20) and 6 % for the same equivalent quantity of kcal’s and 

ratios for vegetarians (Hendriks, van Baal and Bosch, 2012). Bomb calorimetry , 

which is the method to determine the absolute calorific content of food does not take 

into account factors such as reduced oxidation and absorption in relation to fibre 

content. Consequently, the calorific value of macronutrients is reported as the total 

energy value from bomb calorimetry, minus the unusable energy from incomplete 

digestion, absorption and the energy excreted as urine and faeces (James, 1995). In 

the process to determine the ratio between usable and unusable energy, there is a 

certain degree of standardisation within the calculations to determine the efficiency  

of energy conversion. Therefore, it is also possible that there are individualist ic 

factors, which can influence the efficiency of macronutrient energy conversion 

within the gastrointestinal tract. Certain conditions such as celiac disease reduce the 

efficiency of energy absorption and therefore conversion (Rolfes, Pinna and 

Whitney, 2015); with environmental factors such as calorie restriction also reported 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Salin%20K%5BAuthor%5D&cauthor=true&cauthor_uid=26203001
http://www.ncbi.nlm.nih.gov/pubmed/?term=Salin%20K%5BAuthor%5D&cauthor=true&cauthor_uid=26203001
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rey%20B%5BAuthor%5D&cauthor=true&cauthor_uid=26203001
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rey%20B%5BAuthor%5D&cauthor=true&cauthor_uid=26203001
http://www.ncbi.nlm.nih.gov/pubmed/?term=Metcalfe%20NB%5BAuthor%5D&cauthor=true&cauthor_uid=26203001
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hendriks%20WH%5BAuthor%5D&cauthor=true&cauthor_uid=23107535
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hendriks%20WH%5BAuthor%5D&cauthor=true&cauthor_uid=23107535
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bosch%20G%5BAuthor%5D&cauthor=true&cauthor_uid=23107535
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hendriks%20WH%5BAuthor%5D&cauthor=true&cauthor_uid=23107535
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hendriks%20WH%5BAuthor%5D&cauthor=true&cauthor_uid=23107535
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bosch%20G%5BAuthor%5D&cauthor=true&cauthor_uid=23107535
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to improve energy conversion (Abete, Navas-Carretero, Marti and Martinez, 2012). 

The average calorific value for the macronutrients are as follows; CHO = 3.8 kcal.g-

1, PRO = 4.0 kcal.g-1 and FAT = 9 kcal.g-1 (Collins, Hunking and Stear, 2011) with 

the exact calorific values dependent on the specific source of the macronutrient. In 

addition to the source and fibre content of the macronutrient affecting the calorific 

value, protein calorific values are also dependent on the nitrogen content which on 

average causes ~20 % reduction in the amount of usable energy determined from 

bomb calorimetry (Jumpertz, Venti, Le, Michaels, Parrington, Krakoff, Votruba, 

2013). Consequently, using the average calorific values for the macronutrients 

creates inaccuracies regarding the total amount of kcals consumed, versus the 

amount of usable kcals due to individualistic and environmental conditions.   

 

2.1.2 Chemical energy storage  

In the event that there is a surplus of usable energy, dietary macronutrients can be 

stored in an inert form as a multi-branched polysaccharide glycogen, or as fatty acid 

triglycerides in cytosolic lipid droplets more commonly known as adipose tissue 

(Iqbal and Hussain, 2009; Turner et al. 2014). Due to the additional processes of 

converting potential chemical energy so that it can be stored, there is a further 

reduction in usable energy. The synthesis and degradation of glycogen in the liver is 

primarily used to stabilise blood sugar levels, while the glycogen in the muscles is 

used to provide a readily available energy supply for kinetic and mechanical 

movement (Berg, Tymoczko and Stryer, 2002). The magnitude and rate of glycogen 

synthesis is particularly affected by CHO intake and the current level of stored 

glycogen verses the maximal storage capacity in the muscles and liver (Maughan 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Jumpertz%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23505182
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jumpertz%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23505182
http://www.ncbi.nlm.nih.gov/pubmed/?term=Le%20DS%5BAuthor%5D&cauthor=true&cauthor_uid=23505182
http://www.ncbi.nlm.nih.gov/pubmed/?term=Le%20DS%5BAuthor%5D&cauthor=true&cauthor_uid=23505182
http://www.ncbi.nlm.nih.gov/pubmed/?term=Parrington%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23505182
http://www.ncbi.nlm.nih.gov/pubmed/?term=Krakoff%20J%5BAuthor%5D&cauthor=true&cauthor_uid=23505182
http://www.ncbi.nlm.nih.gov/pubmed/?term=Krakoff%20J%5BAuthor%5D&cauthor=true&cauthor_uid=23505182
http://www.ncbi.nlm.nih.gov/pubmed/?term=Turner%20N%5BAuthor%5D&cauthor=true&cauthor_uid=24323910
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and Burke, 2002). The level of degradation is affected by periods of prolonged 

calorie restriction and exercise that can cause a substantial shift in the amount of 

glycogen stored. A single ATP molecule is required to form a complete glycogen 

polysaccharide and the degradation is largely a passive process, which results in an 

overall high storage efficiency of ~ 97 % (Berg, Tymoczko and Stryer, 2002). All 

three macronutrients can be stored as fatty acid triglycerides, with the liver being the 

main organ for fatty acid synthesis (Vanderkooi, 2014). The predominant dietary fat  

is triacylglycerol with the conversion to adipose tissue reported to be ~ 89 % in 

animal studies due to the direct storage pathway (Donato and Hegsted, 1985). Due 

to CHO and PRO requiring fatty acid synthesis prior to adipose tissue up-take, the 

conversion to adipose tissue is lower with the reported efficiency ~ 34 % for CHO 

and ~ 36 % for PRO (Donato and Hegsted, 1985), although it is difficult to determine 

the exact energy conversion efficiency.   

 

2.1.3 Kinetic energy 

Kinetic energy in this thesis will be referred to as the movement of a specific body 

part as a direct result of chemical energy enabling muscular contraction (Nigg, 

Stefanyshyn and Denoth, 2000). In a cycling context the circular movement of the 

legs predominantly in the sagittal plane, is the dominant kinetic energy used to 

produce force at the pedals and cranks, with additional movement at the pelvis, torso, 

arms and head being considered in the majority unhelpful for efficient force 

production. Effective cycling technique can be further determined by the direction 

of the force applied during a pedal cycle, known as effective force production (Bini, 

Hume, Croft and Kilding, 2013). Unlike the majority of kinetic motion, the pedalling 

movement in the legs during seated cycling can largely be controlled with consistent 
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bicycle set-up, making cycling a highly reproducible exercise for the study of 

changes in energy expenditure (Ericson, Nisell and Nemeth, 1988). The magnitude 

of kinetic energy while cycling is largely dependent on leg force and cadence, with 

cadence providing a measure of the rate of leg turnover per minute (rev.min-1) and a 

measure of the change in kinetic energy due to leg mass stability.  

 

2.1.4 Mechanical energy  

Mechanical energy is a form of kinetic energy which involves the movement of a 

machine and or its respective parts (Wiser, 2000); in this thesis, mechanical energy  

will therefore be used to refer to the movement of external objects such as bicycle 

wheels, handlebars, cranks and pedals. Power output provides a measure of the 

mechanical energy that is applied by the cyclist to the pedals and is reported in Watts 

(W.min-1). When measured at the cranks, power is calculated by the torque force 

multiplied by the angular velocity of the crank arm. The mechanical energy applied 

to the crank is then transferred to the wheels via a chain to the hub of the rear wheel. 

This transference of energy to the wheels results in the cyclist and bicycle being 

propelled forward. Mechanical energy is also used to steer and correct imbalance 

while riding, although considered a necessary use of kinetic and mechanical energy , 

this movement does not aid cycling speed and will be considered non-useful energy . 

 

2.1.5 Mechanical Potential energy 

Mechanical energy is also affected by the sum of kinetic and potential energy act ing 

on an object due to its motion or position (Whiting and Zernicke, 2008). Mechanical 

https://www.google.co.uk/search?tbo=p&tbm=bks&q=inauthor:%22Wendell+H.+Wiser%22
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potential energy is equivalent to mass (kg) multiplied by gravitational accelerat ion 

(9.8 m.s2) and by the change in height of the centre of mass (m); within a road cycling 

context this can be explained when a cyclist is riding up and over a hill. If a cyclist  

was to maintain the same power output but the gradient of the road changed from 

being level to an incline, the cyclist would have a reduction in mechanical energy  

reducing horizontal speed, but would gain potential energy (body mass multiplied 

by the change in altitude) (Swain, 1994). Due to the mass component, reducing body 

mass would reduce the amount of potential energy achieved for the same height 

elevation, but then would also reduce the force required to achieve the same height 

(Kyle, 2003). This saving of energy to reach the top of the hill would be beneficial 

as the gain in potential energy from having a higher mass would be less than the 

energy saved with a lighter mass due to the second law of thermodynamics. Potential 

energy is also presented in respective to the crank arm position, with the greatest 

potential energy when the crank arm is at top dead centre (Figure 2.1). 

Top dead centre (0°)     (90°)       Bottom dead centre (180°) 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Change in crank potential energy from top dead centre to bottom dead 

centre.    
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2.1.6 Heat energy  

Humans are an example of a homeotherm (animal that maintains a constant elevated 

body temperature) where heat energy makes up the largest amount of transferred  

energy. Core body temperature has a very narrow optimal range between 36.4 and 

37.3 °C (Nicoll, 2002), with excess heat energy that is not required to maintain core 

body temperature, considered unusable energy (Heerwagen, 2003). The 

environmental temperature has a large influence on the amount of energy required 

to maintain core body temperature, with colder conditions substantially increasing 

the need for the amount of heat energy required to maintain core body temperature. 

Heat is transferred in three main ways; conduction, radiation and evaporation. Heat 

is predominantly transferred to the environment via the skin, with heat also 

transferred through the respiratory tract during breathing and the excretion of waste 

products. Although heat transference in the body is often assumed to be 

predominantly a dissipation of heat to the environment, radiation and conductive 

energy transference mechanics can also result in the body gaining heat energy if the 

environment is hotter than the body’s periphery . The below equation explains and 

sums all of the potential factors that influence the total amount of heat exchange.   

�ܬ .����� = ሺ ∙ ܭ] �ܶ − �ܶሻ] − [ሺͷͺͲ ݈݇ܿܽ ∙ ∙ ሻܮ   [�2�ܬ 
 

Equation 1. Potential heat exchange factors.  Where: ܬ� .�����  = Total heat 

exchange, K = the combined constant of the thickness of the skin, subcutaneous 

body fat, thermal conductiveness and radiation, �ܶ = ambient temperature, �ܶ = 

skin temperature, 2�ܬ � = rate of evaporation (Schafer, 2003).   

 



13 
 

The skin and subcutaneous body fat have a key role in determining the insulat ing 

ability of the overall energy system boundary and the subsequent resistance to 

change of core body temperature relative to the environmental conditions. The body 

is able to regulate heat dissipation to the environment under a reflex physiological 

control system, which adjusts the flow of cutaneous blood to the periphery (Rowell, 

1977). Consequently skin and fat thickness as well as skin temperature feature in all 

of the separate energy transference equations (Schafer, 2003). A thicker insulat ing 

layer is considered beneficial in a cold environment, but has a negative effect on the 

ability to dissipate heat in hotter environments or when exercising causes an increase 

in the amount of heat production. Convection is also a key factor that can increase 

the rate of evaporation and conductive heat dissipation by reducing the effect ive 

thickness of insulating layers (both biological and manmade). Convection is 

particularly influential while cycling due to the fast mean cycling speeds reported in 

professional races (> 40 km.h-1, Helou et al. 2010) that are often combined with 

varying wind conditions.  

 

2.2 Energy expenditure 

The process to determine the specific efficiency of each energy transfer within the 

human body from consumption of food to mechanical energy is extremely difficult , 

although theoretically possible to estimate. Therefore, sports scientists commonly  

utilise measures of whole organism energy expenditure. Total daily energy  

expenditure (TDEE) is the total amount of energy over a 24 hour period and is 

broadly divided into four main types; Basal metabolic rate (BMR), non-exercis ing 

activity thermogenesis (NEAT), thermic effect of food (TEF) and exercising activity  

thermogenesis (EAT). These can be simplified to resting energy expenditure (REE) 
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and non-resting energy expenditure components (NREE) (Trexler, Smith-Ryan and 

Norton, 2014) (Figure 2.2).  

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Components of total daily energy expenditure (TDEE) adapted from 

Trexler, Smith-Ryan and Norton (2014). Note: BMR, basal metabolic rate, NEAT, 

non-exercise activity thermogenesis, TEF, thermic effect of food, EAT, exercise 

activity thermogenesis, NREE, non-resting energy expenditure, REE, resting energy  

expenditure.  

 

2.2.1 Calorimetry measurement 

The Gold standard of the measurement of TDEE is doubly labelled water, however 

this method is expensive and difficult to standardise the NREE component in free 

living conditions. Consequently, direct and indirect calorimetry provide an 

alternative measure, which can better differentiate between the component parts of 

TDEE. In particular, the EAT component of NREE and REE comprise the majority  

of the energy expenditure research, with only small increases in the rate of REE 

having the greatest potential to increase TDEE, as it encompasses such a substantial 

proportion (Landsberg et al., 2009). Exercise activity thermogenesis on the other 

hand tends to be explored from both a health and a performance perspective, where 
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either an increase in the rate of EAT would be beneficial for weight-loss or reducing 

the rate of EAT would be beneficial when energy availability is a limiting factor for 

performance.  

 

2.2.2 Indirect Calorimetry  

Indirect calorimetry is the most accessible, widely used and versatile estimation of 

energy expenditure due to the vast level of specialised equipment required for direct 

calorimetry (Kaiyala and Ramsay, 2011). The calculation of energy expenditure via 

indirect calorimetry is based on the principle that oxygen consumption (V̇O2) 

directly reflects ATP-turnover (Medbo, 2008; Cangley and Ansley, 2009). This 

principle is based on the assumption that there is a linear relationship between 

oxygen consumption (oxidation) and ATP resynthesis (phosphorylation). Although 

this is largely true, the exact  ratio of V̇CO2 to V̇O2 to re-synthesise ATP is also 

dependent on the macronutrient oxidised and the respiratory pathway (Salin, Auer, 

Rey, Selman, and Metcalfe 2015). The Respiratory Quotient (RQ) value describes 

the ratio of V̇CO2/V̇O2 at the cellular level, whereas the Respiratory Exchange Ratio 

(RER) is the measured pulmonary ratio, measured with either direct or indirect 

calorimetry. The RER is only assumed equivalent of RQ when there is metabolic 

equilibrium during rest or exercise. Steady -state exercise is essential to allow time 

for both V̇O2 (2-3 minutes) and V̇CO2 (5 minutes) components to equilibrate (Whipp 

and Wasserman, 1972). The RQ value for CHO is 1.0, because an equal number of 

O2 molecules are required in relation to the number of CO2 molecules that are 

produced. Fat contains more carbon and hydrogen atoms than CHO and so requires 

more O2 relative to the number of produced CO2, typically resulting in an RQ value 

of 0.7. Protein oxidation has an RQ value of ~ 0.85 however, the degradation of PRO 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Salin%20K%5BAuthor%5D&cauthor=true&cauthor_uid=26203001
http://www.ncbi.nlm.nih.gov/pubmed/?term=Salin%20K%5BAuthor%5D&cauthor=true&cauthor_uid=26203001
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rey%20B%5BAuthor%5D&cauthor=true&cauthor_uid=26203001
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rey%20B%5BAuthor%5D&cauthor=true&cauthor_uid=26203001
http://www.ncbi.nlm.nih.gov/pubmed/?term=Metcalfe%20NB%5BAuthor%5D&cauthor=true&cauthor_uid=26203001
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for energy is often assumed to be consistent and negligible with a neutral or positive 

energy balance (Rehrer, Hellemans, Rolleston, Rush and Miller, 2010). When an 

RER > 1.0 is recorded, the assumption of a negligible anaerobic contribution is 

violated, and as anaerobic energy expenditure cannot currently be satisfactorily  

calculated, energy expenditure calculations are restricted to sub-maximal intensities 

(Medbo, 2008; Cangley and Ansley, 2009). Within the calculation of energy  

expenditure,  V̇O2 is more influential due to the limited range of RER having only a 

maximum 8 % influence on energy expenditure (Péronnet and Massicotte, 1991). 

Ventilation (V̇E) and oxygen extraction are the two constituent components of V̇O2, 

making-up the second tier of oxygen uptake, with ventilation able to be further 

divided into breathing frequency and tidal volume (third tier). Despite indirect 

calorimetry being able to provide the breakdown of the constituent elements of V̇O2, 

energy expenditure below the first tier of RER and V̇O2 are rarely reported (Figure  

2.3).   

 
Figure 2.3 Breakdown of energy expenditure measurement via indirect 

calorimetry. Note: RER,  respiratory exchange rat io, V̇O2, oxygen uptake.  
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http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rehrer%20NJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rehrer%20NJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rolleston%20AK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rolleston%20AK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Miller%20BF%22%5BAuthor%5D
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2.2.3 Basal metabolic rate and resting metabolic rate 

Basal metabolic rate is the rate that the body uses energy to sustain life at rest in a 

post-absorptive state in a thermoneutral environment and presented as kcal.min-1 

(Berdanier, Berdanier and Zempleni, 2009). It can be separated into the energy  

required to maintain cellular structure and function (essential energy expenditure) 

and energy required to maintain core body temperature described as homeothermy 

(Landsberg, Young, Leonard, Linsenmeier and Turek, 2009). Homeothermy has 

been calculated to make-up ~ 2/3rds of BMR, making the transference of heat both 

to and from the environment a key consideration for BMR measurement (Girardier 

and Stock 1983). In order to ensure an accurate BMR the protocol requires a 12 hour 

fasting period to guarantee a post-absorptive state, with measurement conducted 

while lying in a motionless and supine position, ideally soon after awakening from 

sleep in the morning. Due to the strict controls of BMR, an overnight stay is 

commonly employed to ensure stringent adherence, however this requires designat ed 

facilities and substantial expense that is often impractical (Zurlo, Larson, Bogardus 

and Ravussin, 1990). Despite the legitimacy and reported < 1 % error with BMR 

measurement (Donahoo, Levine and Melanson, 2004), resting metabolic rate (RMR) 

is more frequently used, as it provides a more practical method for assessing energy  

expenditure, which requires a less stringent protocol with only a 2-4 hour fast. 

Although RMR has been described as up to 10 % higher than BMR (National 

Research Council, 1989), RMR is arguably a better representation of a real world 

scenario. Despite RMR, REE and BMR often used interchangeably, the term RMR 

is correctly used when describing the rate of resting energy in kcal.min-1, whereas 

REE is used to describe resting energy when extrapolated over a 24-hour period 

(Manore, Meyer, Hompson, 2009). Resting energy expenditure comprises the largest 
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component of TDEE (~ 80 %) for the vast majority of the population (Nieman et al., 

2006; Landsberg et al. 2009) and despite making-up a smaller proportion when high 

volumes of exercise are conducted, REE has the potential to have a substantial 

influence on TDEE. Numerous factors can influence RMR, with a summary of the 

key variables presented in (Table 2.1). Most notably, fat-free mass (FFM) has the 

largest influence on RMR according to an amalgamation of prediction equations 

composed by Sabounchi, Rahmandad and Ammerman (2013), with total mass being 

the next strongest predictor and fat-mass adding a small improvement to the 

prediction.   
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Table 2.1 The key factors that influence resting metabolic rate.  
Factor Effect on resting metabolic rate (RMR) 
Body Size  
Body mass ↑RMR with ↑body mass (Hulbert and Else, 2004) 
Fat-free mass (FFM) ↑RMR with ↑FFM (Hulbert and Else, 2004) 
Fat mass ↑RMR due to ↑fat mass (weaker relationship) (Sabounchi, 

Rahmandad & Ammerman, 2013), 
Age ՝RMR with ↑ age following full maturation, with ՝FFM 

the likely cause (Lazzer, et al., 2010) 
Gender Males have a higher RMR even after accounting for FFM 

(Sabounchi, Rahmandad & Ammerman 2013) 
Genetics Variation in RMR explained by familial relationship 

(Bogardus et al., 1986), regression analysis suggested 
genetics may account for the 15 % unexplained variation 
in TDEE (Weyer, Snitker, Rising, Bogardus, Ravussin, 
1999).   

Environmental ↑BMR with ՝ Temperature (Leonard et al., 2002) 

Physical activity  
Cardiovascular 
fitness 

՞BMR with ↑V̇O2max following 9 weeks of aerobic 
training (Bingham et al., 1989) 
 

Acute exercise ↑RMR (~3 %) 48 hours following high intensity exercise 
(Williamson & Kirwan, 1997) 

Physiological factors 
Body temperature 10-13 % ↑RMR with each 1°C ↑ body temperature (Du 

Bois 1921, cited in Landsberg, Young, Leonard, 
Linsenmeier & Turek, 2009). 
 

Severe dieting/ 
starvation 

՝RMR when accounting for ՝fat mass and FFM (Dulloo & 

Jacquet 1998) 
 

Short term VLCD +  
aerobic training 

Aerobic training only marginally ↑RMR from a 13 % 
reduction (severe calorie restriction) to a 12 % reduction 
(Henson, Poole, Donahoe and Heber, 1987). 
 

Feasting or 
overeating  

↑RMR by ~11 % with an additional 1500 kcal.day-1 above 
energy balance (Apfelbaum, Bostsarron & Lacatis, 1971). 

Illness and injury ↑RMR (Long, Schaffel, Geiger, Schiller & Blakemore, 
1979) 

Caffeine 100 mg ↑RMR by 3-4 % (Dulloo, Geissler, Horton, Collins 

& Miller, 1989). 
Smoking; nicotine Smokers have a ↑RMR by 60 kcal.day-1 compared to non-

smokers adjusted for FFM (Blauw et al., 2015) 
Adapted and updated from Manore, Meyer and Hompson (2009). Note: RMR, 
resting metabolic rate, BMR, basal metabolic rate, FFM, fat free mass, TDEE, total 
daily energy expenditure, VLCD, very low calorie deficit (< 800 kcal, Wadden, 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Lazzer%20S%5BAuthor%5D&cauthor=true&cauthor_uid=19478787
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=V2LoqHp1EtLgtXXWdjg&author_name=Weyer,%20C&dais_id=14723279&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=V2LoqHp1EtLgtXXWdjg&author_name=Weyer,%20C&dais_id=14723279&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=V2LoqHp1EtLgtXXWdjg&author_name=Rising,%20R&dais_id=13656072&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=V2LoqHp1EtLgtXXWdjg&author_name=Rising,%20R&dais_id=13656072&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=V2LoqHp1EtLgtXXWdjg&author_name=Ravussin,%20E&dais_id=13688560&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=V2LoqHp1EtLgtXXWdjg&author_name=Ravussin,%20E&dais_id=13688560&excludeEventConfig=ExcludeIfFromFullRecPage
http://www.ncbi.nlm.nih.gov/pubmed/?term=Williamson%20DL%5BAuthor%5D&cauthor=true&cauthor_uid=9402941
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kirwan%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=9402941
http://ajcn.nutrition.org/search?author1=L+C+Henson&sortspec=date&submit=Submit
http://ajcn.nutrition.org/search?author1=D+C+Poole&sortspec=date&submit=Submit
http://ajcn.nutrition.org/search?author1=C+P+Donahoe&sortspec=date&submit=Submit
http://ajcn.nutrition.org/search?author1=D+Heber&sortspec=date&submit=Submit
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Apfelbaum%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lacatis%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schiller%20WR%5BAuthor%5D&cauthor=true&cauthor_uid=575168
http://www.ncbi.nlm.nih.gov/pubmed/?term=Blakemore%20WS%5BAuthor%5D&cauthor=true&cauthor_uid=575168
http://www.ncbi.nlm.nih.gov/pubmed/?term=Blakemore%20WS%5BAuthor%5D&cauthor=true&cauthor_uid=575168
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Byrne and Krauthamer-Ewing, 2006). Where studies have measured BMR, BMR 
has been prioritised over RMR. 
 

2.2.4 Exercise Activity Thermogenesis (EAT) 

Exercise activity thermogenesis is comprised exclusively of volitional sporting-like 

exercise energy expenditure (Levine, Vander Weg, Hill, Klesges, 2006). Despite 

EAT tending to make up the smallest contribution of TDEE, in elite athletes and 

dedicated amateur participants the proportion of EAT can be substantially higher. 

Exercise activity thermogenesis is therefore particularly relevant for competitive 

athletes and participants due to limited glycogen storage and available blood glucose 

for prolonged endurance performance (Devlin and Williams, 2005). EAT also 

provides an indication of the level of adaptation that may have occurred due to an 

increase in training volume and or intensity. Exercise intensity has a strong positive 

association with EAT and so is rarely reported in isolation without both a mode of 

exercise and steady-state intensity (Pritzlaff, 2000). Due to often limited movement 

allowed by metabolic cart based indirect calorimetry devices, the majority of 

research has focussed almost exclusively on treadmill walking/running and cycle 

ergometers. EAT is frequently measured with power values to describe the intensity 

and total work completed, to enable whole organism efficiency calculation that is 

also referred to as metabolic efficiency (Hintzy, Mourot, Perrey and Tordi, 2005).  

 

2.3 Efficiency 

Whole organism efficiency provides a measure of the ability to convert chemical 

energy into mechanical energy and is defined as the ratio of work done to energy  

http://atvb.ahajournals.org/search?author1=James+A.+Levine&sortspec=date&submit=Submit
http://atvb.ahajournals.org/search?author1=Mark+W.+Vander+Weg&sortspec=date&submit=Submit
http://atvb.ahajournals.org/search?author1=James+O.+Hill&sortspec=date&submit=Submit
http://atvb.ahajournals.org/search?author1=Robert+C.+Klesges&sortspec=date&submit=Submit
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expended (Gaesser and Brooks, 1975). The work done refers specifically to the 

power applied to the cranks verses total chemical energy expended and is therefore 

a measure of effective work (Faria, Parker and Faria, 2005). It is reasoned that whole-

organism efficiency measurement is satisfactorily sensitive to detect a global change 

in efficiency, with smaller changes in energy conversion both positive and negat ive 

only detectable when the sum of the changes results in an overall change. As a result , 

measuring only a single efficiency value reduces the precision in terms of the 

location of changes in energy conversion efficiency, with the additional vulnerability  

that an equal cellular positive improvement could be cancelled out by an equal 

negative change at a different location along the energy transfer chain. Nonetheless, 

it is based on the notion that an overall change in efficiency is more relevant for 

performance than likely smaller cellular changes.  

  

ݕܿ݊݁�ܿ�݂݂ܧ =  ( × (݁ݎݑݐ�݀݊݁݌ݔ݁ ݕ݃ݎ݁݊ܧ݁݊݋݀ ݇ݎ݋ܹ ͳͲͲ 

Equation 2. General efficiency (Gaesser and Brooks, 1975) 

 

There are four main equations used to calculate cycling efficiency; Gross (GE) has 

no baseline correction, Net (NE) corrects for RMR, Delta (DE) corrects for the 

previous work rate energy, and Work (WE) corrects for the energy required to turn 

unloaded cranks (0 Watts) (Gaesser and Brooks 1975; Moseley and Jeukendrup , 

2001; Hintzy et al., 2005). Efficiency can be presented as a ratio out of 1 or presented 

as a percentage, which is the most commonly reported form.  

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gaesser%20GA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Brooks%20GA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
javascript:__doLinkPostBack('','ss~~AR%20%22Moseley,%20L.%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','ss~~AR%20%22Jeukendrup,%20A.E.%22%7C%7Csl~~rl','');
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2.3.1 Gross efficiency 

Gross efficiency is the most frequently reported calculation (Gaesser and Brooks, 

1975), and is one of the more sensitive and reliable measures when all methods were 

reviewed by Hintzy, Mourot, Perrey and Tordi (2005). However, gross efficiency  

shows evidence of distorting the linear relationship between increasing work rate 

and energy expenditure (Cavanagh and Kram, 1985). This phenomenon is caused 

largely by RMR making-up a smaller relative proportion of total energy expenditure 

as work rate increases, and as a result becomes more exaggerated the higher the 

workload (Gaesser and Brooks, 1975; Pool 1988). Gross efficiency values were 

originally reported by Gaesser and Brooks (1975) to range between 7.5-20.4 %, 

however in competitive cyclists this range has been reported to be between 18-23 % 

(Coyle et al., 1992), with a gross efficiency mean value as high as 24.4 % reported 

in well trained triathletes (< 30 years of age) (Brisswalter, Wu, Sultana, Bernard and 

Abbiss, 2014). The purported reasons for the discrepancies are considered largely  

due to; the equipment used to measure both energy expenditure and power, the sub-

maximal workload intensity/duration and the fitness of the participant. While gross 

efficiency is limited to submaximal intensities eliciting an RER < 1.0, efficiency has 

been measured up to 80 % of maximum minute power (Wmax) (Lucia, Hoyos, Perez, 

Santalla and Chicharro, 2002), indicating that a wide range of intensity measurement 

is possible.    

ݕܿ݊݁�ܿ�݂݂݁ ݏݏ݋ݎܩ =  ( (݁ݎݑݐ�݀݊݁݌ݔ݁ ݕ݃ݎ݁݊݁ ݈ܽݐ݋ܶݐݑ݌ݐݑ݋ ݎ݁ݓ݋ܲ  × ͳͲͲ 

 

Equation 3. Gross efficiency (Mosely and Jeukendrup, 2000) 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gaesser%20GA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Brooks%20GA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gaesser%20GA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Brooks%20GA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gaesser%20GA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Brooks%20GA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
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2.3.2 Net efficiency 

To overcome the non-linear relationship seen with gross efficiency, net efficiency  

provides a potential solution by subtracting RMR (Moseley and Jeukendrup, 2001). 

Due to RMR being an additional measure of energy expenditure there is however an 

increased possibility of error and variability within the net efficiency calculat ion. 

The length of time and protocol used to determine RMR has a great deal of variety  

and has been reported to be as much as 50 minutes (20 minutes resting, minimum of 

30 minutes recording, Potteiger, Kirk, Jacobsen and Donnelly, 2008), but as little as 

20 minutes (Segal, 1987) and 10 minutes (Nieman et al., 2006), with some time 

periods undetermined based  on stabil ity of V̇O 2 and V̇CO2 values (Ramires, 2012). 

Consequently, there is a need to determine a valid and consistent period for RMR 

measurement. Net efficiency ranges from 24.4 to 31.3 % in physically fit males 

(Green et al., 2000) and due to baseline correction, is frequently reported to be above 

the greatest possible physiological efficiency (29 %) (Hill, 1992; cited in Hintzy, 

Mourot, Perrey and Tordi 2005), this is one of the biggest criticisms of all baseline 

corrected equations. Although the RMR subtraction should largely correct for the 

parabolic issue seen in gross efficiency, it is based on the principle that the RMR to 

maintain homeostasis at rest is equal to the resting metabolic rate during exercise. 

However, during exercise the essential metabolic rate is likely to change with 

reductions of blood supply to the gastrointestinal tract, increases in blood flow to the 

skeletal and cardiac muscle, mobilisation of glycogen storage and increases in 

ventilation (Mosely and Juekendrup 2001). Despite the issues surrounding net 

efficiency calculation, it enables a more detailed determination of the source of 

potential changes in efficiency.     

javascript:__doLinkPostBack('','ss~~AR%20%22Moseley,%20L.%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','ss~~AR%20%22Jeukendrup,%20A.E.%22%7C%7Csl~~rl','');
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N݁ݕܿ݊݁�ܿ�݂݂݁ ݐ =  ( ݁ݎݑݐ�݀݊݁݌ݔ݁ ݕ݃ݎ݁݊ܧݐݑ݌ݐݑ݋ ݎ݁ݓ݋ܲ − × (ܴܯܴ ͳͲͲ 

           (Mosely and Jeukendrup, 2000) 

Equation 4. Net efficiency. Where: RMR, resting metabolic rate.  

 

2.3.3 Work efficiency 

The next level of correction for cycling efficiency is work efficiency that addresses 

two main issues with net efficiency calculation, 1) that RMR is measured in the 

supine position and not in an upright cycling posture and 2) does not account for the 

kinetic energy that is required to move the legs in a cyclical motion below which 

provides mechanical energy. It was argued by Cavanagh and Kram (1985) that 

accounting for the kinetic energy required to move the legs with unloaded cranks, 

provides a more accurate representation of force production efficiency. Due to the 

additional energy correction, work efficiency provides much higher efficiency  

values (32-33 % Hintzy, Mourot, Perrey and Tordi 2005) compared to gross and net 

efficiency, further exacerbating the unrealistic representation of mechanical 

efficiency (Ettema and Lorås, 2009). In addition, work efficiency has been described 

as less sensitive to change in comparison to gross and net efficiency calculat ions 

(Hintzy, Mourot, Perrey and Tordi 2005). The measurement of energy expenditure 

with unloaded cranks also poses a rather unique and arguably unnatural movement, 

where participants have to combat the increase in angular velocity during the 

lowering phase of the cranks; due to the gain in mechanical potential energy at top 

dead centre. This movement therefore requires additional energy to maintain a 

consistent cadence to control the angular velocity of the cranks. Expending 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ettema%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lor%C3%A5s%20HW%22%5BAuthor%5D
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additional energy not only inflates the subtracted work energy, which artificial ly  

improves efficiency, it  also likely causes an increase in the inter-participant variation 

(due to differences in technique and leg mass variation). Since the force to slow the 

uncoupled cranks is applied in the opposite direction to effective force production, 

the bearing of the correction is also considered limited (Bini, Hume, Croft and 

Kilding, 2013).   

 

ݕܿ݊݁�ܿ�݂݂݁ ݇ݎ݋ܹ =  ( ܧܧݐݑ݌ݐݑ݋ ݎ݁ݓ݋ܲ − (ݏ݇݊ܽݎܿ ݀݁݀ܽ݋݈݊ݑ ݊ݎݑݐ ݋ݐ ݕ݃ݎ݁݊ܧ  × ͳͲͲ 

Equation 5. Work efficiency (Mosely and Jeukendrup, 2000) 

 

2.3.4 Delta efficiency 

A final alternative calculation to correct for varying degrees of resting metabolism, 

cycling position and kinetic energy is delta efficiency. Delta efficiency proposed by 

Gaesser and Brooks (1975) determines efficiency by the change in power and change 

in energy expenditure between two different steady-state intensities. Nevertheless, 

more recently, delta efficiency is calculated as the reciprocal slope of the linear 

relationship between energy expenditure and work rate (Coyle, Sidossis, Horowitz 

and Beltz, 1992). Although the delta calculation addresses the issues in net and work 

efficiency calculations, delta efficiency has been argued to be less valid because the 

relative contribution of unusable energy decreases at higher exercise intensities 

(Moseley and Jeukendrup 2001). 
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Equation 6. Delta efficiency (Gaesser and Brooks, 1975) 

 

2.3.5 Economy   

Cycling economy (W.V̇O2
-1.min-1) is defined as the ratio of power output (W.min-1) 

to oxygen consumption (V̇O2
.min-1) (Bertucci, 2012) and provides an alternat ive 

calculation to assess effective work. This simplified calculation does not take into 

account macronutrient contribution and so is considered less accurate than efficiency  

calculation, because of this, cycling economy tends to be reserved for exercise 

intensities, which induce an RER value > 1.0. Although the anaerobic respiration 

contribution remains indeterminate, cycling economy allows for the calculation at 

higher performance intensities (albeit with the anaerobic component unquantified).  

 

Economy =  ቆPower outputV̇Oଶ ቇ 

Equation 7. Cycling economy. Where: V̇O2, oxygen uptake.  
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CHAPTER 3: FACTORS INFLUENCING EFFICIENCY AND THE LI NK 

WITH PERFORMANCE 

This chapter will summarise and evaluate the current research surrounding the 

factors that can influence efficiency, and as a result highlight potentially  

confounding variables for this research. In addition cycling performance will also be 

reviewed in relation to the theoretical and empirical research surrounding efficiency  

and performance. See Appendix 1 for an extensive multi-variable illustration of the 

factors that can influence cycling efficiency.  

 

3.1 Physical Factors influencing efficiency 

3.1.1 Environmental 

Core body temperature can increase as a direct result of an increase in work rate, 

temperature, humidity, subcutaneous body fat and utilizing insulating clothing. 

Temperature is a recognised factor that can influence muscular function (Ranatunga, 

1998) with temperature reported to have a negative linear relationship with 

efficiency above optimal levels (Daanen et al., 2006). Increases in core body 

temperature have received the greatest efficiency research interest; most likely due 

to the cycling race season taking place in warm climates year round in both 

hemispheres. Segmental and whole body pre-warming/cooling studies have been 

used to investigate the notion that efficiency is affected by temperature, however 

discrepancies remain regarding the magnitude and at times the direction of the 

change (Ferguson, Ball, Sargeant, 2002). The more commonly reported negative 

association with body temperature and efficiency is currently theorised to be as a 

result of two separate mechanisms. At a cellular level, it is theorized that an increase 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferguson%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=11916993
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferguson%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=11916993
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sargeant%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=11916993
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in heat above optimal levels can increase the proton-leakage across the inner 

mitochondrial membrane (Willis and Jackman 1994). Proton-leakage specifical ly  

results in a lower ratio of ADP molecules being phosphorylated per O2 molecule, 

which adversely affects molecular efficiency. The second theory concerns the body’s 

autonomic response to an increase in core body temperature, whereby cutaneous 

vasodilation in the peripheral veins aim to increase heat dissipation from the system 

boundary (Hettinga et al., 2007). Although the exact mechanism remains up for 

debate, one theory is that reduced venous return to the alveolar compartment reduces 

blood pressure and reduces the rate that  V̇CO2 is expelled, which increases the 

amount of V̇CO2 present in the blood known as hypercapnia (Wingo,  Low, Keller 

and Crandall, 2008). This increase in V̇CO2 in the veins drives increased ventilation 

(Serebrovskaya, 1992) and additional/initial cutaneous blood flow (Wingo, Low, 

Keller and Crandall, 2008) resulting in a higher energy cost to perform the same 

work or power (Hettinga et al., 2007). Fujii et al., (1985) provided empirical 

evidence to support this mechanism by inducing voluntary hypocapnia via 

hyperventilation which resulted in a higher cutaneous blood flow threshold relat ive 

to core body temperature. A preliminary study by Bertucci, Arfaoui, Janson and 

Polidori (2013) supports the cutaneous blood supply theory in direct relation to a 

reduced efficiency, however further research is required to provide statistical 

strength, with little conclusive evidence directly confirming a negative associat ion 

between sub-optimal temperature and a reduced efficiency. Nonetheless, there is 

evidence to suggest that fluctuations in core body temperature have a direct influence 

on performance through a reduction in power output. Tatterson, Hahn, Martin and 

Febbraio (2000) described a 6.5 % reduction in power over a 30 minute time-trial 

(TT) and Tucker, Rauch, Harley and Noakes (2004) described a 6.5 % reduction in 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Serebrovskaya%20TV%5BAuthor%5D&cauthor=true&cauthor_uid=1579717
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fujii%20N%5BAuthor%5D&cauthor=true&cauthor_uid=25257867
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fujii%20N%5BAuthor%5D&cauthor=true&cauthor_uid=25257867
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fujii%20N%5BAuthor%5D&cauthor=true&cauthor_uid=25257867
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fujii%20N%5BAuthor%5D&cauthor=true&cauthor_uid=25257867
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power over a 20 km TT. One reason to explain the reduction in power at sub-optimal 

temperature has been attributed to a central nervous system regulation of effort, to 

limit further increases in core temperature (Hettinga et al., 2007). If this is the case, 

it is likely that efficiency would also be negatively affected due to a reduction in 

power output. Bailey and O’Hagan (2014) also reported a reduction in TT power of 

4 % (albeit not significantly), but reported a significant effect to the pacing strategy  

as a result of a change in environmental temperature (hot environment; quarterly split 

mean power decreased with time, cool environment; split power increased with 

time). The breakdown of the pacing strategy used during the performance TT further 

supports a power regulation theory whereby the workload is reduced to attenuate 

heat accumulation. In this thesis laboratory temperature and air convection will be 

standardized with an air conditioning unit and a large fan to aid heat dissipation and 

to more closely simulate real-world cycling. Environmental conditions are however, 

difficult to control in an outdoor field testing environment and therefore conditions 

will be monitored closely, cutoff thresholds established and differences considered 

within the analysis.  

 

3.1.2 Pedal cadence 

Cadence is a fundamental component of the calculation to derive power output and 

has a direct link with the kinetic energy cost of the cyclical cycling motion (Broker, 

2003). As a consequence, research has explored the link between cadence, efficiency  

and performance in order to determine the optimal cycling cadence. The concept of 

preferred cadence has been suggested to not be wholly accurate due to environmental 

and physical factors often affecting the participants preferred choice such as; 
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gradient, wind, gearing and competitors (Ansley and Cangley, 2009); due to these 

factors it has been argued that the drive to determine an optimal performance cadence 

is restricted to laboratory performance. Optimal cadence in a laboratory environment 

and from an efficiency perspective would result in a cadence that minimized the 

metabolic cost of cycling (Ansley and Cangley, 2009). Energetically optimal 

cadences have been described between 60-70 (rev.min-1) (Takano, 1988; Coast and 

Welch 1985) with cadences above or below this range being considered to have a 

higher metabolic cost for the same power output (Swain and Wilcox, 1992). It is 

important to note that the optimal metabolic efficiency increases slightly with 

cycling experience, and that a preferred cadence has been reported with a much 

higher mean range between 80-100 (rev.min-1) (Marsh, Martin and Sanderson, 2000; 

Foss and Hallén 2005), but as large as 75-107 (rev.min-1) (Leirdal and Ettema, 2011), 

which is outside of the reported metabolically optimal range. Although the vast 

majority of the research would agree that lower cadences improve efficiency, partly 

attributable to an improvement in force effectiveness at lower cadences (Nickleberry  

and Brooks, 1996; Stebbins, Moore and Casazza, 2014), there is research that 

contradicts this finding (Sidossis, Horowitz and Coyle, 1992). Consequently it has 

been argued that what might be more metabolically efficient, might not be a cyclist’s 

preferred cadence as lower more metabolically optimal cadences have been reported 

to incur higher muscular stress and a greater perception of effort (increased localized 

sensations of fatigue) (Jameson and Ring 2000; Ansley and Cangley, 2009). It is 

therefore hypothesised that the negative factors associated with an increased 

metabolic cost with higher cadences, are outweighed by the positive factors such as 

reduced muscular stress reducing the feelings of fatigue (Foss and Hallén 2005) and 

the ability to accelerate (Ansley and Cangley, 2009). As a result, this could have 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Swain%20DP%5BAuthor%5D&cauthor=true&cauthor_uid=1435159
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wilcox%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=1435159
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stebbins%20CL%5BAuthor%5D&cauthor=true&cauthor_uid=24570614
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stebbins%20CL%5BAuthor%5D&cauthor=true&cauthor_uid=24570614
http://www.ncbi.nlm.nih.gov/pubmed/?term=Casazza%20GA%5BAuthor%5D&cauthor=true&cauthor_uid=24570614
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sidossis%20LS%5BAuthor%5D&cauthor=true&cauthor_uid=1521959
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sidossis%20LS%5BAuthor%5D&cauthor=true&cauthor_uid=1521959
http://www.ncbi.nlm.nih.gov/pubmed/?term=Coyle%20EF%5BAuthor%5D&cauthor=true&cauthor_uid=1521959
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implications for measuring efficiency or economy during performance as opposed to 

a steady-state noncompetitive environment. It is important to consider the concep t 

of cadence as being multi-dependent, where the optimal metabolic cadence may not 

be the preferred optimal performance cadence. Despite debate surrounding optimal 

cadence, the research confirms that oxygen uptake and subsequently energy  

expenditure and efficiency are significantly influenced by cadence (Ferguson, Ball 

and Sargeant, 2002). To remove the possibility of cadence as a confounding physical 

variable within this thesis, cadence was standardized using preferred/habitual 

cadence that will be maintained throughout testing due to the performance 

component. While it is useful to maintain cadence within a narrow range as a control 

measure for testing purposes, it is considered essential to allow for natural variation. 

Studies which employ a fixed cadence (Stebbins, Moore and Casazza, 2014; Jacobs, 

Berg, Slivka and Noble, 2013), risk reducing ecological validity as road and track 

time-trial events, can be quite variable (Lucía, Hoyos and Chicharro, 2001). Where 

a consistent cadence is difficult to maintain, for instance in field trials, cadence will 

be added as a covariate to adjust for differences between trials.   

 

3.1.3 Bicycle chain transmission efficiency  

Due to the moving parts within bicycle and cycle ergometers, the energy transfer 

from the pedals to the resultant mechanical energy of the bicycle wheel or flywheel 

can affect the amount of force transferred and recorded. This is mainly due to 

frictional transference of energy with specific factors such as; wear and debris 

between chain and sprockets, sprocket size, chain tension, lubrication and chain 

offset (non-parallel positioning of chain relative to bicycle). Of the above listed 

variables only sprocket size (2–5% with smaller sprockets) and chain tension (1.4 % 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferguson%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=11916993
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferguson%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=11916993
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ball%20D%5BAuthor%5D&cauthor=true&cauthor_uid=11916993
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ball%20D%5BAuthor%5D&cauthor=true&cauthor_uid=11916993
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stebbins%20CL%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moore%20JL%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Casazza%20GA%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=D%20Jacobs%20R%5BAuthor%5D&cauthor=true&cauthor_uid=22648142
http://www.ncbi.nlm.nih.gov/pubmed/?term=E%20Berg%20K%5BAuthor%5D&cauthor=true&cauthor_uid=22648142
http://www.ncbi.nlm.nih.gov/pubmed/?term=E%20Berg%20K%5BAuthor%5D&cauthor=true&cauthor_uid=22648142
http://www.ncbi.nlm.nih.gov/pubmed/?term=Slivka%20DR%5BAuthor%5D&cauthor=true&cauthor_uid=22648142
http://www.ncbi.nlm.nih.gov/pubmed/?term=Noble%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=22648142
http://www.ncbi.nlm.nih.gov/pubmed/?term=Luc%C3%ADa%20A%5BAuthor%5D&cauthor=true&cauthor_uid=11474339
http://www.ncbi.nlm.nih.gov/pubmed/?term=Luc%C3%ADa%20A%5BAuthor%5D&cauthor=true&cauthor_uid=11474339
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chicharro%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=11474339
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with maximal tension and up to 19.1% with minimal tension) have been reported to 

significantly affect frictional losses within chain transmission (Spicer, Richardson, 

Ehrlich and Bernstein, 2000). In a laboratory setting mechanical efficiency is 

reasonably stable with minimal and likely consistent chain transmission frictional 

losses if the same ergometer is used throughout testing and is well maintained. Using 

the same type of ergometer is particularly important as considerable differences have 

been stated when comparing between ergometers that use a flywheel and those that 

do not (Bertucci, Betik, Duc and Grappe, 2012). This difference is attributed to an 

increased inertial load within the ergometers that use a flywheel making the 

maintenance of power less physiologically demanding (Hansen, Jorgensen, Jensen, 

Fregly and Sjogaard, 2002). If comparing efficiency between a laboratory ergomet er 

and a participant’s road bicycle it is likely that there are differences in the energy  

transfer between bicycles. Due to the above factors that can affect the efficiency of 

the energy transfer, the location of the power measuring device between force 

application (pedals) to force output (wheel) will also have a bearing on the ratio of 

recorded force to actual force. To combat potential discrepancies between bicycles 

and measuring devices, adjustments will be made based on previous reliability  

testing (Bertucci, Duc, Villerius, Pernin and Grappe, 2005) and laboratory specific 

testing.  

 

3.1.4 Power output  

Gross efficiency is widely accepted to have a positive association with workload 

(Leirdal and Ettema, 2009); predominantly due to the RMR component of exercising 

energy expenditure making up a smaller relative proportion as intensity increases 

(Gaesser and Brooks, 1975; Cavanagh and Kram, 1985). This relationship is said to 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertucci%20WM%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertucci%20WM%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Duc%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Duc%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Leirdal%20S%5BAuthor%5D&cauthor=true&cauthor_uid=19466445
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ettema%20G%5BAuthor%5D&cauthor=true&cauthor_uid=19466445
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continue up to 200 W at which it plateaus (Moseley and Jeukendrup, 2001). The 

plateau in part can be explained by a natural tendency for cadence to increase with 

work rate (Leirdal and Ettema, 2009), which in turn reduces effective force 

production (Leirdal and Ettema, 2011), counteracting the improvement in efficiency . 

Differences between workload intensities is a key reason why efficiency values 

between studies can vary greatly, particularly when comparing trained verses novice 

participants (Amati, Dubé, Shay and Goodpaster, 2008; Hopker, Jobson, Carter and 

Passfield, 2010). Studies that compare absolute intensities ensure that the absolute 

work is comparable between participants, but do not take into account that an 

absolute workload intensity could be at a higher relative proportion of a participants 

Wmax. Depending on the fitness/cycling experience of the participants, this can also 

limit the range of the intensities that can be explored to ensure an RER < 1.0 for all 

participants at all workloads (Hopker et al., 2013). More recently, studies have 

combined both absolute and relative exercise intensities to counteract the inter-

individual differences with absolute intensity measurement (Hopker et al., 2013). 

The combination of both absolute and relative exercise intensity also allows for the 

provision to re-assess the relative work load post intervention, ensuring that changes 

in Wmax are accounted while having an absolute measure of efficiency for all 

participants at the same workload. Due to efficiency calculation being limited at the 

higher intensities, efficiency measurement has rarely been conducted during real-

world TT or even simulated laboratory TT’s, resulting in limited research 

surrounding efficiency at a TT power intensity. Regulatory feedback mechanisms 

vary work load intensities during a TT, and as a result TT pacing is rarely linear 

when power and time are blinded (Bailey and O’Hagan, 2014). Therefore TT’s pose 

issues for efficiency and economy assessment, as they are non-steady state and can 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Leirdal%20S%5BAuthor%5D&cauthor=true&cauthor_uid=19466445
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ettema%20G%5BAuthor%5D&cauthor=true&cauthor_uid=19466445
javascript:__doLinkPostBack('','ss~~AR%20%22Amati,%20Francesca%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','ss~~AR%20%22Amati,%20Francesca%22%7C%7Csl~~rl','');
mailto:Shay,%20C.
mailto:Goodpaster,%20B.H.
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often result in an RER value > 1. Although there are mathematical models to 

normalize power lasting > 20 minutes (Allen and Coggan, 2010), there currently is 

no satisfactory method to normalize power < 20 minutes and the influence of varying 

power on efficiency and economy remains unknown.  

 

3.1.5 Cycling position 

Cycling position can broadly be divided into three key positioning components; knee 

flexion, torso angle (relative to the horizontal) and hand positioning, which are based 

on the three contact points when cycling; pedals, seat and handlebars (Allen and 

Cheung, 2012). Knee flexion is perhaps the most important factor for force 

application and can be altered with crank length, seat tube height, angle and the 

longitudinal foot position in relation to the pedal (Gonzalez and Hull, 1989). 

Alterations in knee flexion above and below optimal can alter the range of motion at 

the knee, hip and ankle (Ericson, Nisell and Nemeth, 1988), with below optimal knee 

angles reported to cause a greater resultant force but lower force effectiveness, which 

is likely to lower efficiency for the same absolute work intensity (Bini, Hume and 

Kilding, 2014). A reduction in effective power due to suboptimal knee flexion is 

principally theorised due to the length-tension relationship and muscle moment arm 

lengths within the quadriceps muscles having an impact on the optimal angle to 

produce force (Jobson, Nevill, George, Jeukendrup and Passfield, 2008). 

Conversely, Price and Donne (1997) found no effect of changes in knee flexion as a 

result of alterations in seat height but found a significant improvement in efficiency  

at steeper seat angles in spite of changes in knee angle. This suggests that seat angle 

and the positioning of the hips relative to the cranks is more influential for efficient 

movement than knee flexion alone.  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Bini%20RR%5BAuthor%5D&cauthor=true&cauthor_uid=24533494
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bini%20RR%5BAuthor%5D&cauthor=true&cauthor_uid=24533494
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kilding%20AE%5BAuthor%5D&cauthor=true&cauthor_uid=24533494
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jobson%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=18803064
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jobson%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=18803064
http://www.ncbi.nlm.nih.gov/pubmed/?term=George%20SR%5BAuthor%5D&cauthor=true&cauthor_uid=18803064
http://www.ncbi.nlm.nih.gov/pubmed/?term=George%20SR%5BAuthor%5D&cauthor=true&cauthor_uid=18803064
http://www.ncbi.nlm.nih.gov/pubmed/?term=Passfield%20L%5BAuthor%5D&cauthor=true&cauthor_uid=18803064
http://www.ncbi.nlm.nih.gov/pubmed/?term=Price%20D%5BAuthor%5D&cauthor=true&cauthor_uid=9293416
http://www.ncbi.nlm.nih.gov/pubmed/?term=Donne%20B%5BAuthor%5D&cauthor=true&cauthor_uid=9293416
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Torso angle has the ability to influence force production, through suboptimal hip 

angle reducing the force of the gluteal muscles and a reduction in cardiac output 

(Leyk, Essfeld, Hoffmann, Wunderlich, Baum and Stegemann, 1994; Jobson, Nevill, 

George, Jeukendrup, Passfield, 2008). However, torso angle did not have an effect 

on force effectiveness nor gross efficiency in a study by Leirdal and Ettema (2011). 

Despite increased torso angle having the potential to negatively  influence power and 

efficiency, studies have shown that as long as the position is repeated, efficiency is 

highly reproducible (Jobson, Nevill, George and Jeukendrup, Passfield, 2008).  

Hand positioning is mainly concerned with altering the frontal surface area and drag 

coefficient, and is therefore more paramount when cycling outdoors and at speeds > 

14 m.s-1, due to air resistive forces making-up 90 % of total resistive forces (Debraux, 

Grappe, Manolova and Bertucci, 2011). In a laboratory environment however, the 

difference in energy cost from a handle bar top and a handle bar drop position have 

been reported to have no effect on energy expenditure calculations (Ryschon and 

Stray-Gundersen, 1991). It is important to note that although all three components 

of body position have the potential to alter efficiency, and could be utilised to ensure 

the most metabolically efficient cycling position, due to the substantial gains that can 

be made with a more aerodynamic positon, bicycle set-up is predominantly  

motivated by reducing aerodynamic resistive forces, with efficiency often a lower 

priority (Fintelman, Sterling, Hemida and Li, 2014). 

Consistent bicycle set-up can be easily ensured in both a testing and field 

environment, however the exact position of the participant on the bicycle cannot be 

completely fixed due to small but possible variations in regards to movement on the 

saddle, elbow flexion, head position and hand positioning (Allen and Cheung, 2012). 

Despite similar ergometer set-up in the laboratory, the limited but possible 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Leyk%20D%5BAuthor%5D&cauthor=true&cauthor_uid=8162920
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http://www.ncbi.nlm.nih.gov/pubmed/?term=Jobson%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=18803064
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jobson%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=18803064
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movement on a bicycle has anecdotally been reported to result in participants 

assuming a more upright position in comparison to field positioning (Jobson, Nevill, 

George, Jeukendrup and Passfield, 2008). This was attributed to the aerodynamic 

advantages that can be gained in the field condition having little benefit in the 

laboratory and therefore the more physiologically advantageous up-right position 

being adopted (Fintelman, Sterling, Hemida and Li, 2014). Although this 

phenomenon has the potential to confound laboratory and field comparisons the 

effects of altering torso angle and hand positioning on efficiency have reported 

negligible findings. Therefore in this thesis the bicycle seat and handlebar position, 

along with the use of the same pedals will be closely replicated to minimize cycling 

positional factors.  

 

3.1.6 Body Mass and composition  

Cycling is considered a non-weight bearing activity when seated, which reduces the 

impact of body mass on efficiency in comparison to other activities such as running.  

Swain (1994) re-analysed data from a previous publication (Swain, 1987) and found 

that efficiency was not affected by body mass in trained cyclists. However, efficiency  

was shown to be negatively associated with body mass during stationary cycling in 

novice participants (Berry, Storsteen and Woodard, 1993). Mass distribution, but 

specifically leg mass in novice participants was the primary reason attributed to the 

higher energy expenditure in stationary cycling. Hopker, Jobson, Carter and 

Passfield (2010) have also investigated lean leg mass in competitive cyclists and 

found that it was negatively associated with gross efficiency, irrespective of intensity 

(150 W, r = -0.59 and 180 W, r = -0.58). This result was attributed to a lower leg 

mass reducing the kinetic cost of accelerating and decelerating the legs and a higher 
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leg mass having the reverse consequence (Berry, Storsteen and Woodard, 1993). 

Furthermore, a reduction in mass at the more distal end of the leg (nearer the foot) 

would reduce the energy cost more, than the same reduction in mass at a more 

proximal location on the thigh. This is because mass has a higher inertia at more 

distal ends, due to the greater angular velocity and location to the joint centre 

(McGinnis, 2004). Total body mass should also be considered in terms of 

composition, with fat mass being the primary constituent that can reduce mass 

without having a negative influence on performance power. Currently other than the 

study by Coyle (2005) which faced substantial criticism, there is little research that 

assess the influence of a reduced fat mass while maintaining lean mass on 

participants accustomed to cycling. Therefore, the Coyle (2005) paper will only be 

used during this thesis for the purpose of body composition reference, and not for 

changes in efficiency.  

 

3.2 Physiological factors influencing efficiency 

3.2.1 Training 

Training has been explored to influence efficiency on the principle that it can 

improve the capacity to utilising O2 (~20-30%) (Sjogaard, Nielsen, Mikkelsen, Saltin 

and Burke, 1982), increase work capacity (Gimenez, Cereceda, Teculescu, Aug 

and Laxenaire, 1982) and improve cycling technique (Coyle, et al. 1991; Jones and 

Carter, 2000). Research within this area has investigated both comparative and 

intervention design studies to explore the effect of cycling experience and various 

training types. Comparative research design has investigated the difference between 

trained and untrained participants with trained participants being reported to have a 
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1.4 % higher efficiency across workloads than untrained (Hopker, Coleman and 

Wiles, 2007). Conversely, Moseley, Achten, Martin and Jeukendrup (2004) reported 

no efficiency differences between elite and trained recreational cyclists, and 

Nickleberry and Brooks (1996) also reported no differences between recreational 

and competitive cyclists suggesting that even a basic level of training is sufficient to 

reduce the detectable efficiency changes between participants. This lack of 

difference could be due to the reduced sensitivity of unpaired inter-comparat ive 

statistics or could also suggest that training adaptions are minimal after an initial 

period of training, explaining why a difference was only found between novice and 

trained participants (Hopker, Coleman and Wiles, 2007). Although comparison 

studies allow for potentially large training differences between participants, which 

can span many years; due to the individualistic differences between participants the 

descriptive data is often unable to explicitly determine if training improves efficiency  

(Hintzy, Mourot, Perrey and Tordi, 2005). Additionally, investigating the training 

influence on efficiency in this observational manner is unable to account for possible 

genetic factors (Joyner and Coyle, 2008) and discrepancies within a trained or 

competitive cyclists exercise history. The training undertaken in the lead-up to 

testing could also be a factor where the intensity, mode and duration of training that 

is conducted in the trained group could influence the results, with Hopker, Coleman 

and Passfield (2009a) reporting a 1 % gross efficiency improvement over a 

competitive season. The cycling training season is often divided into several 

periodized segments where training can vary from baseline endurance to interval 

sprint training. The most frequent type of cycling training is predominantly  

endurance based, with endurance training been shown to improve efficiency in 

untrained female participants by 11 % for gross efficiency, 9 % for net efficiency  

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hopker%20JG%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hopker%20JG%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
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and an insignificant 2.4 % increase in work efficiency (Hintzy, Mourot, Perrey and 

Tordi, 2005). This study suggests that endurance training can improve efficiency in 

untrained participants and suggests that gross efficiency is the most sensitive to 

change. However, because trained participants tend to be accustomed to endurance 

training, high intensity training has been suggested to be the most potent training 

stimulus in comparison to endurance training (Hawley and Stepto, 2001; Laursen 

and Jenkins, 2002; Jobson, Hopker, Korff and Passfield, 2012). Although the 

evidence is reasonably convincing for training being considered a key variable to 

improve efficiency, Hopker, Coleman, Passfield and Wiles (2010) found that the 

majority of the medium term efficiency gains were achieved after the initial 

commencement of high intensity training (≤ 6 weeks 1.4 % improvement, ≤ 12 

weeks 1.6 % improvement in gross efficiency). This suggests that the improvements 

commonly reported as a result of a change in training may be achieved relatively  

quickly and that the rate of improvement soon plateaus. Currently there is little 

research assessing the long term effect of high intensity training or the speed of 

decline after high-intensity training ceases. In a recent meta-analysis conducted by 

Montero and Lundby (2015), it was reported that endurance and high intensity 

training alone or in combination can improve efficiency in untrained participants, 

but in trained participants only high intensity training improved efficiency. It is 

widely accepted that untrained participants have a greater potential to improve their 

efficiency than trained participants, which is the likely reason why untrained 

participants had the greater improvement, and why both training types induced an 

efficiency improvement. While comparative studies suggest that absolute efficiency  

values are not wholly based on training experience, training intervention studies with 

both trained and untrained participants have demonstrated that training can improve 

javascript:__doLinkPostBack('','ss%7E%7EAR%20%22Hopker%2C%20James%22%7C%7Csl%7E%7Erl','');
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efficiency. As a result, training intensity, volume and type will be monitored 

throughout this research and due to the large improvements seen with untrained 

participants, participants who cycle regularly will be solely recruited to minimise the 

potential of experimental testing inducing a training effect.  

 

3.2.2 Muscle fibre type 

There are three main classifications for the types of muscle fibre, slow-twitch 

oxidative (Type I), fast-twitch oxidative glycolytic (Type Iia) and fast-twitch 

glycolytic (Type IIX) (Bottinelli and Reggiani, 2000; Jones, Pringle, and Carter, 

2005). Although the fibres are organised according to oxidation and speed of 

contraction, the classification creates a false dichotomy as there is a great deal of 

overlap between their metabolic properties (Jones, et al., 2005); which is problematic 

when trying to identify muscle fibre type and its relation to efficiency. It is widely  

accepted that Type I fibres make up the majority of an endurance cyclists muscle 

mass (Kyle, 2003), however debate remains concerning fibre type efficiency with 

some studies suggesting that Type I fibres are more efficient (Coyle, et al., 1992; 

Horowitz, et al., 1994), whilst others claiming that they are similarly efficient (He, 

Bottinelli, Pellegrino, Ferenczi and Reggiani, 2000; Medbo, 2008), and others still 

that Type II fibres are the most efficient (when cycling at 100 rpm compared to 60 

rpm Suzuki, 1979). Discrepancies exist because of a varying perspective over the 

physiological mechanisms that dominate efficiency, as some take into account 

absolute energy while others also consider the efficiency of the fuel used to re-

synthesise energy (ATP). Currently, the above research has only been able to infer 

muscle fibre efficiency; predominantly through the use of single muscle biopsies in 

the Vastus Lateralis muscle (Faria, Parker and Faria, 2005). Another issue is that a 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bottinelli%20R%22%5BAuthor%5D
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single muscle biopsy is assumed to be representative of whole body muscle fibre 

proportions, which in turn is directly associated with energy expenditure and 

efficiency calculations (Jones, et al., 2005; Medbo, 2008). Additionally there is also 

the possibility that recruiting participants who are unfamiliar with cycling (likely due 

to the invasive nature of a biopsy) increases the variability within efficiency  

measurement which could be confounding results (Medbo, 2008). Irrespective of the 

debate, a large proportion of the improvements that are reported in cycling efficiency  

have been theorised to be as a result of an increase in Type I muscle fibres (Coyle et 

al., 1992).  

 

3.3 Macronutrient manipulation and supplementation 

3.3.1 Macronutrients 

Dietary manipulation by altering macronutrient ratios is one approach that has 

received little attention in the literature with the theoretical possibility to both 

improve efficiency and conserve CHO energy. Carbohydrate and FAT 

manipulations have been the primary adjustment nutrients, as they constitute the 

principal energy sources during endurance cycling; FAT accounting for ~ two thirds 

of the energy source at 50 % maximal intensity, with CHO taking over as the primary  

energy source at ~75 % maximal intensity (Maughan and Shirreffs, 2011). Jansson 

(1982) reported a 5.6 % higher gross efficiency with a five day high CHO diet verses 

a low CHO diet. Using trained cyclists, Neufer et al. (1987) reported elevated serum 

glucose levels with the supplementation of CHO prior to testing, and reported a 

higher work rate in the latter stages of cycling for one hour. In combination, these 

studies suggest the potential for efficiency to be altered with macronutrient ratios 

and the potential to influence performance particularly in the concluding stages. 
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Nonetheless, the above findings are based on small sample sizes; Neufer et al. (1987) 

utilised ten participants and Jansson (1982) just seven. Cole, Coleman, Hopker and 

Wiles (2014) recruited 15 trained participants and identified a significant 0.8 % 

higher gross efficiency with a three day high CHO diet (70 % CHO), opposed to a 

three day moderate CHO diet (45 % CHO). Interestingly there was no mean 

difference between the high and low CHO diet (20 % CHO), with efficiency only 

lower in the low CHO condition during two time points over 120 minutes (25 and 

85 min). This suggests that reducing the CHO macronutrient ratio while maintaining 

a neutral energy balance has the potential to have a negative effect on efficiency , 

with a high CHO diet having the most likely positive influence. Macronutrients have 

also been explored in a more supplemental form with CHO ingestion compared to a 

placebo during 150 minutes of cycling; gross efficiency was again not improved 

overall, but did show higher efficiency values at two time points during 40 and 150 

minutes (Dumke, et al., 2007). There was also an overall reduction in blood glucose 

in the placebo condition suggesting that glucose availability could explain the 

reduction in efficiency at the noted time points, and as a result will be measured 

during cycling efficiency testing within this thesis.  

 

3.3.2 Dietary supplements 

The legal definition of a dietary supplement is a product intended to supplement the 

diet that bears or contains; a vitamin, mineral, herb, amino acid or is used to increase 

total calorie intake (National Research Council, 2005). The main theorised pathway 

for a supplement to influence efficiency is via an alteration in RER, by substrate 

availability modifying substrate oxidation (Brouns, 1989; Graziela, 2003; Coyle et 

al., 2001; Dumke et al., 2007; Auvichayapat et al., 2008). Increasing fat oxidation is 
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the main motivation for supplements in aiding fat reduction and in doing so could 

spare CHO, which would be considered beneficial for performance (Dulloo et al., 

1999). It is curren tly unknown if supplements poten tial cumulative increase in V̇O 2 

and substrate ratio could affect cycling efficiency. Green tea which contains Catechni 

Polyphenols are claimed to increase BMR through increased thermogenesis and lipid 

oxidation (Mukhtar and Ahmad, 2000), with a 4 % increase in RMR (Komatsu et al., 

2003), and between a 17 % - 31 % reported increase in fat oxidation (Dulloo et al., 

1999; Venables et al., 2008). However, green tea naturally contains caffeine, which 

is claimed to cause a similar increase in fat oxidation, and there is yet to be conclusive 

evidence that decaffeinated green tea can significantly affect efficiency. There is 

reasonably strong evidence to suggest that caffeine increases fat oxidation (Chad and 

Quigley, 1989; Donelly and McNaughton, 1992; Magkos and Kavouras, 2004), 

however other studies who found an improvement in endurance have reported no 

reduction in RER, indicating no increase in measurable fat oxidation (Kovacs et al., 

1998; Engels et al., 1999; Jenkins et al., 2008). L-Carnitine also has the potential to 

increase fat oxidation because this substance shuttles activated long-chain fatty acids 

(LCFA) from the cytosol, across the inner mitochondria membrane to the 

mitochondrial matrix for β-oxidation (Brass et al., 1994; Villani et al., 2000). Free 

and total L-Carnitine are reported to be lower in athletes training for endurance and 

is supplemented on the premise that it increases fat oxidation during exercise and at 

rest (Arenas et al., 1991; Abramowicz and Galloway, 2005). Equally many studies 

invest igating the effects of L-Carnitine have failed to show a significant increase in 

fat  oxidation when examining V̇O2 and RER (Brass, Hoppel and Hiatt, 1994; 

Vukovich et al., 1994) and when monitoring fat mass loss (Villani et al., 2000).  
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There is also the possibility for supplements to improve efficiency and in turn 

performance through other pathways such as increasing lactate buffering capabilit ies 

in the case of sodium bicarbonate. Currently there is reasonably compelling evidence 

for sodium bicarbonate in relation to short duration performance with events that 

result in an elevated blood lactate level (Burke and Deakin 2006; Edge et al., 2005), 

with endurance athletes also potentially benefitting from bicarbonate 

supplementation, as they too have elevated blood lactate levels (Oopik et al., 2003). 

Interestingly , a study that  supplemented bicarbonate, mainly looking at the effect on 

the V̇O2 slow component also calculated gross efficiency (Santalla et al., 2003). 

While no significant differences were found, bicarbonate did appear to attenuate the 

reduction in cycling efficiency towards the end of the trial. It is also noteworthy to 

address that  this study was conducted at 90 % of the cyclists V̇O 2max intensity, which 

was shown to increase lactate accumulation quite dramatically. Therefore a high 

proportion of anaerobic respiration was very likely and called into question the gross 

efficiency calculations. Inorganic dietary nitrate (NO3-) is arguably the newest 

supplement to be suggested to improve performance and efficiency, based on reports 

that  it  can reduce the V̇O2 cost of exercise at sub-maximal intensities by ~ 4 % 

(Vanhatalo et al., 2010) and ~ 3 % (Whitfield et al., 2015). The reason for the 

reported improvement in efficiency has been suggested to be either linked directly  

with muscle contraction efficiency within the muscle structure (sarcoplasmic 

reticulum and or actin-myosin interaction) or during mitochondrial oxidat ive 

phosphorylation (Jones, Vanhatalo and Bailey, 2013). Nevertheless an improvement 

in mitochondrial efficiency has however been discredited by Whitfield et al. (2015) 

who found no improvement in mitochondrial efficiency to explain the significant  

reduct ion in submaximal V̇O2.  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Jones%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=23765348
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It is only relatively recently that supplements have been explored for the primary  

purpose of altering cycling efficiency, with Quercetin found to have no significant 

effect (Dumke et al., 2009). Consequently there is limited direct evidence 

surrounding supplements having a negative effect on efficiency but similarly there 

is limited research on supplements being able to improve efficiency despite reported 

performance improvements (Jones, Bailey and Vanhatalo, 2012). Only caffeine 

currently has reasonable evidence to suggest that it could alter efficiency and so 

particular attention will be given to limit caffeine consumption prior to testing. Due 

to the potential influence of participants macronutrient ratios and quantity in the days 

leading up to efficiency measurement, three day food diaries will be used to ensure 

similar macronutrient ratios with dietary supplementation restricted during testing.  

 

3.4 Performance 

Cycling performance is fundamentally determined by the cyclists ability to produce 

propulsive forces (power output) and to overcome resistive forces (rolling resistance, 

aerodynamic drag, crank friction and gravity) (Faria, Parker, and Faria, 2005), while 

the ability to win is dependent on a combination of physiological, biomechanical, 

nutritional and psychological factors that are often joined with team tactics (Joyner 

and Coyle, 2008). Cycling events can range from sprint distances (200m for sprint 

track qualifying) to multi-stage races lasting several days and even weeks (Tour de 

France, Giro d’Italia & Vuelta a Espanã), with the average stage race lasting ~ 5 

hours (Faria, Parker and Faria, 2005). Typically, the aim of a competitive cyclist is 

to complete a set distance in the fastest possible time, or in the case of tour racing be 

the first across the finish line. There are numerous performance models which 

attempt to both predict performance and determine the key variables to improve 
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46 
 

performance (Olds et al., 1995). Some models state both physiological and 

biomechanical factors with Olds (2001 ) including; V̇O2max (maximal oxygen 

uptake), fractional utilisation of V̇O2max, efficiency and frontal area as the key 

determinants of performance. Joyner and Coyle (2008) look specifically at the 

physiological variables and arguably provide the most popular performance model 

for endurance cycling (Figure 3.1). A key theme amongst the majority of 

performance models are; V̇O2max, metabolic thresholds (lactate 

threshold/submaximal V̇O2) and efficiency/economy (Faria, Parker, and Faria, 

2005).  

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Schematic of the determining physiological variables that interact to 

influence performance (Joyner and Coyle, 2008). Note: Key determinants are 

indicated with a grey background. Note: V̇O2, oxygen uptake, V̇O2max, maximal 

oxygen uptake.  
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3.4.1 V̇O2max and performance 

Historically one of the most commonly invest igat ed physiological variable in 

relation to  performance is V̇O2max (Jobson, Hopker, Korff and Passfield, 2012). This 

variable is commonly measured using a graded exercise test to volitional exhaustion , 

and was linked with performance due to the observation that elite endurance athletes 

have the highest values (Faria, Parker and Faria, 2005). Maximal aerobic capacity  

(V̇O2max) is defined as the amount of oxygen that can be utilised when exercis ing 

maximally and is restricted by  t issue oxygen demand, central and peripheral 

cardiovascular limitations and is frequently presented relative to body mass (Faria, 

Parker and Faria, 2005). Body mass is often an undervalued component of V̇O2max, 

where a small reduction in fat mass results in a relative improvement in V̇O2max, 

desp ite no improvements in the magnitude of V̇O2 utilisation. A moderate negat ive 

association (r = -0 .554) has been reported between V̇O2max and body fat % in males 

(Kriketos, Sharp, Seagle, Peters and Hill, 2000). Th is suggests that performance 

could be directly influenced by an improvement in V̇O 2max via a reduction in fat  

mass, yet this is not indicated by Joyner and Coyle’s (2008) performance model 

(Figure 3.1). Olds (2001) reviewed and presented numerous studies which explored 

the relationship with V̇O2max and performance with all but one reporting a highly  

positive correlation value (r ~ 0.70); despi te this, V̇O2max is not considered a valid 

predictor of performance on its own and is frequently combined with lactate 

threshold and efficiency variables (Craig et al., 1993; Olds et al., 1995). When 

V̇O2max has been compared with gross efficiency, an inverse relationship has been 

reported (Lucia, Hoyos, Perez, Santalla and Chicharro, 2002) and it has also been  

suggested that  a greater efficiency appears to compensate for a lower V̇O 2max value 

in highly trained endurance cyclists. It is theorised that where there is a high capacity  
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to supply V̇O2 in the case of having a large V̇O2max, there is less of a need for the 

body to use V̇O2 efficiently. Conversely, in the case where V̇O2max is low there is a 

greater need for more efficient  use of V̇O2 in order to achieve the same work or 

power output, however there is currently  l itt le evidence to support this theo ry. Due 

to V̇O2max being limited in part by cardiovascular capacity, a newly proposed 

approach to explore the inverse relationship is to use pulmonary function tests, 

specifically measuring vital capacity (VC) (the maximal volume of air breathed out 

after maximal inhalation) and forced expiratory volume (FEV1) (volume of forced 

expired air recorded after one second of expirat ion) alongside the assessment of 

V̇O2max and efficiency. Vital capacity and FEV1 are both very simple measurements 

that could provide an indication of the size limiting capacity and the airway  

efficiency, which may be influencing an athlete’s predisposition to have either a 

higher or a lower V̇O2max relative to efficiency. This is yet to be explored within the 

research and wil l be used as an exploration of the relat ionship between V̇O2max and 

efficiency in the main discussion (Chapter 11) of this thesis.   

 

3.4.2 Lactate threshold 

Lactate threshold describes the lactate inflection point during incremental exercise 

where lactate production is higher than lactate use. Lactate accumulation is ascribed 

to an increase in the rate of glycolysis (glucose conversion to pyruvic or lactic acid) 

and has superseded the term known as anaerobic threshold (MacRae, 2003). Lactate 

threshold is considered highly associated with performance (Ghosh, 2004), with very  

high correlation values (r = 0.91) when associated with 90 minute cycling TT 

performance power (Bentley, McNaughton, Thompson, Vleck and Batterham 2001). 

Lactate threshold is also particularly important as a marker of endurance capacity, as 
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the threshold occurs at a higher power output in endurance trained athletes allowing 

them to sustain a higher percentage of their V̇O2max (Withers, Sherman and Miller, 

1981). Ventilatory threshold is believed to provide a similar predictive measure of 

endurance capacity relative to lactate threshold, but is calculated using gases during 

incremental exercise rather than blood, and is determined by the point at which 

ventilation increases exponentially (Gaskill et al., 2001). There are four different 

methods that can be used to determine threshold, with subjective issues in 

determining the deflection point present in both lactate and ventilator threshold 

assessment.   

 

3.4.3 Body composition and performance 

Within the Joyner and Coyle (2008) performance model the two categorical variables 

that link directly to efficiency are proportion of Type I muscle fibres and 

anthropometry/elasticity. The research suggests that indeed muscle fibre proportion 

has a direct influence on cycling efficiency (Coyle et al., 1992; Horowitz et al., 

1994), but this model also suggests that anthropometry and by extension body 

composition could also directly influence gross efficiency and in turn performance. 

This area is yet to be fully explored within a trained population utilising a dietary  

intervention to manipulate body mass. Body mass also has the potential to have a 

greater influence on performance if considering the outdoor field environment. The 

link between field performance and body mass has been described in formulaic terms 

by Swain (1994).  
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ݐݏ݋ܿ ݕ݃ݎ݁݊ܧ =  ሺ݇� ∙ ܲ ∙ ሻݏ + ሺ݇� ∙ ܣ ∙ ଷሻݒ +  ሺ݃ ∙ ܲ ∙ � ∙  ሻݏ

Equation 8. Mass and field performance (Swain, 1994). Where: ݇� = rolling 

resistance coefficient, ܲ  = combined mass of cyclist and bicycle, ݏ = bicycle road 

speed, ݇ � = air resistance coefficient, ܣ = cyclist’s surface area, ݒ = bicycle speed in 

air, ݃ = acceleration of gravity and � = road incline.  

 

The first component of Swain’s (1994) equation explains how the frictional forces 

between the road and tyre (assuming the same tyre type, air pressure, tread design 

and material remain the same) are directly proportional to the mass of the cyclist, 

bicycle and rolling resistance; with greater mass tending to increase the contact area 

between the road and the tyre. The second component is the cost of pushing the 

cyclist through air with frontal surface area influenced by cycling position and to a 

lesser extent the distribution of fat and lean mass (dependent on distribution). The 

final part is related to gravitational effects on ascents and descents that is directly  

proportion to the total mass of the cyclist and bicycle. This factor relates to the inert ia 

of the cyclist interacting with gravitational forces and the reluctance of the body and 

bicycle to change direction and or speed. Using this theory, having a greater mass on 

a flat level course tends to have an advantage over a lighter cyclist, due to the trend 

for heavier cyclists to have more lean mass and only marginal increases in rolling 

resistance, while not being adversely affected by negative gravitational forces and a 

higher inertia. Conversely, a lighter cyclist would have an advantage over an 

undulating course due to a lower inertia and higher relative power to weight ratio 

(W.kg-1) (MacRae, 2003). Studies that have compared laboratory and field based 

performance testing have described that body mass was able to explain 52 % of the 



51 
 

variance between the trials (Jobson et al., 2007). The discrepancy between laboratory  

and field based performance time’s highlight the notion that a large proportion of the 

variation remains unexplained. Previous research comparing efficiency with 

different ergometers to free cycling suggest that the discrepancy in time could be as 

a result of a change in efficiency. It seems logical to consider that a proportion of the 

discrepancy could be due to a change in metabolic efficiency in the field 

environment, which has been previously linked with differences between ergometers 

and free-cycling (Bertucci, Betik, Duc and Grappe, 2012).  

           

           

    

 

 

           

           

          

  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertucci%20WM%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertucci%20WM%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Duc%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Duc%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
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CHAPTER 4: BODY MASS CHANGE, CALORIE RESTRICTION AND 

THE LINK WITH CYCLING EFFICIENCY 

 

To date, research is not currently available on elite or even habitualised cyclists in 

regard to the effect of body mass change. Therefore, in order to fully explore and 

speculate on the potential effects of calorie restriction on cycling efficiency, this 

Chapter will explore the efficacy of calorie restriction on an exercising population, 

with evidence primarily centred from health and obesity research. While there 

remains little available information on an already exercising population reducing 

body mass, Although body mass reduction via calorie restriction in an exercis ing 

population has primarily been overlooked from a research perspective, reducing fat  

mass prior to competition is considered standard practice in trained/elite cyclists 

(Kyle, 2003; Knechtle, Knechtle and Rosemann, 2009). The effectiveness of this 

process and the influence on changes in body mass, composition and metabolism 

will be explored in regard to the resultant effect on efficiency and performance.   

 

4.1 Energy balance and body mass change modelling 

Energy balance refers to the relationship between energy intake and energy output, 

where excess intake results in an increase in stored energy (positive energy balance) 

and a deficit of energy in a reduction (negative energy balance) (National Research 

Council US Committee, 1989; Landsberg, Young, Leonard, Linsenmeier and Turek 

2009). The energy balance equation is a simplified means to describe the theoret ical 

linear relationship between mass gain and mass loss, which is based principally on 

the first law of thermodynamics (Sadava et al., 2013).  

 

https://www.google.co.uk/search?tbo=p&tbm=bks&q=inauthor:%22David+E.+Sadava%22
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݁݇ܽݐ݊ܫ ݕ݃ݎ݁݊ܧ = ݐݑ݌ݐݑܱ ݕ݃ݎ݁݊ܧ +  ݁݃ܽݎ݋ݐܵ

Equation 9. Energy balance (Landsberg et al., 2009).  

Assuming a linear relationship, basic physiological principles can be applied to 

quantify the magnitude of calorie deficit or excess on the resultant effect of mass 

change. This was first explained by Wishnofsky (1958) using the information from 

Bozenraad (1911 cited in Wishnofsky, 1958) that human adipose tissue contains 87 

% fat, thus 0.454 kg of adipose tissue is equal to 0.395 kg of fat. Combining the 

known calorific value of one gram of fat (in the original example 9.5 kcal.g), 

Wishnofsky (1958) deduced that 0.454 kg of human adipose tissue contains ~3752.5 

kcals. This value has since been rounded down to 3500 kcal based on fat containing 

a lesser 9 kcal.g (Péronnet and Massicotte, 1991). It is noteworthy that this 

calculation only takes into account the mass change due to fat and water (~90 % of 

adipose tissue), but does not take into account the protein and triglyceride mass 

content that is also contained within adipose tissue (~10 %) (Entenman, Goldwater, 

Ayres and Behnke, 1958; Martin, Daniel, Drinkwater and Clarys, 1994). Utilising 

the Wishnofsky (1958) calculations and assuming that a reduction in mass is 

equivalent to a change in fat and water, the formula can be extrapolated to predict  

the number of kcals required to be in deficit for a desired mass change. Based on a 

negative energy balance of 500 kcal.day-1, after two weeks (-7,000 kcal) a mass 

reduction of 0.9 kg would be predicted, after a month (-15,000 kcal) a reduction of 

1.93 kg and after six months (-90,000 kcal) a reduction of 11.57 kg. Due to the 

indiscrimination between either a positive or negative energy balance, mass gain can 

also be computed with an assumed similar magnitude, but in an opposing direction. 

(Figure 4.1). 
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Figure 4.1 Predicted body mass change based on the theoretical linear relationship , 

with a starting body mass of 70 kg.  

 

While the simplistic energy balance equation (Equation 9) is largely correct in 

principle and research suggests that it can apply for short-term mass change in obese 

participants (Hall 2008). There are three main failings surrounding the linear model; 

firstly it suggests that mass reduction and gain are limitless, secondly that lean mass 

is maintained and thirdly that the same calorie deficit/excess would result in an 

equivalent and consistent mass change (Hamid, 2009). The main consequence of this 

computation results in the formula overestimating mass change when used to predict  

body mass perturbations of medium- to long-term, with greater inaccuracies the 

longer the duration of the kcal imbalance. A more complex model by Forbes (1987) 

and adapted by Hall (2007 & 2008) suggest that starting body mass and fat mass 

have an important influential effect on the required calorific deficit to induce mass 

reduction. Utilising a parabolic model, a non-obese participant of 70 kg would 

require a 10 % smaller calorific deficit of ~6943 kcal to induce a 1 kg mass reduction, 

opposed to ~7709 kcal that would have been previously predicted. Consequently, the 

adapted equation by Hall (2008) explains that a smaller deficit is required to achieve 
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the same mass reduction for a leaner participant. This is attributed to lean mass 

having a lower energy density and consisting of a higher proportion of water than 

adipose tissue. The modified equation was also shown to account for the changes in 

body mass following semi-starvation techniques in already lean participants, where 

the linear equation would have grossly overestimated the required deficit (Keys, 

Brozek, Henschel, Mickelsen and Taylor, 1950). 

 

4.2 Factors affecting body mass change  

4.2.1 Body composition 

There are considerable differences between the metabolic energy costs of the various 

tissues in the body. Although the heart, kidneys, brain and liver require a 

considerable greater number of kcals per kg relative to muscle (13 kcal.kg.d-1) and 

fat mass (4 kcal.kg.d-1) (Table 4.1): Muscle and fat tissue tend to make-up the largest 

contributions to total mass and therefore proportionally provide the greatest potential 

to change RMR as a direct result of tissue mass reduction (Hill, Cateracci and Wyatt, 

2006). Due to the higher metabolic rate of muscle mass, muscle tissue reduction is 

expected to have a larger effect on RMR than fat mass reduction. Fat reduction is 

however reported to have a larger effect on exercising energy expenditure when 

compared to RMR, attributed to a reduction in inertia and improved heat dissipation 

(Rosenbaum et al., 2003; Amati et al., 2008). Research also suggests that the rate of 

fat mass reduction has a tendency to slow, following accumulative and systematic 

fat mass reduction, which is relative to the total magnitude of reduced fat mass. 

(Kriketos, Sharp, Seagle and Hill, 2000). The most metabolically efficient body fat 

http://www.ncbi.nlm.nih.gov/pubmed?term=Kriketos%20AD%5BAuthor%5D&cauthor=true&cauthor_uid=10776900
http://www.ncbi.nlm.nih.gov/pubmed?term=Kriketos%20AD%5BAuthor%5D&cauthor=true&cauthor_uid=10776900
http://www.ncbi.nlm.nih.gov/pubmed?term=Seagle%20HM%5BAuthor%5D&cauthor=true&cauthor_uid=10776900
http://www.ncbi.nlm.nih.gov/pubmed?term=Seagle%20HM%5BAuthor%5D&cauthor=true&cauthor_uid=10776900
http://www.ncbi.nlm.nih.gov/pubmed?term=Hill%20JO%5BAuthor%5D&cauthor=true&cauthor_uid=10776900
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proportion has been described by Perriello (2001) as between 7 to 9 % for males, but 

this is much lower than the current mean ± SD for the male population 23 ± 9.4 %; 

based on a recent cohort of 3409 males with an average age of 44 years (Flint, 

Cummins & Sacker 2014). Conversely trained cyclists have been reported to have 

lower body fat % than the population mean ranging from 7-18 % (Knechtle, Knecht le 

and Rosemann, 2009), with the upper end of this range providing a large potential 

for fat mass reduction.  

Table 4.1 Contribution of different organs and tissues to total daily energy 
expenditure.  
 Mass  Metabolic rate 
Organ or Tissue kg (% of total)  kcal.kg.d-1 (% of total) 
Kidneys 0.3 (0.5)  440 (8) 
Brain  1.4 (2.0)  240 (20) 
Liver 1.8 (2.6)  200 (21) 
Heart 0.3 (0.5)  440 (9) 
Skeletal muscle 28.0 (40.0)  13 (22) 
Adipose tissue 15.0 (21.4)  4 (4) 
Other (skin, gut, bone, etc.) 23.2 (33.0)  12 (16) 
Total 70 (100)   (100) 

Note: Table from Hill, Cateracci and Wyatt, (2006). 

 

4.3 Hypocaloric diets 

Reducing fat mass is a key strategy employed by many cyclists prior to a race in an 

attempt to improve performance (Knechtle, Knechtle and Rosemann, 2009; Kyle, 

2003). This is principally achieved by creating a negative energy balance by either 

consuming fewer calories and or expending more calories through physical activity  

(Volek, VanHeest and Forsythe, 2005). Dietary intake can be broadly classified 

based on energy balance into three main categories; hypocaloric (negative energy  

balance), isocaloric (neutral energy balance) and hypercaloric (positive energy  

balance) (Chung et al., 2014). The principle aim of a hypocaloric diet is to reduce 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Chung%20M%5Bauth%5D
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mass by reducing fat energy storage. Calorie restriction via a hypocaloric diet is 

defined as a reduction in calorie intake below usual ad libitum intake without 

malnutrition (Fontana and Klein, 2007). Reducing dietary energy intake through 

calorie restriction is perhaps the most common method to induce a negative energy  

balance as it is one of the easiest, fastest and most effective ways to create a negat ive 

energy balance particularly in an already exercising population (Kraemer et al., 

1999). The magnitude and duration of the deficit will however affect the rate, 

sustainability and perhaps more importantly the composition of the mass reduction 

(Abete, Navas-Carretero, Marti and Martinez, 2012; Trexler, Smith-Ryan 

and Norton, 2014).  

 

4.3.1 Short-term calorie restriction  

Short-term calorie restriction studies (Bakker et al., 2015; Kouda et al., 2006) are 

classified between 1-14 days (Broom, Hopkins, Stensel, King and Blundell, 2014). 

Short-term effects of calorie restriction include a rapid reduction in body mass, 

predominantly attributed to a reduction in stored glycogen, water and foodstuffs 

within the gastrointestinal tract (Corvilain, et al., 1995; Heymsfield et al., 2012). 

Glycogen is bound with water in the liver at a ratio of ~ 3-4 g of water for every 

gram of glycogen (Kreitzman, Coxon and Szaz, 1992). The liver is estimated to 

contain ~90-110 g of CHO, resulting in the estimated maximal change in mass in the 

liver to be ~550 g for complete glycogen depletion and assuming the higher water to 

CHO ratio (4:1) (Gleeson, 2000). Muscle glycogen is also considered likely to be 

stored with water (Olsson and Saltin, 1970) and muscle tissue is estimated to contain 

between 300-400 g of glycogen (Gleeson, 2000) dependent on CHO intake, usage, 

training status and muscle mass (Ahlborg, Bergstrom, Edelund and Hultman, 1967; 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Trexler%20ET%5BAuthor%5D&cauthor=true&cauthor_uid=24571926
http://www.ncbi.nlm.nih.gov/pubmed/?term=Trexler%20ET%5BAuthor%5D&cauthor=true&cauthor_uid=24571926
http://www.ncbi.nlm.nih.gov/pubmed/?term=Norton%20LE%5BAuthor%5D&cauthor=true&cauthor_uid=24571926
http://www.ncbi.nlm.nih.gov/pubmed/?term=Corvilain%20B%5BAuthor%5D&cauthor=true&cauthor_uid=7485502
http://www.ncbi.nlm.nih.gov/pubmed/?term=Heymsfield%20SB%5BAuthor%5D&cauthor=true&cauthor_uid=22257646
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Ivy, 1991). Consequently the maximal amount of mass change from muscle 

glycogen depletion would be between ~1.4-2 kg with a maximal combined whole 

body glycogen depletion of ~2-2.5 kg. Although complete glycogen depletion has 

been described by Ruderman, Aoki and Cahill (1976, cited in Cahill, 2006) to take 

~ 30 hours following starvation, complete depletion is however unlikely to occur 

with only a moderate calorie deficit. In addition, the above calculations assume 

complete excretion of the water bound with glycogen and so provide only an 

estimation of the maximal mass reduction. Measurable reductions in visceral fat have  

also been noted with short-term calorie restriction (8 days) utilising magnetic 

resonance imaging (MRI) albeit with a very low calorie diet (Bakker et al., 2015). 

Visceral fat specifically has been associated with a greater reduction in the initia l 

stages of moderate calorie restriction in comparison to subcutaneous fat, which is 

lost more proportionally post the initial effects of calorie restriction and with greater 

fat reduction (Chaston and Dixon, 2008). 

In regard to the effect of the early stages of calorie restriction on energy expenditure, 

the first component of TDEE to be reduced is the thermic effect of food (TEF) 

(Rosenbaum et al., 2003). Assuming a direct relationship between kcal intake and 

TEF with a similar macronutrient ratio; a 20 % reduction in calorie intake (previous 

isocaloric diet of 2500 kcal.day-1) would result in a 50 kcal.day-1 reduction or a 2 % 

reduction in TDEE. Although TEF is likely to cause a relatively small reduction on 

TDEE, RMR has long been acknowledged to have a rapid and early response (within 

a couple of days) to energy restriction (Abete, Navas-Carretero, Marti and Martinez, 

2012). Prentice et al., (1991) reviewed a variety of calorie restriction studies and out 

of 29; only one found calorie restriction to increase RMR (1 week study), one had 

no change, but the remaining studies had a reduction in RMR ranging from 5-25 % 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ivy%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=2011684
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chaston%20TB%5BAuthor%5D&cauthor=true&cauthor_uid=18180786
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dixon%20JB%5BAuthor%5D&cauthor=true&cauthor_uid=18180786
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(Parkinson, 1990), with studies of two week duration having a reduction in RMR of 

~ 10 %. More recently just four days of slight (intake: 1462 kcal.day-1) verses 

moderate calorie restriction (intake: 1114 kcal.day-1) inducing a 2 % body mass 

reduction was shown to cause a 6 and 13 % reduction in BMR respectively, with the 

greater calorie restriction having the larger effect (Kouda et al., 2006). Assuming a 

daily energy expenditure of 2500 kcal and RMR consisting of 70 % of TDEE, with 

a conservative 10 % reduction in RMR (Kouda et al., 2006) would equate to a 175 

kcal.day-1 reduction in TDEE. Combining the predicted reduction in TEF and RMR 

it is considered possible to induce a 9 % overall reduction in TDEE over a two week 

period.  

The significant reductions in RMR have been suggested to be because of an 

improvement in mitochondrial biogenesis, due to an increase in the genes 

responsible for mitochondrial synthesis and a reduction in damage resulting in more 

efficient oxygen utilisation (Civitarese et al., 2007). There is also evidence that an 

increase in proteolysis (protein breakdown), amino acid oxidation and a reduction in 

protein synthesis provides one of the first metabolic compensatory mechanisms that 

could also explain a reduction in RMR (Carbone, McClung and Pasiakos, 2012). 

Although this effect has been reported to be attenuated following continued calorie 

restriction (Abete et al., 2012), it could have a consequential impact on muscle tissue 

mass. A reduction in muscle tissue has the potential to reduce RM R, but more so 

when exercising due to the multiplication of energy expenditure. The above 

combined effects have the potential to improve cycling efficiency due to a reduction 

in RMR, muscle metabolism (particularly during exercise) and an increase in amino 

acid oxidation which is not accounted for in traditional efficiency calculations. 

Conversely there is also the possibility that short-term calorie restriction could result  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Carbone%20JW%5BAuthor%5D&cauthor=true&cauthor_uid=22516719
http://www.ncbi.nlm.nih.gov/pubmed/?term=Carbone%20JW%5BAuthor%5D&cauthor=true&cauthor_uid=22516719
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pasiakos%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=22516719
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in a reduction in efficiency, due to a predominance of fat utilisation which requires 

a higher volume of V̇O2 to oxidise. A greater demand for V̇O2 would either be 

satisfied from an increased proportion of V̇O 2 extraction or increased ventilation, 

which would incur a higher energy cost (Hopker et al., 2013). In regard to 

performance, the small benefits commonly associated with having a lower body 

mass and potentially being more efficient, are likely to be outweighed in the short-

term by a reduction in stored muscle and liver glycogen reducing high intensity 

exercise capacity (Heigenhauser, Sutton and Jones, 1983). Furthermore a reduction 

in protein synthesis has the possibility to reduce performance power due to a limited 

recovery from training, albeit a likely small effect during short-term calorie 

restriction, which is considered to occur in direct proportion to lean mass reduction 

(Stein et al., 1991).  

 

4.3.2 Medium-term calorie restriction  

Medium-term calorie restriction is described between 2-12 weeks (Broom, Hopkins, 

Stensel, King and Blundell, 2014) and the effects can be attributed to two main and 

interconnected mechanisms; homeostatic control and the influence of changes in 

body composition. Changes in body composition play a more active role during 

medium- to long-term studies as there is a greater potential to change absolute lean 

mass and fat mass, this in turn would have a larger influence on the components of 

TDEE (Martin et al., 2007). Because of the link between changes in body mass and 

TDEE, the changes in energy expenditure are often offset against changes in lean 

mass (Amati et al., 2008). Goldsmith et al., (2009) reported that metabolic savings 

of ~ 300-400 kcal.day-1 were possible following a 10 % reduction in body mass, after 

accounting for changes in lean mass. Metabolic savings have been attributed to the 
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detection of a calorie deficit, with homeostatic control mechanisms altering in the 

opposite direction to the changes in energy balance to either limit mass gain or limit  

mass reduction (Maclean et al., 2011). This phenomenon is believed in part to 

explain why body mass tends to plateau following medium-term calorie restriction 

and why mass reduction tends to be less than predicted (Trexler, Smith-Ryan 

and Norton, 2014; Byrne, Wood, Schutz and Hills, 2012). It has been speculated that 

one of the multiple mechanisms attributable for the homeostatic control system can 

be explained by neuroendocrine adjustments, specifically an extended period of 

hypothyroidism and hypoleptinemia following calorie restriction (Rosenbaum et al., 

2003). Direct improvements in mechanical efficiency at the muscle via a 25 % 

reduction in glycolytic enzymes (Phosphofructokinase) relative to oxidat ive 

enzymes (Cytochrome c oxidase) has also been attributed to an adaptation within the 

homeostatic control system (Goldsmith et al., 2010). Equally there is increasing and 

convincing evidence that hypocaloric diets in the medium- to long-term are able to 

increase life span and reduce disease in a variety of animals (Mair and Dillin, 2008). 

Although the evidence remains unclear for human’s (Cava and Fontana, 2013), the 

strong empirical evidence from animal studies advocates a measurable 

downregulation in metabolism, which has the potential to improve cycling 

efficiency. The exact details of the mechanisms are as yet unknown, but the ageing 

paradigm is guided by the notion that age is determined by an accumulation of 

damage (Sohal and Weindruch, 1996). Calorie restriction is therefore believed to 

slow down the rate of cellular damage through a longer cellular lifespan resulting in 

a reduction in the rate of cellular reproduction. The mechanism for reducing cellular 

turnover in the case of energy intake has been termed the nutrient-sensing pathway 

which is described to be able to assess nutrient status and adjust nutrient-consuming 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Maclean%20PS%5BAuthor%5D&cauthor=true&cauthor_uid=21677272
http://www.ncbi.nlm.nih.gov/pubmed/?term=Trexler%20ET%5BAuthor%5D&cauthor=true&cauthor_uid=24571926
http://www.ncbi.nlm.nih.gov/pubmed/?term=Trexler%20ET%5BAuthor%5D&cauthor=true&cauthor_uid=24571926
http://www.ncbi.nlm.nih.gov/pubmed/?term=Norton%20LE%5BAuthor%5D&cauthor=true&cauthor_uid=24571926
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mair%20W%5BAuthor%5D&cauthor=true&cauthor_uid=18373439
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dillin%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18373439
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cava%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23924667
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cava%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23924667
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processes such as; growth, metabolism and reproduction of cells relative to energy  

availability (Gems and Partridge, 2013; Cava and Fontana, 2013).  

Maclean, Bergouignan, Cornier and Jackman (2011) describe how all elements of 

TDEE are affected with calorie deficit (Figure 4.2). Although an absolute reduction 

in; RMR (Martin et al., 2007; Piccolo et al., 2015), NEAT (Levine, 2004), TEF 

(Miles, Wong, Rumpler and Conway, 1993) and EAT (if comparing similar exercise 

volume) (Amati et al., 2008) is generally accepted, the magnitude of the change in 

an exercising population remains relatively unknown. Additionally, Figure 4.2 also 

suggests that whole organism efficiency should be improved in the magnitude of all 

but TEF components of TDEE. It is noteworthy that the metabolic benefits 

associated with mass reduction are caused specifically through the process of calorie 

restriction, and are not present if a low body fat is maintained through physical 

activity (Fontana and Klein, 2007). It is hypothesised that a separate and differing 

mechanism triggered by calorie restriction results in an overall down regulation and 

slowing of cellular damage (Civitarese et al., 2007).  Consequently a reduction in 

metabolism via a down regulation in cellular turnover provides a large potential to 

reduce whole organism energy expenditure and a strong rational for a unique 

mechanism to improve cycling efficiency. 

  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Gems%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23190075
http://www.ncbi.nlm.nih.gov/pubmed/?term=Partridge%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23190075
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cava%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23924667
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cava%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23924667
http://www.ncbi.nlm.nih.gov/pubmed/?term=Maclean%20PS%5BAuthor%5D&cauthor=true&cauthor_uid=21677272
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bergouignan%20A%5BAuthor%5D&cauthor=true&cauthor_uid=21677272
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Figure 4.2 Effect of calorie restriction and body mass reduction on TDEE (Adapted 

from Maclean, Bergouignan, Cornier and Jackman, 2011). Note: BMR, basal 

metabolic rate, NEAT, non-exercise activity thermogenesis, TEF, thermic effect of 

food, EAT, exercise activity thermogenesis, NREE, non-resting energy expenditure, 

REE, resting energy expenditure.  

   

 

4.3.3 Severity of calorie restriction 

The severity or magnitude of calorie restriction has been described to be one of the 

most important factors that influences the rate, composition of mass reduction and 

the resultant effect on the activation of compensatory homeostatic control 

mechanisms (Wadden, Byrne and Krauthamer-Ewing, 2006). Slight calorie 

restriction tends to be described as < 400 kcal.day-1 in deficit (Fitzgerald, 2009), 

moderate calorie restriction commonly induces a deficit between 500-750 kcal.day-1 

(~80 % of usual intake) (Sinclair, Morley and Vellas, 2012), with low calorie diets 

(LCD) resulting in a total energy consumption of between 800-1500 kcal.day-1 and 

very low calorie diets (VLCD) providing fewer than 800 kcal.day-1 or < 20 % of 

usual calorie intake (Wadden, Byrne and Krauthamer-Ewing, 2006; Gao, Yan, Zhao, 
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Tao and Zhou, 2015). Severe calorie restriction or VLCD often result in 

unsustainable mass reduction and have the risk of malnutrition, particularly over 

prolonged periods (National Research Council US Committee, 1989). Caloric 

deficits ≥ 1000 kcal.day-1 have been noted to result in very little additional fat mass 

reduction when compared to moderate deficit (500 kcal.day-1), with increased 

adverse reductions in water, electrolytes, minerals, CHO and lean mass (Perriello, 

2001). To limit the potential adverse effects of LCD and VLCD, moderate deficits 

of ~500 kcals (20 % calorific deficit) are recommended to ensure sustainable body 

mass reduction with lean mass preservation (Trexler, Smith-Ryan and Norton, 2014; 

Wadden, Byrne and Krauthamer-Ewing, 2006; O’Connor and Caterson, 2010). 

Moderate calorie deficits for the above reasons tend to be the more popular 

intervention strategy for medium to long-term calorie restriction interventions 

(Fontana and Klein, 2007).  

 

4.3.4 Exercise and calorie restriction  

Exercise is a branch of physical activity that is often used in combination with calorie 

restriction to increase calorie deficit. Research suggests that exercise in combination 

with calorie restriction assists absolute mass change via a direct increase in energy  

expenditure, but perhaps more importantly is reported to preserve lean tissue 

(Yoshimura et al., 2014). Preservation of lean tissue has the consequential effect to 

attenuate reductions in RMR (Stiegler and Cunliffe 2006), with increases in fat  

oxidation at rest and during exercise also considered additional benefits of 

combining exercise with calorie restriction (Kriketos, 2000). The weighting of the 

beneficial effects of combining exercise with calorie restriction are however, largely  
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dependent on the type of exercise. Based on a recent review of 32 controlled trials, 

Clark (2015) reported that; fat mass was reduced the most when calorie restriction 

was combined with endurance exercise (effect size: 1.07) and lean mass was best 

maintained when calorie restriction was combined with resistance exercise (effect 

size: 1.08). As yet there is little conclusive evidence that prescribing a combination 

of endurance and resistive exercises with VLCD’s has any beneficial effect on body 

mass, composition or RMR (Donnelly, Pronk, Jacobsen, Pronk and Jakicic, 1991). 

It is also noteworthy that a reduction in calorie intake has been linked with reductions 

in energy expended from free-living physical activity (Martin et al., 1985). 

Therefore, during restricted calorie intervention studies it is important to ensure 

exercise remains consistent, as changes in the type, volume and intensity could have 

confounding influences on body composition and factors that would likely influence 

RMR and efficiency calculations.  

 

4.3.5 Macronutrient ratios 

Total mass reduction as a consequence of calorie restriction on average results in 

~75 % reduction of fat mass and ~25 % reduction in lean tissue (Weinheimer, Sands 

and Campbell, 2010). Recent reviews do however suggest that lean mass reduction 

can be significantly attenuated with both sufficient protein intake (0.8-0.9 g.kg-1.day-

1) and above sufficient levels (> 1.05 g.kg-1.day-1 / ≥ 25 % protein) (Trexler, Smith-

Ryan and Norton, 2014; Wycherley, Moran, Clifton, Noakes and Brinkworth, 2012). 

Layman et al., (2003) similarly reported an improved lean mass attenuation with a 

high protein hypocaloric diet but also found a greater fat mass reduction as opposed 

to a hypocaloric diet with adequate protein intake (0.8 g.kg-1.day-1). Nevertheless the  

research remains rather equivocal with Backx et al. (2016) suggesting there is little 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Clark%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=25973403
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difference between body mass reduction and lean mass change when comparing 

adequate (0.9 g.kg-1.day-1) and above adequate (1.7 g.kg-1.day-1) levels of protein 

intake. In addition small changes in macronutrient ratios (PRO: from 18 to 25 % and 

from 49 to 42 %) are reported to have little effect on total mass reduction (Lockard 

et al., 2015; Gardner, Offringa, Hartle, Kapphahn and Cherin, 2015). Based on the 

above research, a cautious approach to a hypocaloric intervention would require 

standardisation of macronutrient ratios to ensure limited changes pre, during and post 

intervention. Therefore a portion control strategy to reduce calorie intake but limit 

changes in macronutrient ratios would seem a rational option that would minimise 

food choice disruption, reduce RER fluctuation as a direct effect of macronutr ient 

proportions and arguably increase the sustainability of the intervention (Rolls, 2014).  

 

4.3.6 Free-living body mass rebound 

It could be argued that a research led approach to mass reduction utilising calorie 

restriction techniques that are often combined with some form of laboratory testing, 

is a rather artificial means of altering a participants dietary habits to manipulate body 

mass and composition. When research interventions are complete, it is logical to 

consider that in most cases physiological feedback mechanisms and pre-intervention 

eating and exercise habits will inevitably return the participant to the original body 

mass and composition. The notion that only 2 % of participants are able to maintain 

a reduced mass in the long-term (two years post intervention) was proposed by 

Stunkard and McLaren-Hume (1959, cited in Wing and Phelan, 2005). However 

with the clarification of the definition to mass maintenance requiring a > 10 % of 

intentional body mass reduction maintained one year post intervention, the value has 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Lockard%20B%5BAuthor%5D&cauthor=true&cauthor_uid=26554616
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since been increased to ~20 % of participants being able to maintain a reduced body 

mass (Wing and Phelan, 2005). Despite a substantial increase in the number of 

participants maintaining a reduced mass, a large proportion of the mass reduced 

during an intervention is frequently regained. The original hypothesis that humans 

maintain a preferred body mass and composition stemmed from observations that 

both animals and humans mass tend to return to pre-intervention values following 

the cessation of an intervention (Harris, 1990). This resulted in the development of 

the ‘set-point theory’ which suggests that an autonomic feedback mechanism, most 

likely hormone controlled aims to return body mass but more specifically fat mass 

to the pre-intervention state (Farias, Cuevas and Rodriguez, 2011). Considering that 

metabolic compensations and the set-point theory are reasonably widely accepted, 

few studies include follow-up mass changes. Sustained reductions in RMR have 

been described as long as 12 weeks following severe calorie restriction (Dulloo and 

Jacquet, 1998), however with a more sustainable moderate calorie restriction it is 

unlikely that the effects will have a similar longevity. Due to a lack of clarity on the 

rate of mass regain in an exercising population, follow-up testing will be conducted 

in this thesis to allow for the monitoring of the participants mass, composition and 

metabolism to assess if any potential changes in efficiency and performance are 

maintained. This allows for the attainment of an intervention to also be assessed on 

the longevity of the outcome, a factor that is often neglected.   

 

 

4.4 Cycling efficiency and calorie restriction  

Despite the potential for efficiency and performance gains, mass reduction has 

predominantly been studied for the purpose of improving health by reducing fat mass 
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to combat obesity and obesity related diseases (Washburn et al., 2014). Only a small 

number of studies have directly assessed the effect of body mass reduction on 

exercise energy expenditure, with fewer still calculating efficiency, as the majority  

of obesity led research has been guided by the notion that RMR is the predominantly  

effected component of TDEE (Apfelbaum, Bostsarron and Lacatis, 1971). To the 

authors knowledge only one study which has been heavily criticised using a 

professional cyclist has eluded to reductions in body mass overtime being attributed 

to an improvement in efficiency (Coyle, 2005). As a consequence of the ubiquitous 

obesity perspective, the existing calorie restriction research (Poole and Henson, 

1988; Amati et al., 2008) has focussed primarily on overweight and obese 

participants who infrequently exercise.  

Poole and Henson (1988) were one of the first to explore the effect of caloric 

restriction on gross and work efficiency. They reduced body mass by 5 % in 13 

moderately obese women (average 4 kg reduction) over three weeks with a LCD 

consisting of 800 kcal.day-1. Although they did not find a significant change in gross 

or work efficiency using four minute work stages on a cycle ergometer,  RMR when 

inferred from absolute V̇O2 was significantly reduced at rest and zero watt cycling, 

but not during resisted exercise. A later study by Rosenbaum et al., (2003) reduced 

body mass by 10 % (N = 30), which caused a significant 27 % relative improvement 

in net efficiency when cycling at 10 W and a nonsignificant 10 % relative change at 

50 W, while RMR remained reasonably unaffected. The effect of a 10 % mass gain 

was also explored albeit with less participants (N = 8), where a significant 20 % 

reduction in net efficiency was reported at 10 W and a 5 % reduction at 50W. 

Goldsmith et al., (2010) reported similar effects following both a 10 % increase and 

10 % decrease in body mass, with a 15 % improvement in net efficiency at 10 W 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Apfelbaum%20M%22%5BAuthor%5D
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with mass reduction and a 38 % decrease in efficiency at 10 W with mass gain. It 

was proposed that a mechanism active during very low intensity exercise was most 

likely responsible for the efficiency improvements, due to a narrowing of changes in 

efficiency values at the higher 50 W intensity. In an attempt to isolate if the 

mechanism was biomechanical or physiological, Rosenbaum et al., (2003) estimated 

the mass reduced from the lower limbs and added exogenous weights to the thighs 

of the 10 % mass reduction group. The results indicated that changes in lower 

extremity mass accounted for ~ 60 % of the changes in energy expenditure when 

cycling at 10 W and ~ 40 % at 50 W. Although there are inaccuracies with estimating 

the magnitude and distribution of mass change and the resultant magnitude and 

location of the exogenous mass; the findings suggest that a combination of both 

biomechanical and physiological mechanisms associated with exercising energy  

expenditure, were responsible for the efficiency improvements. This therefore puts 

into question the initial proposal that RMR is the dominant mechanism for reducing 

energy expenditure whilst exercising. In addition, Rosenbaum et al. (2003) provides 

support for the notion that the process of mass reduction (calorie restriction) may be 

a key influencing factor responsible for inducing changes in physiological 

mechanisms during exercise. Since Poole and Hensons’ (1988) and Rosenbaum’s 

(2003) publications it has been reported that at  least five minutes should  be allow ed  

for steady state V̇O2 and V̇CO2 to be achieved; rendering their calculations of 

efficiency potentially erroneous and unreliable as stab ility of V̇O2 and V̇CO2 is a 

pre-requisite for accurate efficiency calculations (Wasserman et al., 2005).  

To the author’s knowledge Amati et al., (2008) is the only paper that has investigated 

both the singular and combined effects of calorie restriction and exercise training on 

gross efficiency. Despite reporting a significant gross efficiency improvement in the 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Poole%20DC%22%5BAuthor%5D
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exercise (4.7 %) and combined group (9 %), they failed to find a significant 

improvement in the calorie restriction group (~ 4 %). The nonsignificant finding was 

likely due to a grouping bias where the calorie restriction group only represented 17 

% of the total sample size (N = 64). It is also noteworthy that the proportion of Type 

I muscle fibres decreased in both of the conditions with calorie restriction, and it was 

only in the exercise training group that a greater proportion of Type I muscle fibres 

were found albeit non-significantly. This suggests that gross efficiency could be 

significantly improved irrespective of the percentage of Type I muscle fibres, 

indicating that other key physiological mechanisms are likely responsible for the 

efficiency improvement. Further criticisms of the study concern; the absence of a 

control group, an alteration of macronutrient ratios in groups involving dietary  

intervention (< 30 % fat intake), insufficient dietary intake standardisation prior to 

testing and the magnitude of calorie deficit ranging from 500-1000 kcal.day-1.  

 

Currently, the research concerning the effect of body mass reduction through calorie 

restriction have ensured a period of mass stability prior to testing to limit the 

likelihood of increased protein oxidation. As a result the present findings are limited 

to conclusions concerning medium to long-term body mass reduction and not the 

direct effect of calorie restriction on efficiency. The above research has also used 

participants with low activity levels, with the majority being classified as sedentary . 

This has not only limited the scope of the investigations to low exercise intensities 

between 10-105 W (Rosenbaum et al., 2003 & Goldsmith et al., 2010); 10-50 W; 

Poole and Hensen 1988; 30-105 W and Amati et al., 2008; 20-75 W), but resulted in 

a wide range of efficiency values (7-19.0 %) allowing for the potential magnificat ion 

of relative efficiency changes. By using participants unaccustomed to cycling it is 
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difficult to control for the possibility of a learning or training effect during 

experimentation; although Amati et al., (2008) did attempt to overcome this by 

performing repeated tests pre- and post-intervention with some of their participants. 

As a result trained cyclists would reduce some of the unknown factors and increase 

the range of absolute power output, improving the application of calorie restriction 

studies to the changes in cycling efficiency research. Utilising trained cyclists would 

also allow for the valid exploration of the effect of any potential changes in efficiency  

on cycling performance, with an intervention not theorised to improve absolute 

power output, unlike numerous training studies.   

 

4.5 Performance implications  

Based on physiological principles of calorie restriction, reductions in absolute peak 

power and endurance performance are considered to be probable in the short-term 

(Perriello, 2001). In the short-term the three mechanisms believed responsible for a 

performance decrement are reduced muscle and liver glycogen stores, dehydration 

and a reduction in lean mass (Perriello, 2001). Reductions in lean mass in particular  

have been associated with an absolu te reduction in maximal power and V̇O2max 

(Weiss et al., 2007). It has also been noted that calorie restriction can slow the 

recovery process, hampering the possibility of performance gains during the training 

season and recovery after competition (Burke, Loucks and Broad, 2006). Reducing 

body mass during the competitive season is therefore not recommended due to these 

negative effects, but it is frequently noted that athletes find it difficult to maintain 

competitive body mass (O’Connor and Caterson, 2010). Weight cycling is a pract ice 

which allows athletes to reduce body mass during the competitive season, often 

involving several short periods of calorie restriction to achieve a desired body 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Weiss%20EP%5BAuthor%5D&cauthor=true&cauthor_uid=17095635
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mass/composition, that is usually combined with a short period of re-feeding prior 

to competition (Saarni, Rissanen, Sarna, Koskenvuo and Kaprio, 2006). Although 

the process of calorie restriction in the short-term is likely to have a negative effect 

on performance power; the medium-term effects often result in reduced total body 

mass, subcutaneous fat tissue, RMR and increased fat oxidation at higher absolute 

intensities (Rosenbaum et al., 2003). These beneficial effects could likely improve 

performance through a direct improvement in efficiency in a laboratory environment. 

Moreover in an outdoor field environment there is a greater potential to improve 

performance, due to improved biomechanical factors combining with physiological. 

Body mass reduction has the possibility to reduce; frontal area (albeit only very  

slightly), the force required to accelerate and decelerate the total mass (bike and 

rider) and the force required to maintain velocity up-hill (Kyle, 2003). This is 

supported by the research of Jobson et al. (2007) where body mass/size was 

attributed as the dominant variable that influenced TT performance in the field 

environment, when compared to stationary laboratory cycling. The collective term 

for the main biomechanical benefits, tend to be broadly summarized to an improved 

power-to-weight ratio (Garthe, 2011), which when combined with physiological 

factors could improve efficiency (Amati et al., 2008), thermoregulation and have a 

CHO sparing effect. The potential for performance gains are however, dependent on 

the rate of the initial calorie restriction to ensure minimal lean tissue loss (Garthe, 

Raastad and Sundgot-Borgen, 2011) and that prior to performance an isocaloric diet  

is consumed to ensure adequate glycogen storage and hydration (Perriello, 2001). 

Thus gradual and slow rates of mass reduction are recommended in athletic groups, 

particularly in the short-term as research assessing the long-term effects between 

slow and fast rate mass reduction show little differences in performance (O’Connor 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Jobson%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=17127577
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and Caterson, 2010). Despite a strong physiological basis to suggest certainly in the 

short-term calorie restriction would be disadvantageous to performance, currently  

there is little research to determine the magnitude of the effect of moderate calorie 

restriction in either the short- or medium-term on cycling efficiency and 

performance.   
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CHAPTER 5: Rationale, aims and objectives 

5.1 Rationale 

Cycling efficiency is considered a key determinant of performance (Ettema and 

Lorås, 2009; Gaesser and Brooks, 1975; Horowitz et al. 1994; Korff et al. 2007; 

Olds et al. 1995) based on the theory that a higher efficiency either allows for a 

reduction in total energy to achieve the same amount of work, thus conserving energy  

or allowing a higher work rate for the same amount of energy, resulting in an 

improved endurance capacity (Lucia et al. 2002). Efficiency has been argued to have 

a direct influence on the V̇O2 cost relative to power, (Joyner and Coyle, 2008) with 

efficiency likely able to explain ~30 % of the variation in performance power (Jobson 

et al., 2012). Despite this, efficiency has been underrepresented in comparison to the 

extensive research linking V̇O2max and lactate threshold parameters to performance. 

The performance models that include efficiency make little acknowledgement of the 

effect of race distance, with efficiency likely having a greater influence on 

performance in longer endurance events as the saving of energy or time is 

accumulative (Jobson et al., 2012). Jeukendrup et al. (2000) calculated that a 1 % 

improvement in efficiency over a 40 km cycling TT, would translate to a 63 second 

reduction in time. This is classed as a significant amount as Wiles et al., (2006) used 

2004 Olympic times to demonstrate that competitive races have been won by much 

smaller margins. Even though there is a strong theoretical link, few intervention 

studies demonstrating an improvement in efficiency have confirmed a performance 

improvement as a direct result of efficiency change. Jobson et al., (2012), reported 

that only two studies have attempted to determine a direct link with performance. 

Horowitz, Sidosis and Coyle (1994) approached the efficiency and performance link 
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by classifying the participant’s fibre type and separating participants based on a fibre 

Type I % above or below 56 %. They described that a greater proportion of Type I 

fibres resulted in both a higher average TT performance power along with a higher 

overall efficiency. Despite the seemingly symmetrical link between a higher power 

output and efficiency it does not provide conclusive evidence of an inherent link 

between the two variables, particularly  because of the known linear relationship  

between power and efficiency. More recently Passfield and Doust (2000) found a 

high positive correlation (r = 0.91) with the change in efficiency and change in 5 

minute sprint performance power following one hour of submaximal cycling (60 % 

Wmax). Although this finding indicates that efficiency and sprint performance are 

both affected by previous endurance performance, it does not necessarily provide 

evidence that they are intrinsically linked. One hour of cycling would have reduced 

carbohydrate stores (muscle and liver glycogen), which can have both a negat ive 

effect on sprint performance and efficiency through a greater reliance on FAT for 

fuel. Furthermore, as sprinting utilises a high proportion of the anaerobic energy  

pathway, it could be argued that the performance measure was not representative of 

endurance cycling. A more relevant performance measure based on its popularity at 

both an amateur and professional level, would be a 10 mile or 16.1 km self-paced 

TT. Endurance centred laboratory performance measures arguably provide the most 

logical and controlled method to quantify the link with efficiency. However, field 

performance would provide a more ecologically valid link albeit at a cost of reducing 

control over confounding variables (environmental [temperature, humidity, wind 

speed/direction and precipitation], cadence and terrain). Consequently , due to the 

potential positive outcomes of using both environments, this thesis has measured 
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both laboratory and field measures of cycling efficiency and performance in order to 

further explore the relationship.  

There is yet to be an investigation into the short- and medium-term effect of calorie 

restriction on trained cyclist’s efficiency. Due to the potential negative health and 

performance effects associated with large calorie deficits, a moderate calorie deficit  

to elicit a 500 kcal.day-1 (~20 %) reduction in daily intake was considered the most 

viable option, using portion control to ensure similar macronutrient ratios. A 

moderate calorie deficit over a short duration is likely to cause only small changes 

in body composition and so a sensitive and reliable measure of body composition 

was considered beneficial. Consequently prior to the prescription of a calorie deficit , 

the within- and between-day variability of body composition measures were also 

considered valuable. Additionally for the purpose of sample size estimations and the 

determination of the smallest worthwhile change, the variability of; RMR, 

efficiency, TT performance and blood parameters will also be established. An issue 

with exploring the acute effect of calorie restriction is the potential for there to be an 

increase in protein oxidation. Blood Urea Nitrogen (BUN) along with performance 

associated blood parameters will also be measured to establish a baseline and 

potential physiological insights, if changes in efficiency and performance occur.   

Laboratory efficiency is all too often assumed to link directly with field efficiency  

measures, despite differences in biomechanical and environmental variables. Hence 

this thesis will aim to explore if it  is possible to conduct efficiency measurement in 

an outdoo r environment and compare with laboratory based stationary cycling. 

Research into cycl ing efficiency literature also raised the issue that V̇O2max tends to  

be inversely related with cycling efficiency. Thus whilst collect in g this data the 
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interlinking relationship with V̇O2max, efficiency and performance, along with the 

hypothesis that lung volume could have an influential effect on cycling efficiency , 

will be explored in Chapter 11 where data across studies can be summed together 

to strengthen the data sample.  

 

5.1.1 Unpublished research 

Gross efficiency and tracked body mass change data recorded across two studies for 

the purpose of a doctoral thesis by Hopker (2009), were re-examined to determine if 

there was an observable change in efficiency when comparing the highest and lowest 

body mass trials. Duplicate entries from the studies were removed, leaving 32 unique 

male trained participants to be included in the retrospective analysis. The highest and 

lowest mass values were selected out of either five laboratory visits collected over 

the course of a year or out of three visits over the course of 12 weeks during a training 

intervention study. Efficiency was measured across a number of intensities starting 

from 150 W for a period of eight minutes, increasing by 30 W per stage until an RER 

> 1.0 was recorded. The average change in body mass, comparing the highest and 

lowest values (mean ± SD) resulted in a -1.06 ± 0.90 kg reduction. Individual 

changes are presented in Figure 5.1, with 21 participants having an improvement in 

efficiency and 11 having a reduction in efficiency. Gross efficiency changed from 

20.5 % to 21.4 % equating to a relative 4.39 % significant improvement (P < .01) 

(averaged across all viable workloads). This change is similar to the ~ 4 % 

improvement in efficiency as a result of calorie restriction reported by Amati et al. 

(2008), and explains a large proportion of the relative 5.1 % improvement in 

efficiency across a competitive cycling season (Hopker, 2009). The retrospect ive 
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analysis did however fail to show a significant relationship between body mass and 

efficiency change (r = 0.185, P > .05). Due to the original research purpose, training 

variability present across a competitive cycling season and across an intervention 

study are likely to have confounded the relationship between body mass and 

efficiency. It has also been previously discussed that the magnitude, method and 

duration of energy deficit has implications for both body composition and 

homeostatic control mechanisms. It is therefore unknown if the participants mass 

reduced gradually or in the immediate period prior to testing and if training 

variability was responsible for the reduction in mass. It is important to note that the 

vast majority of the participants during testing were considered mass stable, with the 

average mass change below 1 kg. This suggests that there is a potential to increase 

the magnitude of body mass change if directly targeted that could cause a great er 

efficiency change. Consequently, the question remains as to whether efficiency can 

be improved as a direct result of dietary manipulation utilising calorie restriction to 

induce body mass reduction in participants accustomed to cycling.  



79 
 

 

Figure 5.1 Individual body mass change in relation to gross efficiency change, 

utilising the highest and lowest body mass measured over the course of testing. 

Note:   = improved efficiency,  = reduced efficiency.  

 

 

5.2 Aims 

 

 To establish the variability of the key variables; energy expenditure, body 

composition and TT performance.   

 

 To explore the effect of short- and medium-term body mass reduction on 

cycling efficiency in participants accustomed to cycling.   

 

 To investigate the link between cycling efficiency and performance in both a 

laboratory and field environment.  
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5.3 Objectives 

 

 Within-day variability of air displacement plethysmography will be 

compared to skinfold measurement.  

 

 Between-day variability will be assessed three times over three weeks in; 

gross, net efficiency, RMR, TT performance power, venous blood analysis, 

body mass and composition, while participants are mass stable.  

 

 Short-term body mass reduction will utilise a randomised crossover design 

with two weeks of calorie restriction aiming for a 500 kcal.day-1 deficit, using 

portion control to investigate the effect on cycling efficiency, performance 

and body composition.   

 

 Laboratory and field efficiency will be measured in a randomised order at an 

absolute, relative and performance intensity, comparing stationary laboratory  

cycling with free cycling on a closed road circuit.  

 

 Medium-term body mass reduction will utilise a six week dietary 

intervention period followed be a six week follow-up period with a control 

group. Field performance will also be measured pre and post intervention in 

a selection of participants.   
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CHAPTER 6: GENERAL METHODS 

 

This chapter will outline the general methods that were applied to all data collect ion 

following formal approval from Canterbury Christ Church University Ethics 

Committee. All laboratory practices and protocols were in accordance with the 

British Association of Sport and Exercise Sciences (BASES) guidelines and 

Canterbury Christ Church sport science Laboratory procedures.  

 

6.1 Participant recruitment 

Participants were recruited via e-mail from local cycling clubs and face to face 

recruitment at cycling club meetings. 

Participant criteria: 

- Male cyclists aged between 18-60 years.  

- Have been cycling regularly for at least two years.   

- Have had no interruption to their training within the past six months due to 

injury.  

- Have verbally confirmed that they were weight stable for the last three 

months.  

- Have no medical condition that will impair their ability to perform all tests.  

- Must not be diagnosed with metabolic syndrome.  

- Must not be taking any medication.  

- Must be a non-smoker. 

- Must not be using any performance enhancing substances or be willing to 

suspend their consumption for the duration of testing. 
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Participants accepted onto a calorie restriction intervention required a minimum 

estimated body fat of ≥18 %, determined by skinfold analysis.  This ensured that on 

completion of the research that participants in a calorie restriction study or group  

would have a minimum of 16 % body fat, which is within the body fat range of 8-

21% described by Whaley, et al., (2006) as having normal health risks. This was set 

to ensure ethical approval and therefore limits the findings to cyclists within a close 

range of 18 % body fat and above.  

The study design and testing protocol were e-mailed prior to the participant 

provisionally agreeing to take part in a study and their first visit (Appendix 2). The 

protocol was then explained and discussed with the participant including the 

potential risks, benefits and notified that they could withdraw at any time before they 

filled out a health questionnaire and signed an informed consent (Appendix 3 and 

Appendix 4 respectively).  

 

6.2 Pre-testing controls 

Prior to each visit participants were asked to refrain from strenuous exercise for 48 

hours, caffeine for 24 hours and to arrive in a fully rested and hydrated state (Pringle 

and Jones, 2002; Jenkins et al., 2008).  

 

6.2.1 Dietary 

Before testing participants completed a 72 hour food diary, either hand written 

(Appendix 5) or on a free electronic nutrition and activity package (MyFitnessPal, 

2015). Macronutrients in grams were converted to kilocalories (kcal) using the 

following conversion: CHO = 3.75 kcal/g, FAT = 9 kcal/g, PRO = 4 kcal/g (Collins, 
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Hunking and Stear, 2011). To date MyFitnessPal has not specifically been validated 

against traditional dietary software (Jospe, Fairbairn, Green, and Perry, 2015). A 

similar online software has been compared to 24 hour dietary recall and reported 

only small mean differences in kcal intake (16 and 105 kcal.day-1) across two sample 

days with 50 participants, although some individual differences were present (Carter, 

Burley, Nykjaer and Cade, 2013). MyFitnessPal (2015) is also the most frequently  

used dietary online based software reported to be currently used by 32.4% of 

dieticians surveyed that monitor the dietary intake of athletes (Jospe, Fairbairn, 

Green, and Perry, 2015). MyFitnessPal (2015) was used above more traditional 

software as it benefits from increased accessibility via a mobile phone application, 

allowed for real time monitoring and has the largest food database (> 5 million foods) 

compared to Nutritics (2016, > 10,000 foods) and CompEat (2016, > 6000 foods), 

increasing the the accuracy when determining calorific content between different 

brands. Furthermore mobile diet applications have been demonstrated to increase 

engagement verses written food diaries and web based records (Turner-McGrievy et 

al., 2013). To ascertain validity, 50 separate foods (equivalent to ~ 12000 kcals) were 

analysed based on 100g of each food with Myfitnesspal (2016) and Nutritics (2016) 

software. Limits of agreement compared the databases kcals, grams of carbohydrate, 

protein and fat. The error for the total kcals between online databases was 0.012 % 

and the limits of agreement were 0.365 % (P > .05), the carbohydrate and fat in 

grams were comparable (P > .05). Protein in grams was significantly lower with 

Myfitnesspal (P < .05) but equated to 0.75 g difference per 100 g or 3 kcals, which 

is considered a very small margin.  

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Carter%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=22717334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Carter%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=22717334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Burley%20VJ%5BAuthor%5D&cauthor=true&cauthor_uid=22717334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Burley%20VJ%5BAuthor%5D&cauthor=true&cauthor_uid=22717334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cade%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=22717334
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6.2.2 Training 

Training sessions were predominantly recorded with electronic software packages; 

Garmin Connect (2015), STRAVA (2015) and Training Peaks (Peaksware, 2015) or 

were recorded with a written activity diary when preferred (Appendix 6). Data was 

collated in weekly segments to assess differences in distance (km), time (mins), 

speed (km.h-1) and elevation (m). This data was collected during testing phases and 

where possible in the six weeks preceding the participant’s commencement of the 

study. Participants were instructed to replicate their exercise and nutrition as closely  

as possible before each subsequent trial. Particular emphasis was given to ensure 

participants consume the same meal two hours prior to testing.  

 

6.3 Environmental conditions 

The conditions within the laboratory and field environment were recorded prior to 

all testing. Temperature was controlled in the laboratory with an air conditioning 

unit, while humidity and barometric pressure were recorded (Testo 625, Germany ; 

F.D. & Co. Ltd. Watford, UK). In the field environment temperature, humidity and 

barometric pressure were recorded immediately prior to testing with data from a local 

weather station providing within test conditions (World Weather Online, 2015). See 

individual study methodology for mean ± SD of the environmental conditions.   

 

6.4 Body mass and stature 

Free standing height was measured using a fixed stadiometer with a resolution of 

0.001 m (Seca 220, Hamburg, Germany) with feet together, heels and upper part of 
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the back touching the back plate and head placed in the frontal plane (Norton et al., 

2000). Participants was asked to void their bladder prior to body mass measurement 

using balance beam scales with a resolution of 0.01 kg (Seca, 761, Hamburg, 

Germany). 

 

6.5 Lung volume and function 

Vital capacity (VC) in litres and forced expiratory lung volume (FEV1) in litres over 

one second were measured using an open-circuit mechanical spirometer 

(Vitalograph Ltd, Maids Morton, UK). Participants wore a nose clip and conducted 

a familiarisation test before they were asked to exhale maximally, the tests was 

repeated three times and the highest VC and FEV1 values were selected (Quarijer, 

Tammeling, Cotes, Pedersen, Peslin and Yernault, 1993).  

% ܸܧܨ = .ܸܧܨ  ଵ−ݏ  ሺܮሻܸܥሺܮሻ  

 

Equation 10. FEV % (Alison, 2007). Where: FEV, forced experiatory volume and 

VC, vital capacity.  

 

 
 
6.6 Body composition 

Body density was assessed with two indirect measurement techniques that both use 

a two compartment model; lean mass and FFM.  

 

 

 



86 
 

6.6.1 Air-displacement plethysmography 

The air-displacement plethysmography device (BOD POD, life Measurement, Inc, 

Concord, CA) was calibrated with 20 kg weights and a standardised calibrat ion 

cylinder (50.039 L) prior to every test. Participant’s age (yrs) and height (cm) were 

entered into the control panel and weighed using the supplied scales. All participants 

wore standardised Lycra swimming shorts and a swimming cap. Body volume (cm3) 

was calculated three times and an average was taken to determine body density 

(g.cm3).  

=ሻܮሺ ݁݉ݑ݈݋ܸ ݕ݀݋ܤ ݁݉ݑ݈݋ݒ ݕ݀݋ܾ ݀݁ݎݑݏܽ݁ܯ − +ݐ݂ܿܽ�ݐݎܽ ܽ݁ݎܽ ݂݁ܿܽݎݑݏ ͶͲ % ܸܶܩ 

Equation 11. Bod pod body volume (Dempster & Aitkens, 1995). Where: TGV, 

Thoracic Gas Volume.  

 

ሺ ݕݐ�ݏ݊݁݀ ݕ݀݋ܤ .݃ܿ݉ଷ ሻ = ሺܿ݉ଷ ݁݉ݑ݈݋ሺ݃ሻܸ ݏݏܽܯ  ሻ 

Equation 12. Body density (Siri, 1956).  

 

6.6.2 Skinfold measurement 

Ten skinfold sites were identified and measured; Bicep, Tricep, Subscapular, 

Surprailiac, Suprapinale, Abdominal, mid-Axillary, Chest, Thigh and medial Calf 

(Norton et al., 2000; Knechtle, Knechtle and Rosemann, 2011). All sites were 

marked with a cross, with measurements taken by using the thumb and index finger 

perpendicular to the skinfold site halfway between the crest and base of the fold 

(Whaley et al., 2006). The skinfold callipers (Harpenden Skinfold Callipers, Baty 
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International, West Sussex, UK) were applied 10 mm inferior to the centre of the 

cross and recorded after two seconds with dial graduation of 0.2 mm and 

compressibility of 10 gms/mm2. All measurements were taken on the right side of 

the participants by myself, a trained Level 1 Anthropometrist (International Society  

for the Advancement of Kinanthropometry, [ISAK]) (except for study 1 [Chapter 

6] which was conducted post training but prior to accreditation). Each site was taken 

in rotation and then repeated, if the second measurement differed more than ± 5 % a 

third measure was taken. An average was used for two measures and a median if 

three measures were recorded. The age of the participant at the beginning of the study 

dictated the equation used throughout.  

ݕݐ�ݏ݊݁݀ ݕ݀݋ܤ  = ͳ.ͳͲͻ͵ͺ − ሺͲ.ͲͲͲͺʹ͸͹ ×  Σ ܥℎ݁ݐݏ, ,݈ܽ݊�݉݋ܾ݀ܣ ܶℎ�݃ℎሻ + {Ͳ.ͲͲͲͲͲͳ͸ × ሺΣ ܥℎ݁ݐݏ, ,݈ܽ݊�݉݋ܾ݀ܣ ܶℎ�݃ℎሻଶ} − ሺͲ.ͲͲͲʹͷ͹Ͷ × ܽ݃݁ሻ 

Equation 13. Equation to calculate body density using three skinfold sites for 

males aged 18-61 (yrs) (Jackson & Pollock, 1978).  

 

ݕݐ�ݏ݊݁݀ ݕ݀݋ܤ = ͳ.ͳͳʹ − ሺͲ.ͲͲͲͶ͵Ͷͻͻ ×  Σ skinfoldsሻ +  {Ͳ.ͲͲͲͲͲͲͷͷ × ሺΣ ݏ݈݀݋݂݊�݇ݏሻଶ}  −  ሺͲ.ͲͲͲʹͺͺʹ͸ × ܽ݃݁ሻ 
Equation 14. Equation to calculate body density using seven skinfold sites for 

males aged 18-61 (yrs) (Jackson & Pollock, 1978). Note: Where the sum of the 

skinfolds are; Chest, mid-Axillary, Tricep, Subscapular, Abdominal, Suprailiac and 

Thigh.  
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Age (yrs):   

ݕݐ�ݏ݊݁݀ ݕ݀݋ܤ    :17-19 = ͳ.ͳ͸ʹͲ −  ሺͲ.Ͳ͸͵Ͳ ×  ሻݏ݈݀݋݂݊�݇ݏ Σ ܩܱܮ
ݕݐ�ݏ݊݁݀ ݕ݀݋ܤ   :20-29 = ͳ.ͳ͸͵ͳ −  ሺͲ.Ͳ͸͵ʹ ×  ሻݏ݈݀݋݂݊�݇ݏ Σ ܩܱܮ
ݕݐ�ݏ݊݁݀ ݕ݀݋ܤ   :30-39 = ͳ.ͳͶʹʹ −  ሺͲ.ͲͷͶͶ ×  ሻݏ݈݀݋݂݊�݇ݏ Σ ܩܱܮ
ݕݐ�ݏ݊݁݀ ݕ݀݋ܤ   :40-49 = ͳ.ͳͶʹʹ −  ሺͲ.ͲͷͶͶ ×  ሻݏ݈݀݋݂݊�݇ݏ Σ ܩܱܮ
ݕݐ�ݏ݊݁݀ ݕ݀݋ܤ   :50≤ = ͳ.ͳ͹ͳͷ −  ሺͲ.Ͳ͹͹ͻ ×  ሻݏ݈݀݋݂݊�݇ݏ Σ ܩܱܮ

 

Equation 15. Age dependent equations to calculate body density with four skinfold 

sites for males (Durnin and Womersley, 1974). Note: Where the sum of the 

skinfolds are; Bicep, Tricep, Subscapular and Suprailiac.  

 

 

6.6.3 Densitometry 

Densitometry is the process of using body density to derive body composition as a 

percentage of body fat. The Siri (1956) equation was used to convert body density 

from both skinfold and air-displacement plethysmography measurements into an 

estimated body fat %.  

% ݐ݂ܽ ݕ݀݋ܤ =  ( Ͷ.ͻͷ݀݁݊ݕݐ�ݏ  − Ͷ.ͷͲ)  × ͳͲͲ 

Equation 16. Densitometry (Siri, 1956) 
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6.7 Respiratory gases  

Two breath-by-breath indirect calorimetry devices were used; an Oxycon Pro 

(Jäeger, Carefusion, Hoechberg, Germany) which is a laboratory based metabolic 

cart system and an Oxycon Mobile, a portable version consisting of two small 

modules (Jäeger, Carefusion, Hoechberg, Germany). Both devices provided 

measurement of oxygen uptake (V̇O2, L.min-1), carbon dioxide production (V̇CO2, 

L.min-1) and respiratory exchange ratio (RER). Calibration procedures were similar 

with devices having a minimum warm-up period of 30 minutes, with temperature, 

humidity and barometric pressure manually input to the software package. The main 

difference between the two devices is the Oxycon Pro uses the paramagnetic 

principle and infrared absorption method for V̇O2 and V̇CO2 measurement 

respectively, whereas the Oxycon Mobile uses an electrochemical cell for V̇O2 and 

thermal conductivity for V̇CO2 (Diaz et al., 2008). The devices were calibrated with 

certified calibration gas mixtures (Oxycon Pro: 5 % CO2, 14 % O2 and 81 % N2, 

Oxycon Mobile: 5 % CO2, 16 % O2 and 79 % N2). Both devices measure volume 

with the same tripleV, turbine set-up and were calibrated with a three litre syringe 

(Carefusion, Hoechberg, Germany). The facemask was connected to the skin of the 

participant with head gear and it was verified that there was no leakage of air. The 

Oxycon Mobile modules were attached with the supplied harness on the back of the 

participants with live data being transmitted telemetrically while simultaneously  

recording data on to a memory card (see Appendix 7 for laboratory set-up). All data 

was recorded breath-by-breath and averaged over 10 second intervals. The Oxycon 

Pro has been previously validated against the gold standard Douglas bag method 

(Rietjens, Kuipers, Kester and Keizer, 2001; Carter and Jeukendrup, 2002). The 

Oxycon Mobile has also been validated against the Douglas bag method (Rosdahl, 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Rosdahl%20H%5BAuthor%5D&cauthor=true&cauthor_uid=20043228
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Gullstrand, Salier-Eriksson, Johansson and Schantz, 2010) as well as against the 

Oxycon Pro, with V̇O2 and V̇CO2 reported to be similar during steady state exercise 

(Perret and Mueller, 2006). Interclass correlations of ~0.8-0.9 have been reported 

when comparing between devices, with no significant differences reported 

(Akkermans et al., 2012). 

 

6.8 Resting metabolic rate 

Resting metabolic rate (joules.sec-1) was assessed with the participants in a quiet 

thermo-neutral environment on a massage table in the supine position. A face mask 

was used to collect breath-by-breath data with indirect calorimetry measurement. 

The face mask has been shown to be more comfortable and precise at measuring 

RMR (r = 0.992) than a mouthpiece (r = 0.977) when compared to the ventilated 

hood attachment (Sega, 1987). The initial duration was for 30 minutes during study 

1 (Chapter 7) and 2 (Chapter 8) but was reduced to 20 minutes for study 4 

(Chapter 10). Resting metabolic rate was determined by the average V̇O2 and V̇CO2 

values between minutes 10-20 and was also used for the purpose of net efficiency  

calculation. The equation used to derive energy expenditure was established from an 

updated non-protein equivalent table presented in Péronnet and Massicotte (1991). 

This equation was used over the Lusk tables (1924 & 1928) and Brouwer (1975) 

(cited in Moseley and Jeukendrup, 2001) calculations as it was the most current, 

provided greater divisions between the increments and is used in recent efficiency  

research (Hopker, 2013).  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Gullstrand%20L%5BAuthor%5D&cauthor=true&cauthor_uid=20043228
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gullstrand%20L%5BAuthor%5D&cauthor=true&cauthor_uid=20043228
http://www.ncbi.nlm.nih.gov/pubmed/?term=Johansson%20P%5BAuthor%5D&cauthor=true&cauthor_uid=20043228
http://www.ncbi.nlm.nih.gov/pubmed/?term=Johansson%20P%5BAuthor%5D&cauthor=true&cauthor_uid=20043228
javascript:__doLinkPostBack('','ss~~AR%20%22Moseley,%20L.%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','ss~~AR%20%22Jeukendrup,%20A.E.%22%7C%7Csl~~rl','');
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=s−ଵሻ.ܬ ሺ ݁ݎݑݐ�݀݊݁݌ݔܧ ݕ݃ݎ݁݊ܧ  {ͳ.ͳͷ͸ × (ܸ̇COଶ ÷  ܸ̇Oଶ) + Ͷ.Ͳ͵͹} × {ܸ̇Oଶ × ሺͶ.ͳͺ͸ ÷ ͸Ͳሻ} × ͳͲͲͲ  
Equation 17. Energy expenditure equation (Péronnet and Massicotte, 1991). 

Where V̇CO2 = carbon dioxide output and V̇O2 = oxygen uptake.  

 

6.9 Power measurement 

6.9.1 Laboratory 

All laboratory tests were conducted on an SRM cycle ergometer (Schoberer Rad 

Messtechnik, Welldorf, Germany) that was calibrated according to manufacturer’s 

instructions and fitted with the participant’s clipless pedals. On the first visit of every  

study the participants’ road bicycle was measured (Figure 6.1), applied to the 

ergometer and recorded for future testing. Zero power offsets were reset immediately  

prior to testing. Power output (Watts) was recorded in 1 second intervals and 

averaged over one minute. The accuracy of the scientific eight strain gauge SRM 

ergometer is reported by the manufacturer to be 0.5 % (Gardner et al., 2004), but 

experimentally reported to have an error of 2.36 % (Martin, Milliken, Cobb, 

McFadden and Coggan, 1998). This has been validated and considered acceptable 

(< 5 %) against the gold standard Monark Ergometer (Jones and Passfield, 1998).  
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Figure 6.1 The location of the road bicycle measurements. A = Top of seat to pedal 

centre in 6 o’clock position. B = Middle of saddle in line with seat post to centre of 

handlebars (tops). C = Centre of handlebars to floor. D = Crank centre to floor.  

 

6.9.2 Field 

An eight-strain-gauge rear wheel PowerTap device (PowerTap Pro, CycleOps, 

Madison, USA), and display computer (Joules, CycleOps, Madison, USA) were 

fitted to the participants road bicycle prior to field testing. Tyre pressures were 

standardised to 120 psi with a track pump (Joe Blow Sport, Topeak Inc., USA) 

(Grappe, Candau, Barbier, Hoffman, Belli, Rouillon, 1999) and power offsets were 

zeroed by freewheeling prior to testing. The PowerTap wheel has been reported to 

read systematically higher powers by 2.7 % when compared to the SRM ergomet er 

cranks in field conditions (Bertucci et al., 2005). Nevertheless, Duc, Villerius, 

Bertucci, Grappe (2007) determined that the PowerTap device was valid, due to the 

over estimation being systematic and a CV of 2.5 % reported during steady-state 

cycling verses 2.4 % with SRM cranks. To correct for the differences between the 

devices, power output recorded with the PowerTap wheel was reduced by 2.7 % prior 
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to efficiency and economy calculations. This correction was also in accordance with 

simultaneous SRM and PowerTap measurement using a road bicycle on a treadmill 

in the laboratory (see Appendix 8).  

 

6.10 Heart rate 

A heart rate monitor (Polar Wearlink, Polar Electro Oy, Kempele, Finland) that was 

moistened prior to fitting was worn around the chest throughout testing. Rest ing 

heart rate (HRR, beats.min-1), exercising heart rate (HRE, beats.min-1) and maximal 

heart rate (HRmax, beats.min-1) were downloaded in one second data and averaged 

over one minute. 

 

6.11 Maximal testing 

An incremental exercise test to volitional fatigue was performed to determine the 

highest Wmax and maximal oxygen uptake (V̇O2max) averaged over one minute. Two 

of the following three criteria had to be met for it to be determined that the participant 

reached V̇O2max. 1) The highest heart rate averaged over a minute within ±2 

beats·min-1 of the age-calculated theoretical maximal heart rate, determined as 220 

minus age. 2) RER ≥ 1.1. 3) A visible plateau in the participants V̇O2 (increase < .05 

L.min-1) in the last 30 seconds of the test. The protocol began at 150 W for 5 minutes 

and increased by 5 W every 15 s until a cadence > 60 (rev.min-1) could no longer be 

maintained despite standardised verbal encouragement (Cole, Coleman, Hopker, 

Wiles, 2014). Participants were allowed to select their preferred cadence, had the use 

of a fan which was set at a standardised speed (Woods air movement Ltd, Colchester, 

UK) and were instructed to remain seated throughout. Incremental exercise testing 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Cole%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24022570
http://www.ncbi.nlm.nih.gov/pubmed/?term=Coleman%20D%5BAuthor%5D&cauthor=true&cauthor_uid=24022570
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hopker%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24022570
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has been shown to be a sensitive and reliable measure of Wmax due to a within 

participant coefficient of variation of just 1.32 % and an interclass correlat ion 

coefficient of 0.99 (Balmer, Davison and Bird 2000).   

 

6.12 Blood sampling 

All blood samples were taken during a standardised five minute recovery period after 

steady-state efficiency and prior to time-trial commencement. Finger prick samples 

were only collected on laboratory testing days when efficiency and performance 

were measured. The skin was prepared with an alcohol swab to ensure that the 

sample was not contaminated and to reduce the risk of infection. Once the alcohol 

had evaporated a single-use disposable lancet (accu-Check, Safe T Plus, Roche, UK) 

was used to bring blood to the surface. The first drop of blood was always discarded 

and a 75 μl sample of blood collected in a capillary tube (Micro-Haematocrit Tubes, 

Brand, Wertheim and Germany). The sample was immediately syringed into a 

single-use disposable cartridge (EC8+, Abbott, Illinois, USA) and placed in a 

portable clinical analyser (PCA) (i-STAT, Portable 200, Abbott, Illinois, USA). 

Following the insertion of the cartridge a calibration solution is immediately released 

and the cartridge biosensors monitored throughout the process of rehydration, 

calibration and analysis. In the event that a response falls outside of the 

predetermined limits the software excludes the outcome from the specific biomarker 

(Jacobs, Vadasdi, Sarkozi and Colman, 1993). The PCA provided instantaneous 

measurement (150 sec) of the participants: sodium (Na+), potassium (K+), chloride 

(Cl-), total carbon dioxide (TCO2), blood urea nitrogen (BUN), glucose (Glu), 

haematocrit (Hct), acidity (pH), partial pressure of carbon dioxide (PCO2) and 

Haemoglobin (Hb). The PCA was tested against strict national quality standard, 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Balmer%20J%5BAuthor%5D&cauthor=true&cauthor_uid=10949016
http://www.ncbi.nlm.nih.gov/pubmed/?term=Balmer%20J%5BAuthor%5D&cauthor=true&cauthor_uid=10949016
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bird%20SR%5BAuthor%5D&cauthor=true&cauthor_uid=10949016
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jacobs%20E%5BAuthor%5D&cauthor=true&cauthor_uid=8504539
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jacobs%20E%5BAuthor%5D&cauthor=true&cauthor_uid=8504539
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sarkozi%20L%5BAuthor%5D&cauthor=true&cauthor_uid=8504539
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requiring test results to be within 95 % confidence intervals compared to 

conventional laboratory tests. Na+, K+ and PCO2 were within national standard and 

although pH, Hb and Hct were outside of the criteria, the differences were so minor 

that they were less than that which was considered clinically significant (Schneider, 

Dudziak, Westphal and Vettermann, 1997). Total dissolved carbon dioxide, Cl-, 

BUN and Glu had correlation values between 0.98-0.92 and were also reported to be 

reliable when compared with standard laboratory testing (Dascombe, Reaburn, 

Sirotic, Coutts and 2007; Baier et al., 2003). These markers were used to provide a 

more comprehensive description as to the participant’s physiological state 

immediately prior to a time-trial as well as further explore the physiological effect 

of the interventions.  

 

6.13 Laboratory efficiency measurement  

For accurate and valid efficiency measurement the exercise intensity must be 

constant to elicit steady-state energy expenditure while respiring with a respiratory  

exchange ratio (RER) ≤ 1.00 (de Koning, Noordhof, Uitslag, Galiart, Dodge, Foster, 

2013). Therefore, participants cycled on the SRM ergometer with pre-defined 

submaximal absolute and relative exercise intensities; 150 W, 50 % and 60 % Wmax 

for eight minutes respectively in study 1 and 2, with the 50 % intensity being omitted 

for study 3 and 4 (Hopker et al., 2013). V̇O2, V̇CO2, and power (W) were averaged 

from the last two minutes of each stage. Energy expenditure and efficiency were 

calculated using Equation 3, 4 and 17.  

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Schneider%20J%5BAuthor%5D&cauthor=true&cauthor_uid=9382209
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schneider%20J%5BAuthor%5D&cauthor=true&cauthor_uid=9382209
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dudziak%20R%5BAuthor%5D&cauthor=true&cauthor_uid=9382209
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dudziak%20R%5BAuthor%5D&cauthor=true&cauthor_uid=9382209
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vettermann%20J%5BAuthor%5D&cauthor=true&cauthor_uid=9382209
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dascombe%20BJ%5BAuthor%5D&cauthor=true&cauthor_uid=16846754
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dascombe%20BJ%5BAuthor%5D&cauthor=true&cauthor_uid=16846754
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sirotic%20AC%5BAuthor%5D&cauthor=true&cauthor_uid=16846754
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sirotic%20AC%5BAuthor%5D&cauthor=true&cauthor_uid=16846754
http://www.ncbi.nlm.nih.gov/pubmed/?term=Baier%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=12795669
http://www.ncbi.nlm.nih.gov/pubmed?term=de%20Koning%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=23006833
http://www.ncbi.nlm.nih.gov/pubmed?term=de%20Koning%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=23006833
http://www.ncbi.nlm.nih.gov/pubmed?term=Uitslag%20TP%5BAuthor%5D&cauthor=true&cauthor_uid=23006833
http://www.ncbi.nlm.nih.gov/pubmed?term=Uitslag%20TP%5BAuthor%5D&cauthor=true&cauthor_uid=23006833
http://www.ncbi.nlm.nih.gov/pubmed?term=Dodge%20C%5BAuthor%5D&cauthor=true&cauthor_uid=23006833
http://www.ncbi.nlm.nih.gov/pubmed?term=Foster%20C%5BAuthor%5D&cauthor=true&cauthor_uid=23006833
http://www.ncbi.nlm.nih.gov/pubmed?term=Foster%20C%5BAuthor%5D&cauthor=true&cauthor_uid=23006833
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6.14 Laboratory time-trial testing: 

Time-trial (TT) testing, defined as a closed-loop exercise, is considered a highly  

reproducible exercise test that reflects a more realistic scenario of competition 

compared with time-to-exhaustion testing (Correia-Oliveira, Bertuzzi, Dal'Molin 

Kiss and Lima-Silva, 2013). Simulated laboratory based 16.1 km TT’s were 

conducted following efficiency and blood sampling. A familiarisation TT was 

conducted prior to performance measurement as recommended by Zavorsky et al., 

(2007) to reduce variability between the first and subsequent trials. Participants 

began the 16.1 km self-paced TT on the SRM ergometer in free test mode and 

specified; a rolling start, data-restriction (only distance (m) visible) and were 

instructed to remain seated. Conducting TT’s in the laboratory allowed for the 

assessment of mean power (Wmean) and the calculation of cycling economy (CE) by 

averaging power output and V̇O2 over the entire TT. Mean power during repeated 

laboratory based TT’s have been reported to be a consistent measure of performance 

(CV = 1.9 - 2.1%) (Sporer and McKenzie 2007).  

 

ሺܹ ݕ݉݋݊݋ܿ݁ ݃݊�݈ܿݕܥ .ଶ−ଵܱܮ. ݉�݊−ଵሻ =  ቆܹ݁ݐܽݎ ݇ݎ݋ ሺܹ .݉�݊−ଵሻܸܱ̇ଶ ሺܮ.݉�݊−ଵሻ ቇ 

Equation 18. Cycling economy (Faria et al., 2005). Where; V̇O2 represents 

oxygen uptake.  

 

6.15 Field testing 

Field tests were conducted with permission at Fowlmead Country Park, Deal, Kent, 

14 meters above mean sea level on a 1.359 km closed-road circuit measured with a 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Correia-Oliveira%20CR%5BAuthor%5D&cauthor=true&cauthor_uid=23657935
http://www.ncbi.nlm.nih.gov/pubmed/?term=Correia-Oliveira%20CR%5BAuthor%5D&cauthor=true&cauthor_uid=23657935
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dal%27Molin%20Kiss%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=23657935
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dal%27Molin%20Kiss%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=23657935
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lima-Silva%20AE%5BAuthor%5D&cauthor=true&cauthor_uid=23657935
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zavorsky%20GS%5BAuthor%5D&cauthor=true&cauthor_uid=17455116
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sporer%20BC%5BAuthor%5D&cauthor=true&cauthor_uid=17497571
http://www.ncbi.nlm.nih.gov/pubmed/?term=McKenzie%20DC%5BAuthor%5D&cauthor=true&cauthor_uid=17497571
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counter measuring wheel on the racing line (Stanley, Berkshire, UK) and ridden in a 

clockwise direction (see Figure 6.2 for a graph depicting changes in altitude over 

the course of a lap). The participant’s road bicycle was fitted with a rear wheel power 

device (PowerTap Pro, CycleOps, Madison, USA) and display computer (Joule GPS 

Promotion, CycleOps PowerTap, Madison, USA). Both tyre pressures were 

standardised (120 psi) (Grappe et al., 1999) and power offsets zeroed. Following a 

30 minute equipment warm-up period with an external power supply (Portable 

Power Station, 12v, Streetwize, Manchester, UK) the Oxycon Mobile was calibrated 

in the same manner as the laboratory tests immediately prior to testing. The facemask 

was attached with headgear, analyser placed in a harness with both modules rest ing 

on the back of the participant and cycling helmet secured (see Appendix 9). 

Participants were previously familiarised with the circuit and completed three laps 

self-regulating power at 150 W and three laps at 60 % Wmax. Following a five minute 

rest period the participants began the TT with a rolling start and completed 16.1 km 

(11.85 laps) as fast as they could with time, power and speed data obscured. The start  

and finish lines were indicated with cones and a manual lap counter indicated the 

number of laps left (Canterbury Christ Church University, in house, UK). 

Participants were instructed to remain seated throughout the TT. Efficiency and 

economy sampling were conducted with the same criteria as the laboratory testing.  
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Figure 6.2 The altitude of a single lap on the closed-road circuit relative to mean 

sea level. 

 

6.16 Data analysis  

Descriptive and analytical statistics were calculated using Excel (Microsoft, version 

15.0.4737.1003), SPSS (IBM, version 22) and graph pad prism (version 5.0). All 

data are reported as mean and standard deviation (SD) unless otherwise stated and 

the Shapiro-Wilk test assessed normality. An alpha level of significance for all tests 

was set at 95% (P ≤ 0.05).  
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CHAPTER 7: VARIABILITY OF BODY COMPOSITION ASSESSME NT, 
BLOOD PARAMETERS, ENERGY EXPENDITURE AND TIME-TRIAL 

PERFORMANCE. 

 

7.1 Introduction 

 

Establishing the reliability of measurement is pivotal in the determination of 

appropriate assessments in sport and exercise science.  In the context of this thesis , 

the generation of reliability data can also help to inform study design and ultimately  

enhance the interpretation of study results in the drawing of conclusions from data. 

There are a number of sources of variability in measurements that need to be 

considered by the researcher in the context of this current work 1) mechanical error, 

2) biological error and 3) experimenter/tester error.  Although sometimes difficult to 

differentiate between these sources, identifying the overall variability (often referred 

to as noise) can allow the experimenter to identify if particular measurements would 

be appropriate to include in subsequent investigations.  Noisy or unreliable measures 

may have substantial constraints in terms of the numbers of participants required to 

objectively ascertain if there are differences (or no differences) when conduct ing 

cross sectional or longitudinal studies.  Utilising more reliable equipment/techniques 

to derive data may reduce the ‘costs’ in terms of participant and laboratory staff time 

during data collection, thus where possible from a resourcing and ethical standpoint 

systems or techniques should be evaluated to ensure that data collection is optimised 

where possible.    

For the purpose of this thesis there are three broad areas to investigate in terms of 

reliability; body mass and body composition, blood parameters, and the assessment 

of laboratory efficiency and economy. Although there are numerous studies 
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published on reliability, alterations in participant category (age/fitness/competit ive 

level etc.) (Hopker et al., 2007), specific laboratory equipment (Hopker et al., 2012), 

and laboratory technical staff (Perini, de Oliveira, Ornellas and Oliveira, 2005) may  

alter the reliability coefficients generated, thus a conservative approach is often taken 

to derive this data in a manner which would mirror data collection at a later stage of 

an investigation.     

 

Body mass and composition: 

Body mass (kg) has a very low equipment variability due to the often mechanical 

nature of the measurement, whereas within-day body mass fluctuations are well 

known to occur with hydration, stomach, bowl and bladder contents (Fairburn and 

Cooper, 2014) and can be manipulated by as much as 2.27 kg (Cotugna, Snider 

and Windish, 2011). Within-day body mass can be standardised by testing at similar 

times of day and controlling food and water intakes prior to participant assessment. 

The variability and reliability of methods to assess body composition vary  

substantially based on the methods used and their limitations.  Air-displacement 

plethysmography (utilising devices such as the Bod Pod) limits inter-tester error but, 

is susceptible to variations in total water content, air movement within the laboratory  

environment and participant cooperation to breathe consistently and minimise 

movement.  These are clearly identified in the instruction manual for these devices, 

however these can be more difficult to ‘control’ prior to and during assessment  (Bod 

Pod, 2013). Skinfold measurement as an alternative technique to assess body 

composition is less affected by total hydration, but has a higher inter-tester variability  

(McRae, 2010) and only accounts for subcutaneous adipose tissue fluctuations.  One 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Cotugna%20N%5BAuthor%5D&cauthor=true&cauthor_uid=20803166
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cotugna%20N%5BAuthor%5D&cauthor=true&cauthor_uid=20803166
http://www.ncbi.nlm.nih.gov/pubmed/?term=Windish%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20803166
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of the major uses for the assessment of body composition is in the reduction of body 

mass (usually to reduce body fat) in athletes and the general population, however 

changes in body mass can also alter hydration status of an individual. Total body 

water is reasonably stable under isocaloric conditions, however a hypocaloric diet  

which induces a negative energy balance is likely to reduce total water storage 

through an increase in glucogenolysis. Glucogenolysis is the biochemical process of 

breaking glycogen polysaccharides into glucose molecules which results in excess 

water being excreted (~3 to 4 grams of water for every gram of glycogen, Olsson 

and Saltin, 1970), causing a temporary reduction in body mass (Kreitzman, Coxon 

and Szaz, 1992). This reduction in total water storage can doubly effect Bod Pod 

estimations of fat (kg), as mass is used in both the body density equation and 

conversion of a percentage to kg. Skinfold body fat % is calculated without mass and 

is only affected when converting body fat (%) to fat mass (kg). There is also evidence 

to suggest that visceral adipose tissue is utilised preferentially over subcutaneous fat 

during the early stages of both moderate and severe calorie restriction (Chaston 

and Dixon, 2008). This is an issue which is more pertinent to skinfold assessment 

but not excluding Bod Pod measurements, with a lack of sensitivity to detect specific 

changes in visceral fat other than through total mass changes. Technical error of the 

measurement (TEM) is the most commonly reported determination of imprecision 

within anthropometry (Ulijaszek and Kerr, 1999) and is important to establish prior 

to dietary manipulation.   

 

Blood parameters: 

Basic metabolic blood panels are commonly used to assess patient health; 

specifically kidney function, acid/base balance, electrolyte, blood sugar and calcium 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Chaston%20TB%5BAuthor%5D&cauthor=true&cauthor_uid=18180786
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chaston%20TB%5BAuthor%5D&cauthor=true&cauthor_uid=18180786
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dixon%20JB%5BAuthor%5D&cauthor=true&cauthor_uid=18180786
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ulijaszek%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=10655963
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kerr%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=10655963
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levels (Daniels, 2010). Traditional testing usually requires the collection of 5 mL of 

blood with results available within 24 hours, there are analysis systems that offer 

faster analysis times (e.g. Portable Clinical Analyser [PCA]) requiring small 

volumes of blood (75 μl) allowing for quick and affordable multiple parameter 

analysis, making metabolic blood assessment more accessible and viable in sport 

science Laboratories. Not only is it beneficial to monitor the health of participants 

during an intervention study, it could also provide a metabolic insight in to the effect 

of calorie restriction on an exercising population, and further more could be used to 

predict changes in performance. Calorie restriction has been reported to affect 

measures of Hct, Hb, K+ and BUN (Kreitzman, Coxon and Szaz, 1992; Hall and 

Everds 2014), with other factors such as; dietary macronutrient intake (Kreitzman, 

Coxon, and Szaz, 1992), dehydration (Billett, 1990) and training volume and 

intensity (Metheny, 2012) also having the potential to confound results. The majority  

of reported validity research with the PCA have not stated the exercising habits of 

the participants and commonly use patients admitted to intensive care units, 

operating rooms and accident and emergency centres (Jacobs, Vadasdi, Sarkozi and 

Colman, 1993; Schneider et al., 1997; Baier et al., 2003). The specific variability of 

each blood parameter measured with the PCA on a weekly basis in healthy  

participants is unknown, as the main clinical focus has been to validate the PCA with 

standard laboratory equipment and not to assess natural fluctuation.   

 

Efficiency and Economy measurements: 

The primary dependent variable in this thesis is energy expenditure in the form of 

gross efficiency, net efficiency and cycling economy. Gross efficiency coefficient of 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Jacobs%20E%5BAuthor%5D&cauthor=true&cauthor_uid=8504539
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jacobs%20E%5BAuthor%5D&cauthor=true&cauthor_uid=8504539
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sarkozi%20L%5BAuthor%5D&cauthor=true&cauthor_uid=8504539
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sarkozi%20L%5BAuthor%5D&cauthor=true&cauthor_uid=8504539
http://www.ncbi.nlm.nih.gov/pubmed/?term=Colman%20N%5BAuthor%5D&cauthor=true&cauthor_uid=8504539
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schneider%20J%5BAuthor%5D&cauthor=true&cauthor_uid=9382209
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variation (CV) has been reported to be between 1.5 % (Hopker et al., 2012) and 4.5 

% (Hopker et al., 2007), this 3 % discrepancy can have substantial implications for 

estimated sample sizes and is thought to be predominantly due to equipment 

differences (Douglas bag verses online gas analysis systems) with participant 

training status also having a likely effect. There are other numerous factors that have 

been demonstrated to influence the efficiency values obtained in the laboratory and 

must be controlled during assessment such as; pre exercising diet (Cole et al., 2013), 

exogenous carbohydrate supplementation (Dumke et al., 2007), exercise intensity 

(Hopker et al., 2013), cadence (Jacobs, Berg, Slivka and Noble, 2013), 

bicycle/ergometer set-up (Faria, Parker and Faria, 2005) and laboratory  

environmental conditions (Hettinga et al., 2007). These factors are also likely to 

influence the raw power output generated during any simulated time-trial 

performance, and again these have been noted in numerous papers (Bini, Hume and 

Croft, 2011; Peiffer and Abbiss, 2011; Correia-Oliveira, Bertuzzi, Dal'Molin Kiss 

and Lima-Silva, 2013). A study that has controlled these factors have demonstrated 

CV’s of ~2% for performance power output in the laboratory (Smith et al., 2001). 

The collection of data for this thesis is utilising some equipment and techniques that 

reliability data have not been previously reported.  With the variability of some 

measures also reliant on ‘experimenter/tester error’  the aim of this study was to 

determine the TEM and CV for skinfold and Bod Pod assessment as well as between-

day CV for blood parameters, TT power, RMR, gross efficiency, net efficiency and 

economy.  

 
 
 
 
 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Dumke%20CL%5BAuthor%5D&cauthor=true&cauthor_uid=18076275
http://www.ncbi.nlm.nih.gov/pubmed/?term=D%20Jacobs%20R%5BAuthor%5D&cauthor=true&cauthor_uid=22648142
http://www.ncbi.nlm.nih.gov/pubmed/?term=E%20Berg%20K%5BAuthor%5D&cauthor=true&cauthor_uid=22648142
http://www.ncbi.nlm.nih.gov/pubmed/?term=Slivka%20DR%5BAuthor%5D&cauthor=true&cauthor_uid=22648142
http://www.ncbi.nlm.nih.gov/pubmed/?term=Slivka%20DR%5BAuthor%5D&cauthor=true&cauthor_uid=22648142
mailto:Hettinga,%20F.J.
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bini%20R%5BAuthor%5D&cauthor=true&cauthor_uid=21615188
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bini%20R%5BAuthor%5D&cauthor=true&cauthor_uid=21615188
http://www.ncbi.nlm.nih.gov/pubmed/?term=Croft%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=21615188
http://www.ncbi.nlm.nih.gov/pubmed/?term=Peiffer%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=21725106
http://www.ncbi.nlm.nih.gov/pubmed/?term=Peiffer%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=21725106
http://www.ncbi.nlm.nih.gov/pubmed/?term=Correia-Oliveira%20CR%5BAuthor%5D&cauthor=true&cauthor_uid=23657935
http://www.ncbi.nlm.nih.gov/pubmed/?term=Correia-Oliveira%20CR%5BAuthor%5D&cauthor=true&cauthor_uid=23657935
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dal%27Molin%20Kiss%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=23657935
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lima-Silva%20AE%5BAuthor%5D&cauthor=true&cauthor_uid=23657935
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7.2 Methods 

 

7.2.1 Within-day repeated measures 

 

Twelve exercising participants (age 27 ± 5 yrs; height 1.75 ± 0.09 m, body mass 

71.64 ± 10.42 kg) gave their written informed consent to participate in the within-

day investigation and satisfactorily completed a health questionnaire. Participants 

were asked not to exercise strenuously 24 hours before, not to eat two hours before 

and void their bladder immediately prior to testing. Free standing height (Seca 220, 

Hamburg, Germany) and body mass (Seca, 761, Hamburg, Germany) were recorded 

at the beginning of the visit. Ten site skinfold and Bod Pod assessment were 

conducted in a randomised order and repeated three times, resulting in three skinfold 

measurements per site and nine separate whole body volumes. All participants wore 

standardised Lycra swimming shorts and a swimming cap for Bod Pod 

measurements. Skinfold body density was calculated using three separate equations: 

Jackson and Pollock (1978) 3-site, 7-site and Durnin and Womersley (1974) 4-site. 

The Siri (1956) equation was used to convert both skinfold and Bod Pod densities to 

body fat (%) (see Chapter 6 for skinfold equations). 

 

7.2.2 Between-day repeated measures 

Seventeen male cyclists (age 42 ± 9 yrs, height 1.79 ± 0.07 m, body mass 81.7 ± 9.5 

kg) were recruited from local cycling clubs, gave their written informed consent to 

participate in the between-day investigation and satisfactorily completed a health 

questionnaire. Participants conducted a V̇O2max visit and three visits where steady  

state efficiency and 16.1 km TT’s were undertaken during each subsequent visit one 
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week apart. Participants were instructed to maintain their body mass and usual 

training across the four week period.    

 

Anthropometry: 

Free standing height and body mass were recorded at the beginning of every visit. 

Ten site skinfold and Bod Pod assessments were conducted prior to cycling in a 

randomised order. Skinfold body density was calculated using the same three 

skinfold equations described in the within-day measures.  

 

V̇O2max: 

An incremental exercise test to volitional fatigue was performed on an SRM cycle 

ergometer (Schoberer Rad Messtechnik, Welldorf, Germany) that was adjusted to 

participant’s road bike geometry and fitted with compatible clipless pedals. The 

protocol began at 150 W for 5 minutes and increased by 5 W every 15 s until a 

cadence > 60 (rev.min-1) could no longer be maintained (Cole, Coleman and Wiles, 

2014).  Gases were recorded via indirect calorimetry (Oxycon Pro, Jäeger, 

Carefusion, Hoechberg, Germany) and a heart rate monitor was warn throughout 

(Polar Wearlink, Polar Electro Oy, Kempele, Finland). Power output (Watts) was 

recorded in one second intervals and gas data averaged over 10 seconds. Maximum 

minute power and V̇O2max were determined by the highest average W and V̇O2 over 

one minute.  

 

Resting metabolic rate: 

Participants laid in the supine position wearing a heart rate monitor in a quiet thermo-

neutral environment with a facemask connected to the Oxycon Pro collecting breath-

http://www.ncbi.nlm.nih.gov/pubmed/?term=Cole%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24022570
http://www.ncbi.nlm.nih.gov/pubmed/?term=Coleman%20D%5BAuthor%5D&cauthor=true&cauthor_uid=24022570


106 
 

by-breath data for 30 minutes. Oxygen uptake and V̇CO2 data were sampled between 

minutes 10-15, 15-20, 20-25, 25-30, 10-20 and 20-30 for the determination of the 

least variable time measurement. Energy expenditure values were determined with 

Equation 17.  

 

Efficiency and time-trial:  

Participants cycled at three steady-state intensities for eight minutes each; 150W, 50 

% and 60 % Wmax (Hopker et al., 2013). During a standardised five minute recovery  

period after steady-state cycling but prior to the commencement of the TT a finger 

prick blood sample was analysed with a PCA (i-STAT, Portable 200, Abbott, IL, 

USA). This provided a measure of the participants: sodium (Na+), potassium (K+), 

chloride (Cl-), total carbon dioxide (TCO2), blood urea nitrogen (BUN), glucose 

(Glu), haematocrit (Hct), acidity (pH), partial pressure of carbon dioxide (PCO2) and 

Haemoglobin (Hb). The 16.1km self-paced TT detailed; a rolling start, data-

restricted to distance covered (m) and for participants to remain seated. V̇O2, V̇CO2 

and power were averaged during the last two minutes of each stage and for the 

duration of the TT. Gross efficiency, net efficiency and economy were calculated as 

outlined in Chapter 6.  

 

7.3 Data analysis 

Descriptive and analytical statistics were calculated using Excel, SPSS and Graph 

Pad Prism. The data was visually checked for the presence of outliers and Shapiro-

Wilk test used to assess normality. Technical error of the measurement (TEM) and 

TEM % were calculated comparing; the first and second skinfold measurements for 

all ten sites (mm), for the 3-site, 7-site and 4-site equations that were used to 
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calculate body density (g.cc) and when converted to estimated body fat % and fat 

in kg using the Siri (1956) equation. Technical error of the measurement was also 

calculated for Bod Pod repeated measurements of volume, density (g.cc), estimated 

body fat % and kg. Within-day repeated measurement of typical errors were 

presented as CV % using all three of the repeated observations to determine the 

least variable method of fat % and mass (kg).      

ܯܧܶ =  √Σܦଶʹܰ  

Equation 19. Technical error of the measurement equation (Ulijaszek and Kerr, 

1999). Where: D is the difference between repeated measurements and N is the 

number of individuals measured.  

ሺ%ሻ ܯܧܶ  = × (ܯܣܸܯܧܶ) ͳͲͲ 

 

Equation 20. Technical error of the measurement as a percentage (Perini, de 

Oliveira, Ornellas and Oliveira, 2005). Where: VAM is the variable average mean 

(calculated firstly within each repeated skinfold for each participant and then 

averaged overall).  

 
% ܸܥ  =  ( (݊ܽ݁ܯܦܵ  × ͳͲͲ 

 
Equation 21. Within day coefficient of variation calculation, adapted from Sheskin 
(2003). 
 
 
Between-day repeated measures: 

Repeated measures ANOVA’s with repeated standard contrasts were performed on 

all of the data with multiple trials. Data was assessed with the Mauchly’s test of 

sphericity with a threshold of ≤ .05, where data was found to have significant  

sphericity the Greenhouse-Geisser correction was used. Post-hoc pairwise 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ulijaszek%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=10655963
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kerr%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=10655963
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comparisons were used to determine the specific location of any significant 

differences. Typical error as a coefficient of variation (CV %) and lower and upper 

confidence intervals were calculated using log transformed data with a spreadsheet 

by Hopkins (2011). Pearson’s product moment correlation analysis assessed the 

agreement between the mean skinfold and Bod Pod estimations of body fat %.  

 

7.4 Results  

 

7.4.1 Within-day repeated measures 

Seven out of ten of the skinfold sites had a TEM % < 5 % resulting in the 

measurements being deemed taken by a skilful anthropometrist, with three just 

outside this range classifying the skinfolds well within the acceptable limits for a 

beginner anthropometrist (< 7.5 %) (Perini, de Oliveira, Ornellas and Oliveira, 2005) 

(see Table 7.1). The Durnin and Womersley (1974) 4-site equation resulted in the 

lowest TEM % and CV % when comparing body density and throughout the 

estimation of body fat % and mass (kg) using the Siri (1956) densitometry equation 

(see Table 7.2).  Bod Pod total volume had a lower TEM % and CV % when 

compared to all individual skinfold measures, but had a TEM % and CV % three 

times greater after density calculation and more than double when the Siri equation 

was used to estimate body fat % and mass (kg) (see Table 7.3). The 4-site skinfold 

equation showed the highest agreement with the Bod Pod’s mean estimation of body 

fat % and mass, with only a -0.24 kg lower estimate of fat mass.  
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Table 7.1 Within-day site specific skinfold data. 

Skinfold site Mean ± SD (mm) TEM (%) CV (%) 

Biceps 5.3 ± 2.6 5.65 3.49 

Triceps 12.2 ± 6.2  1.57 0.90 

Subscapular 10.5 ± 4.8 2.48 1.75 

Supra iliac 14.5 ± 8.8 3.67 1.80 

Supraspinale 9.8 ± 4.3 4.48 1.99 

Abdominal 16.3 ± 6.4 5.82 2.44 

Mid-Axilla 7.9 ± 4.7 4.78 3.21 

Chest 8.1 ± 4.4 5.69 2.34 

Thigh 16.5 ± 8.6 3.91 1.55 

Medial Calf 8.6 ± 3.6 3.05 1.78 

Sum of 10 109.85 ± 1.45 1.74 1.20 

Note: SD, standard deviation, TEM, technical error of the measurement, CV, 
coefficient of variation.  
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Table 7.2 A within-day comparison of body density, body fat % and body fat (kg) 
calculated with 3, 4, and 7 skinfold site equations.  

 Equation Mean ± SD TEM (%) CV (%) 

 3 site  1.06359 ± 0.01664 0.06 0.05 

Density 
(g.cc) 

4 site  1.05658 ± 0.01646 0.04 0.04 

 7 site  1.06265 ± 0.01626 0.05 0.04 

 3 site 16.64 ± 7.31 0.28 1.51 

Body fat (%) 4 site 19.87 ± 7.32 0.21 1.12 

 7 site 16.72 ± 7.06 0.24 1.24 

 3 site 11.51 ± 4.86 0.19 1.51 

Body fat (kg) 4 site 13.67 ± 4.66 0.15 1.12 

 7 site 11.76 ± 5.34 0.17 1.24 

 Note: SD, standard deviation, TEM, technical error of the measurement, CV, 
coefficient of variation.  
 

 

Table 7.3 Within-day Bod Pod data showing volume, density, fat % and fat mass.  

Bod Pod Mean ± SD TEM (%) CV (%) 

Volume (L) 65.59 ± 0.16 0.22 0.24 

Density (g.cc) 1.05416 ± 0.00248 0.21 0.24 

Fat (%) 19.66 ±0.56 0.69 3.82 

Fat mass (kg) 13.91 ±0.40 0.48 3.80 

Note: SD, standard deviation, TEM, technical error of the measurement, CV, 
coefficient of variation.  
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7.4.2 Between-day repeated measures 

All seventeen participants completed the initial V̇O2max/ Wmax protocol (V̇O2max 51.4 

± 8.4 ml.kg.min-1, Wmax 371.0 ± 42 W.min-1, relative Wmax 4.57 ± 0.65 W.kg-1.min-1) 

and the four other subsequent trials.  Based on data from the V̇O2max test, the 

participants were classified as ‘club level’ according to Wmax (Ansley and Cangley , 

2009). Performance characteristics averaged across trials 2-4 are presented in Table  

7.4. Laboratory environmental conditions were; temperature 18.1 ± 1.1 °C, humidity 

64.7 ± 7.7 % and barometric pressure 753.5 ± 8.9 mmHg.  

Table 7.4 Between-day performance characteristics averaged across three repeat 
trials (trial 2-4). 

  
150W 

Mean ± SD 

50% 

Mean ± SD 

60% 

Mean ± SD 

TT 

Mean ± SD 

HRmax (%) 59.78 ± 6.20 68.68 ± 6.08 78.66 ± 9.39 91.9 ± 3.17 

Power (W) 150 ± 4 187 ± 18 222 ± 24 279 ± 36 

GE (%) 22.10 ± 2.17 22.73 ± 2.18 22.76 ± 1.80 … 

NE (%) 26.44 ± 3.37 26.06 ± 2.84 25.52 ± 2.33 … 

EC (W.LO2) 77.19 ± 9.05 78.66 ± 7.52 78.88 ± 6.31 80.18 ± 8.38 

RER 0.92 ± 0.04 0.92 ± 0.04 0.92 ± 0.03 0.95 ± 0.04 

RMR (j.s-1) … … … 106.16 ± 18.41 

Note: SD, standard deviation. 

Anthropometry: 

Body mass (81.4 ± 9.5 kg) did not significantly change across the group when 

compared across all four trials, with the largest difference between trials 3 and 4 of 

only -0.09 kg (P < .05). Skinfold estimated fat % was significantly different (P = 

0.003) with the majority of the differences linked to trial 1 (22.31 ± 5.17 %), with 
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trial 2 (21.75 ± 4.93 %), trial 3 (21.75 ± 1.28 %) and trial 4 (21.39 ± 1.21 %) 

significantly different (P = .041, P = .048, P = .003 respectively) as well as 

differences between trial 3 and 4 (P = .010) (Figure 7.1). Bod Pod estimated fat % 

also showed significant differences between the four trials (P = .016), with trial 1 

estimating significantly higher than trial 3 (P = .014) and 4 (P = .047) and trial 2 

estimating significantly higher than trial 3 (P = .034) (Figure 7.2). A high positive 

correlation (r = 0.754, P < .001) was present between skinfold and Bod Pod estimated 

fat % (Figure 7.3).   

 

 

 

 

 

 

 

 

Figure 7.1 Comparing the stability of body fat % estimated with skinfold over four 

repeated trials. Note: * = P < 0.05 and ** = P < 0.01.  
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Figure 7.2 Comparing the stability of body fat % estimated with Bod Pod 

techniques over four repeated trials. Note: * = P < 0.05.  

 

 

Figure 7.3 The relationship between mean skinfold and Bod Pod estimations of 

body fat (%) across four trials (P < .001).  

Body mass had a low and reasonably consistent typical error across all four trials 

(CV < 1 %). The Bod Pod had greater typical error fat % estimations across trials 

with greater variance and a larger range of confidence intervals around the typical 

error than skinfold fat estimation (Table 7.5).  
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Table 7.5 The typical error of body mass and composition.  

 Trial 1-2 

CV % (CI) 

Trial 2-3 

CV % (CI) 

Trial 3-4 

CV % (CI) 

Body mass (kg) 0.82 (0.64-1.17) 0.54 (0.42-0.76) 0.82 (0.64-1.16) 

Bod Pod fat (%) 7.50 (5.80-10.80) 10.95 (8.44-15.87) 11.38 (8.77-16.50) 

Skinfold fat (%) 3.24  (2.52-4.62) 3.04 (2.36-4.33) 1.63 (1.27-2.32) 

Sum of 10 (mm) 5.34 (4.14-7.65) 4.23 (3.28-6.04) 2.04 (1.59-2.91) 

Note: CV %, coefficient of variation, CI, confidence interval.  

 

There was no significant difference between trial 2, 3 and 4 RMR (j.s-1) values when 

sampled between 10-15 min, 15-20 min, 20-25 min and 20-30 min (P > .05). There 

was a difference between RMR sampled between 25-30 min and 10-20 minutes (P 

> .05), with differences both present between trial 2 and 3 (P = 0.007, P = .042 

respectively) (Figure 7.4). The least variable sampling time based on CV % was 

between 10-20 minutes comparing trial 2 and 3 and between 25-30 minutes 

comparing trial 3 and 4. Sampling RMR from 10-20 minutes was the least variable 

when considering all three trials (11.03 and 9.66 %) (see Table 7.6). 
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Figure 7.4 Mean Resting metabolic rate (RMR) sampled from 10-20 minutes 

across trials. Note * = P < .05.   

 
Table 7.6 The typical error of Resting metabolic rate (RMR) sampled at different 
time intervals.  
 Trial 2-3 

CV % (CI) 
Trial 3-4 

CV % (CI) 
RMR 10-15mins 11.19 (8.62-16.22) 9.71 (7.44-14.24) 

RMR 15-20mins 12.37 (9.52-17.98) 9.83 (7.53-14.42) 

RMR 20-25mins 13.05 (10.04-18.99) 9.51 (7.29-13.95) 

RMR 25-30mins 12.73 (9.26-21.03)* 9.45 (6.56-17.61) 

RMR 10-20mins 11.03 (8.50-15.99)* 9.66 (7.41-14.18) 

RMR 20-30mins 13.23 (9.62-21.89) 9.86 (6.87-18.44) 

Note: CV %, coefficient of variation, CI, confidence interval, * = P < .05.  

 

Energy expenditure comparisons:  

There were no significant differences in gross efficiency between trials 2-4, in the 

absolute 150 W workload or relative 50 % and 60 % Wmax intensities (P > .05) 
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(Figure 7.5). Gross efficiency tended to increase as workload increased but with the 

exception of gross efficiency at 60 % Wmax in trial 2, which had a marginally lower 

gross efficiency (22.73 ± 1.56 %) when compared to the 50 % intensity (23.00 ± 2.22 

%). Typical error within gross efficiency measurement reduced as the workload 

increased, with gross efficiency at the 60 % intensity having the smallest typical error 

across all trials when compared to the 150 W and 50 % intensities (Table 7.5). There 

was a significant difference between net efficiency at the 150 W workload (P = 

0.033) with a significant reduction in net efficiency between trial 3 and 4 (trial 3: 

27.30 ± 4.22 %, trial 4: 25.51 ± 0.65 %, P = .017). No significant differences were 

present at either of the relative workloads of 50 % and 60 % Wmax (P > .05) (Figure  

7.6). Typical error of net efficiency also tended to reduce with increasing workloads, 

with the 60 % intensity having the smallest typical error across all trials when 

compared to the 150 W and 50 % intensities.  

 
Figure 7.5 Gross efficiency across trials at 150 W, 50 % and 60 % Wmax (no 

significant differences).   
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Figure 7.6 Net efficiency across trials at 150 W, 50 % and 60 % Wmax.  Note: * = P 

< .05. 

 

Time-trial: 

There were no significant differences in economy between trials 2-4, in the 

absolute 150 W workload, relative 50 % and 60 % Wmax intensities and during the 

time-trial (P > .05) (Figure 7.7). The 60 % intensity most closely tracked 

performance economy when compared to the 50 % and 150 W intensities. The 

typical error in economy measurement also reduced as workloads increased when 

compared to the fixed steady-state intensities. Despite the TT intensity being higher 

(~ 25 %), economy error was higher than the 60 % typical error when comparing 

trial 2 and 3 and higher than all steady-state intensities between trial 3 and 4. There 

was a significant difference between TT power across trials (P = .046) (Figure 

7.8), with a significant increase between trials 2-3 (P = 0.01) and 2-4 (P = .037). 

TT power also had low typical error values (CV < 4 %) when compared to gross 

efficiency, net efficiency and economy.     
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Figure 7.7 Economy across trials at 150 W, 50 % and 60 % Wmax (no significant 

differences).  
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Figure 7.8 16.1 km mean time-trial (TT) power across trials. Note: * = P < .05, ** 

= P ≤ .01.  
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Table 7.7 The typical error of energy expenditure and TT power. 
 Trial 2-3  

CV % (CI) 

Trial 3-4  

CV % (CI) 

GE 150 W 6.17 (4.71-9.14) 4.67 (3.57-6.88) 

GE 50 % (Wmax) 6.22 (4.79-9.07) 4.82 (3.72-7.01) 

GE 60 % (Wmax) 4.93 (3.80-7.16) 2.89 (2.23-4.18) 

NE 150 W 8.83 (6.77-12.90) 6.39 (4.87-9.46) 

NE 50 % (Wmax) 8.18 (6.28-11.96) 6.09 (4.65-9.01) 

NE 60 % (Wmax) 6.55 (5.04-9.55) 4.30 (3.29-6.33) 

EC 150 W 6.22 (4.78-9.06) 5.23 (4.03-7.60) 

EC 50 % (Wmax) 6.07 (4.68-8.84) 4.70 (3.62-6.83) 

EC 60 % (Wmax) 4.83 (3.72-7.02) 2.82 (2.18-4.08) 

TT EC (W.LO2) 5.78 (4.48-8.30) 6.00 (4.61-8.73) 

TT Power (Wmean) 2.28 (1.77-3.24) 3.89 (3.02-5.56) 

Note: CV %, coefficient of variation, CI, confidence interval.  

 

Blood parameters: 

There were no significant differences in blood variables across all three trials (P > 

.05). When compared to normative data all but one blood parameter was within 

normal ranges with Cl- just above the normal range by 2.5 mmol/L (Table 7.8). The 

typical error of the blood parameters stayed relatively consistent when comparing 

between trials, with no overall reduction in CV between trials 3-4 (Table 7.9).       
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Table 7.8 Mean blood parameter values across trials 2, 3 and 4 with normal range 
data.  
 Mean ± SD Normal range* 

Na+ (mmol/L) 140.4 ± 2.6 136-145 

K+ (mmol/L) 5.1 ± 0.7 3.5-5.5 

Cl- (mmol/L) 108.5 ± 3.4 98-106 

TCO2 (mmol/L) 26.0 ± 1.4 22-26 

BUN (mg/dL) 16.4 ± 3.9 5-20 

Glu (mg/dL) 97.0 ± 8.7 <110 

Hct (%PCU) 44.4 ± 2.8 40-54 

pH  7.403 ± 0.031 7.31-7.41 

PCO2 (mmHg) 40.0 ± 3.6 35-45 

Hb (g/dL) 15.1 ± 0.95 14-18 

Note: SD, standard deviation, *, Normal range values cited from Daniels (2010), 

Na+, Sodium, K+, potassium, Cl-, chloride, TCO2, total carbon dioxide, BUN, blood 

urea nitrogen, Glu, glucose, Hct, haematocrit, pH, acidity, PCO2, partial pressure of 

carbon dioxide, Hb, Haemoglobin.  
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Table 7.9 Typical error of blood parameters. 

 Trial 2-3  

CV % (CI) 

Trial 3-4  

CV % (CI) 

Na+ (mmol/L) 1.54 (1.10-2.65) 1.68 (1.25-2.62) 

K+ (mmol/L) 13.68 (9.62-24.54) 13.68 (10.06-22.01) 

Cl- (mmol/L) 2.94 (2.10-5.08) 2.94 (2.19-4.60) 

TCO2 (mmol/L) 3.16 (2.22-5.75) 4.10 (3.01-6.60) 

BUN (mg/dL) 15.03 (10.58-27.07) 18.19 (13.31-29.59) 

Glu (mg/dL) 6.65 (4.73-11.65) 8.55 (6.33-13.57) 

Hct (%PCU) 1.37 (0.98-2.35) 3.58 (2.66-5.60) 

pH 0.60 (0.42-1.07) 0.28 (0.21-0.45) 

PCO2 (mmHg) 10.15 (7.06-18.97) 4.13(3.04-6.66) 

Hb (g/dL) 1.21 (0.86-2.07) 3.48 (2.59-5.45) 

Note: CV %, coefficient of variation, CI, confidence interval, Na+, Sodium, K+, 

potassium, Cl-, chloride, TCO2, total carbon dioxide, BUN, blood urea nitrogen, 

Glu, glucose, Hct, haematocrit, pH, acidity, PCO2, partial pressure of carbon 

dioxide, Hb, Haemoglobin. 

 
 

7.5 Discussion 

 

7.5.1 Within-day trial 

 

The aim of this study was to assess the variability in key parameters under 

investigation in this thesis. The data presented clearly outlines differences in 
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variability depending upon the techniques used to generate the data. Consecut ive 

skinfold measurement estimating fat % and mass, irrespective of equation had a 

smaller technical error and variation than when compared to the automated Bod Pod 

assessment. The TEM of Bod Pod fat % has been previously reported to be lower at 

0.45 % compared with the 0.69 % that was found in this study, yet the 0.45 % is still 

almost double the TEM in the skinfold estimations of body fat % (Collins et al., 

1999). This was despite three skinfold measures falling just outside of the skilful 

threshold defined by Periniet et al. (2005) as a TEM  < 5 %, suggesting that a good 

but not yet completely skilful anthropometrist is still able to outperform the 

equipment reliability of the Bod Pod in both this study and Collins et al. (1999). The 

difference in technique reliability of body fat estimation between the Bod Pod and 

skinfold equations are predicted to be the difference between an upper confidence 

limit of 0.100 kg (4-site), 0.128 kg (7-site) and 0.312 kg (Bod Pod) (based on; 20 

participants with a mean body mass of 70 kg and body fat of 18 %). Although this 

estimation demonstrates the benefit of utilising a method with the highest technique 

reliability; it  is important to note that these estimations do not account for day-to-

day variability. While skinfold measurement was the least variable, discrepancies 

existed between the different equations used to estimate fat mass by ~2 kg, which 

would have a direct effect on the calculation of relative fat mass change. Using the 

mean data from this study; a 1 kg reduction in fat mass would equate to a fat mass 

reduction of 8.69 % with the 3-site, and a 7.32 % reduction with the 4-site equation, 

resulting in an absolute 1.37 % discrepancy. This inconsistency is likely due to 

differences in the number and location of skinfold sites, variations in the underwater 

weighing reference methods, equipment and participant characteristics. When 

compared to the Bod Pod estimations of fat %, the 4-site skinfold equation provided 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Collins%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=10487380
http://www.ncbi.nlm.nih.gov/pubmed/?term=Collins%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=10487380
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the closest mean estimated fat mass. Based on a review of previous studies that have 

compared the Bod Pod to hydro-densitometry; six out of eight studies reported that 

the Bod Pod estimated a lower body fat %, ranging from -3.3 % to -0.1 % with only 

two reporting higher estimations (1.2 % and 0.2 %) (Field, Goran and McCrory, 

2002). Assuming that the Bod Pod has a slight tendency to underestimate body fat 

%, the 4-site equation provided the most likely valid measure of fat % with only a 

slight over estimation (+0.21 %), with the 3-site (-3.02 %) and 7-site (-2.94 %) 

underestimating fat %. Consequently the 4-site equation had the highest technique 

reliability and was considered the most likely valid measure of body composition 

when compared to the Bod Pod.  

 

7.5.2 Between-day trial 

Body mass was the most reliable anthropometric measure based on CV % values in 

Table 7.5 determining that changes in body mass >0.82 % are likely to be above 

natural fluctuations, and changes >1.17 % being almost certainly above natural 

fluctuations with 95 % confidence. This equates to a change in mass of 0.67 kg and 

0.95 kg for the average participant in the between-day study. The low variation in 

skinfold measurement resulted in the ability to detect small and significant changes 

in fat % equivalent to a change in fat mass between trial 1-2, 0.46 kg, trial 1-3, also 

0.46 kg and trial 1-4: 1.21 kg. Although the mean differences were small the majority  

of the differences involved the first skinfold measure in trial 1 which could be 

omitted by not utilising the first skinfold measurement when determining change in 

estimated body fat. The Bod Pod displayed a similar change in fat % (0.91 %) when 

compared to skinfold, but potentially due to the higher variability the difference was 

not detected by repeated measures statistics. This suggests that the Bod Pod is not as 
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sensitive to small changes in fat % than skinfold assessment. There was also 

indication that the Bod Pod was susceptible to random error, evident during trial 3 

where there was a depression in fat % which was not supported with the other 

paralleled measures of body composition. Importantly a random absolute fat  

estimation error of 1.6 % (trial 3) would be in addition to equipment error and natural 

fluctuation.  

Resting metabolic rate: 

Overall RMR remained consistent regardless of the sampling location and duration. 

Previous research has suggested numerous measurement times ranging from 10 to 

30 minutes or even indeterminate times until V̇O2, V̇CO2 and RER are considered 

stable; accordingly sampling periods are also quite variant ranging from 5 to 10 

minutes or 3 x 5 minutes (Segal 1987; Nieman et al., 2006; Potteiger et al., 2008; 

Ramires et al., 2012). Considering all of the sampling periods in this study, sampling 

between 10-20 minutes provided the highest reliability overall, and although a 

difference was found over the three trials, it was likely due to the increased 

sensitivity and higher probability of making a type I error. Sampling for 10-20 

minutes instead of 30 minutes would also allow for a reduction in the time to collect 

RMR. This sampling period was in agreement with Isbell, Klesges, Meyers and 

Klesges (1991) who determined that a 20 minute measurement period provided a 

stable and reliable measurement of RMR.  

 

Energy expenditure:   

Gross efficiency, net efficiency and economy at the 60 % intensity had the lowest 

CV % resulting in the 60 % intensity being deemed the most reliable and sensitive 

to change. The average gross efficiency typical error at 60 % (3.91%) was better than 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Isbell%20TR%5BAuthor%5D&cauthor=true&cauthor_uid=2051556
http://www.ncbi.nlm.nih.gov/pubmed/?term=Isbell%20TR%5BAuthor%5D&cauthor=true&cauthor_uid=2051556
http://www.ncbi.nlm.nih.gov/pubmed/?term=Meyers%20AW%5BAuthor%5D&cauthor=true&cauthor_uid=2051556
http://www.ncbi.nlm.nih.gov/pubmed/?term=Meyers%20AW%5BAuthor%5D&cauthor=true&cauthor_uid=2051556
http://www.ncbi.nlm.nih.gov/pubmed/?term=Klesges%20LM%5BAuthor%5D&cauthor=true&cauthor_uid=2051556
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the 4.2 % reported by Moseley and Jeukendrup (2001) and the same as the mean CV 

reported by Noordhof et al. (2010). Net efficiency had a higher overall typical error 

(~ 2 %) when compared to gross efficiency measured across all workloads. The most 

likely reason for higher overall net efficiency variation is due to two separate 

measurements needed to calculate net efficiency; resulting in two times the technical 

error and two times the typical error of RMR and exercising energy expenditure. 

There was also a tendency for the variation in efficiency and economy to reduce as 

workload increased and is theorised to be as a result of more stable and consistent 

energy production and regulation at higher workloads, however this pattern was not 

present when measured with Douglas bags (Hopker et al., 2012). Gross efficiency  

measured with the Douglas bag method has been shown to have a smaller variability  

with a mean CV % of 1.5 % across workloads compared with the mean CV of 3.91 

% during the 60 % intensity (Hopker et al., 2012). Although the collection of gases 

with Douglas bags, with the lower variability would reduce the number of 

participants needed in an intervention study, an online breath-by-breath system 

provides more flexibility to collect continuously over long periods and allows for the 

possibility of field testing.  

 

TT power: 

TT power differences of 6 W between the first (trial 2) and the second (trial 3) TT 

with only a 1 W mean deviation between the second and third TT’s highlight the 

potential benefits of a habituation trial. Typical error however, was higher between 

trials 3-4 by 1.61 % when compared to trial 2-3. This is contrary to the findings of 

Smith et al., (2001) who reported that the CV % in 40 km TT power reduced from 

2.1 % to 1.9 % between the second and third repetition. It is possible that the 

javascript:__doLinkPostBack('','ss~~AR%20%22Moseley,%20L.%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','ss~~AR%20%22Jeukendrup,%20A.E.%22%7C%7Csl~~rl','');
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increased distance or the experience of the participants played a role in the variability  

between the studies. The low variability in the performance measure is vital to detect  

small changes in performance.  This has been explicitly noted in the assessment of 

elite athletes where differences between winning and losing are very small 

(Jeukendrup & Martin, 2001), however in the context of this thesis if changes in 

efficiency and economy are induced the likely associated changes in performance 

are probably also going to be quite small.  

 

Blood parameters: 

A number of blood data points (n = 10) were lost due to corruption (blood clotting 

or air within the cartridge), which would have had an effect on the statistical power. 

Due to the inherent nature of the PCA being primarily based in a clinical setting, 

there are several studies that have compared the PCA to standard laboratory  

equipment and found acceptable clinical agreement across all parameters (Schneider 

et al., 1997; Dascombe et al., 2007; Baier et al., 2003). However, no variability data 

could be found to compare the typical error reported in this study.  The blood data 

was collected and assessed in terms of reliability analysis to allow for a more 

substantial interpretation of data later in this thesis.  Indeed for all data presented in 

this chapter the reliability coefficients will allow the interpretation of any changes 

noted in a more coherent manner in the context of statistical power, normal 

variability and potential insight for future studies. 

7.6 Sample size calculations 

The below equations were used to estimate sample sizes based on raw typical CV 

collected in the between-day trials and predicted change values.   

http://www.ncbi.nlm.nih.gov/pubmed/?term=Jeukendrup%20AE%5BAuthor%5D&cauthor=true&cauthor_uid=11428691
http://www.ncbi.nlm.nih.gov/pubmed/?term=Martin%20J%5BAuthor%5D&cauthor=true&cauthor_uid=11428691
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schneider%20J%5BAuthor%5D&cauthor=true&cauthor_uid=9382209
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schneider%20J%5BAuthor%5D&cauthor=true&cauthor_uid=9382209
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dascombe%20BJ%5BAuthor%5D&cauthor=true&cauthor_uid=16846754
http://www.ncbi.nlm.nih.gov/pubmed/?term=Baier%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=12795669
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 ݊ =  ͳ͸ሺܸܥሻଶሺΔሻଶ  

 
Equation 22. Sample size equation for crossover design studies. Adapted from van 

Belle (2011). Where: CV is the coefficient of variation and Δ represents the raw 

predicted change value when equal group sizes are assumed.  

 

݊ =  ͸ͶሺܸܥሻଶሺΔሻଶ  

Equation 22. Sample size equation for control group studies. Adapted from van 

Belle (2011). Where: CV is the coefficient of variation and Δ represents the raw 

predicted change value when equal group sizes are assumed.  

 

Sample sizes have been calculated using mean characteristics presented in this study: 

body mass 82 kg and body fat 21.9 %. Predicted reductions in mass and fat % were 

initially based on the average changes in the calorie restricted only group, presented 

in Amati et al. (2008) equating to -0.52 kg.week-1. Conservative reductions are 

presented to account for the participants having a lower starting fat %.   

 

Repeated measures with crossover design: 

It is predicted that a short-term intervention with moderate calorie restriction (~ 500 

kcal.day-1) could result in a 1 kg reduction in body mass and a 1% reduction in body 

fat estimation with skinfold. Using the raw typical error of body mass (0.42 kg) and 

body fat % (0.67 %) the calculations determined N = 3 and N = 8 would be required 

to detect the respective predicted changes. If the change in body mass and fat % was 

half of what was predicted and reduced to 0.5 kg and 0.5 %, a total of N = 12 and N 
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= 29 would be required to detect these smaller changes. Based on the predicted 

sample sizes from body composition, a conservative sample size of N = 20 would be 

able to predict a 9 watt change in performance power and 0.79 of a gross efficiency  

unit change at 60 % Wmax.  

 

Field and laboratory comparison:   

Based on a change of 2.5 gross efficiency units reported by Bertucci et al. (2012) 

comparing laboratory and field gross efficiency and using the highest typical error 

(1.12 units between trial 3-4) in the 60 % intensity, a very small sample size of 4 

participants would be required to determine if this degree of change is statically  

significant. A more conservative estimate of a change of 1 gross efficiency unit, 20 

participants would be required, with 30 able to detect a change of 0.82 gross 

efficiency unit.  

7.7 Conclusion  

Four-site skinfold assessment of body composition and not air-displacement was 

used in future chapters, due to lower within- and between-trial TEM and CV % 

resulting in greater accuracy and sensitivity to detect small changes in fat mass. RMR 

measured from 10-20 min had the highest reliability overall and therefore will be the 

preferred sampling time. All absolute and relative intensities of efficiency were 

within acceptable limits and were used in future chapters; with the understanding 

that efficiency at the 60 % Wmax intensity provided the least variable and most 

reliable results. Laboratory TT performance power and blood analysis also provided 

acceptable reliability. The typical error from all of the above variables and 
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techniques continued in this thesis were used to discuss changes in forthcoming 

chapters. 

CHAPTER 8 - THE EFFECT OF SHORT-TERM CALORIE 
RESTRICTION ON CYCLING EFFICIENCY AND PERFORMANCE 

ECONOMY 

 

Aspects of the following chapter have been presented externally: Saunders, 

S.C., Coleman, D.A. and Brown, M.B. (2013) The effect of short-term calorie 

restriction on exercise performance and efficiency in cyclists. In: European College 

of Sports Science, 26th-29th June 2013, Barcelona.  

            

8.1 Introduction 

Reducing fat mass is a key strategy employed by many cyclists prior to a race in an 

attempt to improve performance (Knechtle, Knechtle and Rosemann, 2009). This is 

principally achieved with a negative energy balance by either consuming fewer 

calories with a hypocaloric diet and or expending more calories through physical 

activity (Volek, VanHeest and Forsythe 2005). Calorie restriction provides the most 

practical intervention solution in an already exercising population where there is 

limited scope for increasing energy expenditure through exercise (Garth, Raastad 

and Sundgot-Borgen 2011). Calorie restriction has also been shown to be the most 

effective intervention method to reduce body mass, when compared with varying 

exercise types and combinations of both diet and exercise (Clark, 2015). Research 

predominantly from a health and weight management perspective have reported 

reductions in both absolute RMR and when corrected for body composition (Poole 

and Henson, 1988; Pourhassan et al., 2014). While others have reported that RMR 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Clark%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=25973403
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pourhassan%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24500156
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is stable when corrected for changes in fat free mass (van Aggel-Leijssen, Saris, Hul 

and van Baak, 2001) and only exercising energy expenditure has reduced with 

calorie restriction (Weigle, Sande, Iverius, Monsen and Brunzell, 1988). Both 

reductions in RMR and exercise energy expenditure could have beneficial effects for 

gross and net efficiency. However, little is known about the short-term effect of 

calorie restriction in a non-obese exercising population, where it is likely that a 

reduction in total kcal intake will reduce carbohydrate availability having a negat ive 

effect on both efficiency and performance (Bergstrom, Hermansen and Hultman 

1967). Furthermore, during the initial stages of consuming a hypocaloric diet the 

benefits from being lighter are unlikely to be substantial, to outweigh the potential 

negative effects of being calorie restricted. Few studies have researched the direct 

effect of a hypocaloric diet on cycling efficiency and those who did reported 

improvements were among non-exercising populations (Amati et al., 2008). 

Nonetheless cycling efficiency research which has used participants accustomed to 

cycling have rarely reported the implications of improvements in efficiency on 

cycling performance (Jobson et al., 2012). Cycling efficiency is considered a key 

determinant of cycling performance (Lucia et al., 2002; Olds et al., 1995) and despite 

debate many studies have shown that efficiency can be improved (Coyle, 2005; 

Hopker, Coleman, Passfield and Wiles, 2010). Short-term intervention studies 

classified between 2-14 days (Broom, Hopkins, Stensel, King and Blundell, 2014) 

that have assessed the effect of training interventions on cycling efficiency and 

mitochondria function, did not report prescribing a compensatory increase in energy  

intake, despite an increase in training volume and/or intensity (Clark, Costa, 

O’Brien, Guglielmo and Paton, 2014; Vincent et al., 2015). Consequently, it is 

possible that some of the changes reported in efficiency could have been confounded 

http://ajcn.nutrition.org/search?author1=Dorien+PC+van+Aggel-Leijssen&sortspec=date&submit=Submit
http://ajcn.nutrition.org/search?author1=Wim+HM+Saris&sortspec=date&submit=Submit
http://ajcn.nutrition.org/search?author1=Gabby+B+Hul&sortspec=date&submit=Submit
http://ajcn.nutrition.org/search?author1=Marleen+A+van+Baak&sortspec=date&submit=Submit
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hopker%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hopker%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Passfield%20L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wiles%20J%22%5BAuthor%5D
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by a short-term negative energy balance and small reductions in body mass. Previous 

research exploring the acute effect of calorie restriction prescribed a high level of 

calorie deficit (total energy intake ~800 kcal.day-1) and used obese participants 

unaccustomed to cycling, thus limiting the measurement of efficiency to work rates 

< 120 W and the application of the findings. Therefore, it was the main aim of this 

research to investigate the effect of short-term calorie restriction on RMR, gross and 

net efficiency, cycling economy and TT performance in club level cyclists.  

 

8.2 Methods 

Seventeen male participants who had been cycling for a minimum of two years gave 

their written informed consent and satisfactorily completed a health questionnaire, 

following approval from Canterbury Christ Church University ethics committee. The 

physical characteristics of the participants were as follows: age 42 ± 9 yrs, height 

1.79 ± 0.07 m, body mass 81.7 ± 9.5 kg, body fat 22.3 ± 5 %, V̇O2max 51.4 ± 8.4 

ml.kg.min-1, Wmax 371.0 ± 42 W.min-1, relative Wmax 4.57 ± 0.65 W.kg-1.min-1, 

classifying the cyclists as club level according to Wmax (Ansley and Cangley, 2009).  

Anthropometry: 

Anthropometric measures were conducted on every visit; height (m), body mass 

(kg), body density using 10 site skinfold (mm); Bicep, Tricep, Subscapular, 

Suprailiac, Supraspinale, mid-Axillary, Chest, Abdominal, Thigh, medial Calf by an 

ISAK accredited Anthropometrist. Body density was determined using the Durnin 

and Womersley (1974) four-site equation as it was shown to be the least variable 

measure and had the greatest validity when compared with the Bod Pod in Chapter 

7. Body density was converted to a body fat % using the Siri (1956) equation.  



132 
 

 

 

Experimental protocol: 

Participants visited the laboratory on four occasions, completing a preliminary  

incremental maximal test visit and three subsequent laboratory visits which included 

steady-state efficiency measurement and a 16.1 km TT. The conditions within the 

laboratory were maintained and recorded at; temperature, 17.87 ± 1 °C, humidity, 

62.4 ± 8.9 % and barometric pressure, 753 ± 8 mmHg. The intervention consisted of 

a randomised crossover design where participants either maintained their usual 

calorie intake (control) or consumed a hypocaloric balanced-deficit diet  

(intervention), which used the principles of portion control to reduce calorie intake 

by ~500 kcal.day-1 compared to their usual intake, without altering macronutrient 

ratios. A 500 kcal.day-1 deficit is considered moderate and at the lower range of the 

500-1000 kcal.day-1 deficit that is recommended to induce body mass and fat 

reduction (Hill, Cateracci and Wyatt, 2006). Both the dietary intervention and 

control periods were conducted for a total of 14 days each. Participants completed 

three steady-state efficiency/TT trials (trial 2-4) separated by each of the two week 

periods. During the control, participants were asked to maintain the same diet pattern 

noted in their food diary completed prior to the start of the study (Appendix 5). All 

exercise testing was conducted on an electromagnetically braked cycle ergomet er 

(SRM, Jülich, Germany) which was calibrated according to manufactures 

instructions prior to testing. The ergometer was adjusted to the participant’s road 

bicycle geometry and fitted with compatible pedals. Oxygen uptake (V̇O2, L.min-1), 

carbon dioxide production (V̇CO2, L.min-1) and respiratory exchange ratio (RER) 

were calculated using a metabolic cart breath-by-breath indirect calorimetry system 
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(Oxycon Pro, Jäeger, Carefusion, Hoechberg, Germany). Participants were 

instructed to refrain from consuming caffeine for 24 hours, undertaking strenuous 

exercise for 48 hours and arrive fully hydrated before each test (Pringle and Jones, 

2002; Jenkins et al., 2008).  

 

V̇O2max visit: 

An incremental exercise test to exhaustion was performed at the beginning to 

determine the highest minute power (Wmax) and maximal oxygen uptake (V̇O2max, 

L.min-1) over one minute. The protocol began at 150 W for 5 min and increased by 

5 W/15 s until a cadence > 60 revolutions per minute (rpm) could no longer be 

maintained despite standardised verbal encouragement. Participants were allowed to 

select their preferred cadence and instructed to remain seated. This test informed the 

sub-maximal starting intensity for the steady-state 50 % and 60 % Wmax efficiency  

measurement. A familiarisation 16.1 km TT was also conducted on trial one. 

 

Efficiency and TT visit: 

Resting metabolic rate (j.sec-1) was assessed with the participants in the supine 

position, wearing a heart rate monitor (Polar Wearlink, Polar Electro Oy, Kempele, 

Finland) and facemask for 20 minutes for the purpose of RMR, resting heart rate 

(HRR, beats.min-1) and net efficiency calculation. Resting metabolic rate and HRR 

were determined by the average 10 second data and 1 second data respectively  

between minutes 10-20 as it was shown to be the least variable in Chapter 7. 

Anthropometric data collection separated RMR and efficiency measurement. 

Participants cycled at three steady-state intensities for eight minutes each; 150 W, 50 

% and 60 % Wmax (Hopker et al., 2013). If the 50 % intensity was less than 150 W, 
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the order was altered to ensure a progressive increase in power output (this was the 

case for only one participant). During a standardised five minute recovery period 

after steady-state cycling but prior to the commencement of the TT, a finger prick 

blood sample was analysed with a portable clinical analyser (PCA) (i-STAT, 

Portable 200, Abbott, IL, USA). The PCA provided a basic blood panel which 

included; sodium (Na+), potassium (K+), chloride (Cl-), total bicarbonate (TCO2), 

blood urea nitrogen (BUN), glucose (Glu), haematocrit (Hct), acidity (pH) and 

partial pressure of carbon dioxide (PCO2). The 16.1 km self-paced time-trial 

detailed; a rolling start, data-restricted to distance covered (m) and for participants 

to remain seated. V̇O2, V̇CO2 and power were averaged during the last two minutes 

of each stage and for the duration of the TT. Gross, net efficiency and economy were 

calculated as outlined in Chapter 6.  

 

8.3 Data analysis 

Gross and net efficiency RER values were all ≤ 1.0, therefore no efficiency values 

were excluded from the efficiency calculations. Descriptive and analytical statistics 

were calculated using Excel, SPSS and Graph Pad Prism. The Shapiro-Wilk test was 

used to assess normality. Independent samples t-tests were used to compare between 

the randomised groups and environmental conditions. Paired samples t-tests 

determined significant differences between pre and post intervention body 

composition and energy expenditure calculations. Generalised estimating equations 

adjusted for the variance in logged TT economy due to the natural increase in 

economy as power increases (Nevill, 1997). The economy data were logged to 

reduce the variability of the data and align with previous recommendations 
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(Atkinson and Batterham, 2012). An alpha level of significance for all tests was set 

at 95 % (P ≤ 0.05).  

8.4 Results 

Sixteen male cyclists completed the study with one withdrawing due to injury. The 

cyclists habitual macronutrient ratios were as follows: CHO = 55.53 ± 7.42 %, FAT 

= 27.97 ± 7.15 % and PRO = 16.50 ± 3.72 % and did not change when comparing 

three days prior to pre, post and control testing (P > .05). There were no significant 

physiological grouping differences when comparing the cyclists that completed the 

intervention in the first 14 days and second 14 day period (P > .05) (Table 7.1).  

Table 8.1 An overall comparison of the participants that completed the 

intervention in the first verses the second intervention period.  

  
Intervention 1st 

Mean ± SD 

Intervention 2nd 

Mean ± SD 

N 7 9 

Age (yrs) 42 ± 9 42 ± 10 

Body mass (kg) 80.29 ± 10.88 83.22 ± 9.14 

SF Body fat (%) 21.82 ± 4.90 22.68 ± 5.92 

Bod Pod Body fat 

(%) 
22.33 ± 6.45 23.27 ± 6.51 

V̇O2max (ml.min-1) 4188.76 ± 474.49 4153.35 ± 614.42 

V̇O2max (ml.kg-1.min-1) 53.14 ± 10.19 50.13 ± 7.17 

Wmax (W.min-1) 377.08 ± 27.58 366.16 ± 51.27 

Wmax (W.kg-1.min-1) 4.77 ± 0.74 4.42 ± 0.56 

No significant differences were present between groups. Note: SD, standard 

deviation, N, number of participants, SF, skinfold, V̇O2max, maximal oxygen 

uptake, Wmax, maximum minute power.  
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Fourteen participants reduced their body mass when comparing pre to post dietary 

intervention, one did not change and one gained body mass with an overall 

significant reduction in body mass (-1.24 ± 0.98 kg; P < .001) (Table 8.2). There 

was also a significant reduction in body fat % (-0.64 ± 1.24 %, P < .05) and 

estimated fat mass (-0.81 ± 1.20 kg, P < .05), but no significant reductions in lean 

mass (-0.43 ± 1.06 kg, P > .05). The technical error of the measurement was < 5 % 

for all skinfold sites. When utilising a median split of the data, dividing participants 

into high and low responders based on body mass change, a reduction in gross 

efficiency at 60 % (-0.23 GE units)  was found in the participants with the greater 

body mass reduction (-2.48kg), compared to the lower weightloss group (-0.9 kg 

+0.46 GE units).  These differences in gross efficiency were not significantly 

different (P = 0.12).  Similar patterns were seen at 150 W, with a reduction of -0.54 

gross efficiency units in the -2.48 kg group, verses a gain of 0.65 gross efficiency 

units in the -0.9 kg group (P = 0.2). TT performance was lower -4.25 W in the -

2.48 kg group compared to -1.16 W in the -0.9 kg group, but was not significant (P 

= 0.66). 
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 Table 8.2 Individual changes in body mass (kg) pre and post short-term 

calorie restriction.  

Body mass (kg) 

Participant  Pre intervention  Post intervention  Change 

1 93.0 93.5 0.5 

2 90.9 90.9 0.0 

3 76.9 Withdrew … 

4 91.8 90.5 -1.3 

5 79.0 78.3 -0.7 

6 72.0 71.9 -0.1 

7 78.0 76.5 -1.5 

8 89.6 87.9 -1.7 

9 88.0 85.8 -2.2 

10 70.8 68.8 -2.0 

11 72.3 70.4 -1.9 

12 69.5 67.2 -2.3 

13 88.1 86.3 -1.8 

14 102.1 100.0 -2.1 

15 71.1 69.2 -1.9 

16 72.2 70.5 -1.7 

17 83.2 79.9 -3.3 

 

There were no significant differences in RMR, gross efficiency and net efficiency  

across all intensities (Table 8.3). Five blood samples out of thirty-two were lost due 

to blood clotting or air within the cartridge resulting in an invalid measurement. No 

significant differences were found between blood parameters when comparing pre 

to post-intervention with Hb showing a trend to increase (Pre: 15.1 ± 0.9 g/dL, Post: 

15.5 ± 0.9 g/dL, P = .058) as well as Hct values, but were not significant (Pre: 44.5 

± 2.8 %, Post: 46 ± 2.9 %, P > .05). No significant differences in exercising heart  
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rate were found across all intensities. There was no significant difference in TT 

power (Pre: 282 ± 36 %, Post: 281 ± 32 %) or TT power expressed relative to body 

mass (Pre: 3.45 ± 0.57 W.kg-1.min-1, Post: 3.51 ± 0.60 W.kg-1.min-1) (P > .05) but, 

there was a significant improvement in time-trial economy (P < .05).  

Table 8.3 The effect of short-term calorie restriction on resting metabolic rate, 
gross, net efficiency and economy.  

 
Intensity Pre intervention Post intervention Change 

RMR (j.sec-1) N/A 111.39 ± 23.01 109.78 ± 23.55 -1.61 

GE (%)  150 W (%) 21.50 ± 1.88 21.65 ± 2.02 0.15 

 50 % Wmax 22.28 ± 1.72 21.82 ± 1.33 -0.46 

 60 % Wmax  22.15 ± 1.15 22.16 ± 1.51 0.01 

NE (%) 150W (%) 25.48 ± 2.65 25.46 ± 1.95 -0.02 

50 % Wmax  25.71 ± 2.12 25.02 ± 1.39 -0.69 

60 % Wmax  24.94 ± 1.46 24.89 ± 1.62 -0.05 

EC (W.LO2) TT 76.26 ± 14.93 78.80 ± 15.46 2.54* 

Note: RMR, resting metabolic rate, GE, gross efficiency, NE, net efficiency, EC, 

economy (* = P < .05). 

Out of the nine participants that had the control phase first; four were able to maintain 

their mass within 0.1 kg, one reduced mass (-0.8 kg) and four gained mass (0.5, 1.0, 

1.0 and 3 kg). Out of the seven participants that conducted the dietary intervention 

in the first phase; three participants reduced their body mass further during the 

control period (-0.3, -0.6 and -0.6 kg), four participants gained mass (0.7, 1.1, 1.7 

and 2.2 kg) and with one participant gaining all of the body mass reduced during the 

dietary intervention. None of the participants finished the control period at a great er 

mass when compared to pre intervention. Combining the eight participants which 

gained mass (average increase 1.4 kg) in either the pre- or post-control period, gross 
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and net efficiency across intensities did not show significant differences (P > .05). 

However, there was a tendency for gross efficiency to reduce when measured at 150 

W (Pre: 22.27 ± 1.49, Post: 21.49 ± 1.39, P = .08) and the 60 % intensity (Pre: 22.72 

± 0.80 %, Post: 22.20 ± 0.81, P = .06). Time-trial economy did not show any 

differences during the control period where participants gained mass (Pre: 76.37 ± 

12.98, Post: 76.71 ± 13.07 W.LO2
-1.min-1, P > .05).   

 
 
8.5 Discussion 

Despite significant changes in body mass and fat mass, two weeks of moderate 

calorie restriction did not significantly affect RMR, gross and net efficiency or 

laboratory TT power. This finding could provide a level of reassurance that if a 

participant reduced body mass by 2.14 % over a two week period between repeated 

laboratory testing using the methods outlined, that it would have little effect on 

efficiency measurement at sub-maximal intensities. Consequently previous cycling 

efficiency research which may have seen small changes in body mass between 

repeated testing are unlikely to be adversely affected by short-term body mass 

change. Discounting the participants that either gained mass or changed within the 

typical error (0.66 kg), there was a mean reduction of -1.88 kg; this was substantially  

greater than the level that was initially predicted in Chapter 7 (-0.52 kg.week-1). The 

reason for the conservative estimation was due to the long-term study in which the 

calculations were based (Amati et al., 2008), not reporting interim mass reduction 

and therefore a linear relationship assumed. Research has however shown that mass 

reduces at a faster rate during the initial period of calorie restriction and that the rate 

tends to slow as the duration of the calorie restriction continues (Heymsfield et al., 

2007).  
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There was a large distribution of body mass reduction, ranging from -0.1 to -3.3 kg 

during the intervention period. This is a frequent occurrence in dietary interventions 

and has led to the categorisation of participants as low and high responders in order 

to better understand the reasons behind the variability (Piccolo et al., 2015). 

Irrespective of the variation the mean estimated body fat indicated a 0.61 % reduction 

equivalent to 0.87 kg reduction in fat mass. This suggested that a considerable 

portion of the mass reduced was indeed caused through a reduction in fat and that 

the intervention was implemented successfully. However, this also meant that 1 kg 

of mass was unaccounted, with reductions in visceral fat (Chaston and Dixon, 2008), 

varying hydration (Fairburn and Cooper, 2014) and reduced carbohydrate levels 

(Kreitzman, Coxon and Szaz, 1992) considered to be the most likely explanation for 

the shortfall. Haematocrit levels can provide an indication of hydration status and as 

blood Hct showed a tendency to increase from 44.5 % to 46 % (albeit not statistically  

significantly) slight dehydration may have been present in the post-trials. Based on 

mean height and mass data in this study an absolute 1.55 % reduction in plasma 

volume (hypovolemia) equates to a 0.231 L (8 %) reduction in plasma water content, 

based on the prediction equation of total blood volume from Nadler (1962) and on 

the principle that plasma volume consists of 92 % water (Feher, 2012).  

ሻܮሺ ݁݉ݑ݈݋ݒ ݀݋݋݈ܾ ݈ܽݐ݋ܶ  = ሺͲ.͵͸͸ͻ × ݉ଷ ሻ + ሺͲ.Ͳ͵ʹͳͻ × ݇݃ሻ + Ͳ.͸ͲͶ 

 

Equation 23. Total blood volume estimation equation (Nadler, 1962 cited in 

Gibon, Courpied and Hamadouche, 2013).  

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Piccolo%20BD%5BAuthor%5D&cauthor=true&cauthor_uid=25833772
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chaston%20TB%5BAuthor%5D&cauthor=true&cauthor_uid=18180786
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dixon%20JB%5BAuthor%5D&cauthor=true&cauthor_uid=18180786
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This reduced the amount of unexplained body mass to 0.77 kg with a proportion of 

this likely explained with intracellular fluid reduction and to a lesser extent 

interstitial fluid reduction (Minson & Halliwill 2000). It is possible that calorie 

restriction increases the reliance of stored glycogen during the intervention phase, 

which can result in lower CHO availability and oxidation during steady-state and TT 

performance testing, however there was no indication of a reduction in RER levels 

signifying that carbohydrate utilisation during the trial was not affected. Blood 

glucose was slightly higher in the post-trial by 6.5 ml/dL (7 %) suggesting that if 

there was a reduction in carbohydrate storage that it did not affect carbohydrate 

availability in the bloodstream, or performance power during the 16.1 km TT. It is 

also important to note that variations in mass reduced could also be influenced by 

varying degrees of the participants to adopt the dieatary restriction instructions.  

 

The combined duration of steady-state cycling and TT was quite short with an 

average total time spent cycling ~ 41 minutes. It is quite possible that if carbohydrate 

stores were depleted it would have a larger influence over a longer duration 

(Pitsiladis and Maughan, 1999). Furthermore it is also logical to consider that lean 

mass did not change and therefore power would also unlikely improve based on the 

strong relationship between lean thigh volume (r = 0.93) and lower limb volume (r 

= 0.92) to predict maximal power in cycling (Martin, Davidson and Pardyjak, 2007).  

It is interesting that half of the participants that conducted the control phase first, 

were able to maintain their mass within a very tight range of just 0.1 kg, but that the 

other half of participants had large increases in mass above the typical error reported 

in Chapter 7. The changes in body mass over the control phase are symptomatic that 

body mass in some participants is stable and in others fluctuates considerably , 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Martin%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=19255451
http://www.ncbi.nlm.nih.gov/pubmed/?term=Martin%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=19255451
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pardyjak%20ER%5BAuthor%5D&cauthor=true&cauthor_uid=19255451
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despite a seemingly weight stable population. This is indicative that weight stability  

is an individualistic phenomenon with varying degrees of tolerances for energy  

imbalance. This individualistic concept of weight stability is commonly reported and 

has been attributed to both genetic factors (Matsuo et al., 2009) and body 

composition differences (Hall, 2007). By reassessing the participants after the 

intervention and again after the control period it provided an insight as to the 

direction and speed of mass change after dietary restrictions are removed. The 

majority of participants re-gained a proportion of the mass that was reduced, which 

could provide evidence of the homeostatic feedback mechanism ensuring mass 

maintenance (Hammid, 2009), alternatively the mass gain could also be explained 

by rehydration and replenished carbohydrate stores. Three participants who 

completed the intervention first reduced their mass even further, with two recording 

a body mass change approximately one CV % (-0.6 kg relative to lowest CV % = 

0.54 kg) and the other well within the noise of the measurement (-0.3 kg). 

Considering all were supposed to be in the control phase and following guidelines, 

it is possible that not all adhered strictly to those guidelines, despite written and 

verbal communication. It is likely that there will be this type of variability in 

response to future intervention studies which need to be considered within the 

analysis of data. This point is further highlighted by not all of the participants able 

to follow the dietary intervention, apparent with 19 % of the 16 participants that 

completed the study unable to reduce body mass greater than the typical error; these 

are key factors to consider when designing and recruiting for longitudinal studies 

with dietary manipulation.  

Resting metabolic rate was not affected by two weeks of calorie restriction, with a 

nonsignificant 1.45 % reduction well within the typical error of the measurement 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Matsuo%20T%5BAuthor%5D&cauthor=true&cauthor_uid=19543210
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(11.03 %). Reductions in RMR have been reported during more severe calorie 

restriction and over longer periods (Dulloo & Jacquet, 1998) with research 

suggesting that a reduction in fat free mass is a key contributing factor (Zurlo, 

Larson, Bogardus and Ravussin, 1990). As there was no significant reduction in lean 

mass, combined with a consistent RMR the results suggest that the mass was indeed 

reduced in accordance with the moderate restriction that has been shown to have 

little initial effect on RMR (Foster et al., 1990).  

Gross and net efficiency also appeared to be unaffected by the intervention with 

results from all steady-state intensities within the typical error of the measurement 

(Chapter 7). This is contrary to long-term studies which have reported large changes 

in efficiency with calorie restriction and body mass reduction in participants 

unaccustomed to cycling (Amati et al., 2008). It is probable that the combination of 

the short duration of the intervention and the use of participants accustomed to 

cycling could be reasons for these results. This finding of unchanged submaximal 

cycling efficiency in combination with stable performance power would suggest that 

training intensity (up to 76 % Wmax) would not be affected by short-term moderate 

calorie restriction.  

An unexpected finding as a result of some of the participants gaining mass during 

the control period, was that gross efficiency reduced by 5.5 % at the 150 W intensity 

and reduced by 2.3 % at the 60 % intensity. Due to the lack of statistical power 

significant differences were not found, but the change in gross efficiency at 150 W 

was above the typical error of 4.67 % reported in Chapter 7. This suggests that mass 

increase could not only have a negative effect on efficiency, but could also have 

greater potency due to the mass increase being smaller yet having a larger effect on 

efficiency.   

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Dulloo%20AG%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Jacquet%20J%22%5BAuthor%5D
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TT economy was the only energy expenditure calculation to improve and therefore 

provided the only indication that energy expenditure has the potential to reduce 

following calorie restriction in participants accustomed to cycling. It must be 

acknowledged that the exercise intensity during the TT was 76% of Wmax and 

although remained relatively constant, it violated the assumption of steady-state and 

would have resulted in an increased anaerobic energy contribution. Nevertheless 

economy measurement currently provides the best indicator at performance 

intensities and is argued to provide a valid insight into the rate of energy production 

(Faria, Parker and Faria 2005). Despite the improvement in economy the participants 

were not able to utilise the energy saving to increase exercise capacity during the TT 

by increasing power output. This provides an interesting insight that might suggest 

exercising energy expenditure may not be such a key marker of laboratory  

performance as has been eluded to previously (Joyner and Coyle 2008).  

 

8.6 Conclusion  

These results suggest that body mass can be reduced acutely with moderate calorie 

restriction, without hindering steady-state efficiency or 16.1 km TT performance in 

participants accustomed to cycling. This study was explicitly conducted in a 

controlled laboratory environment, however due to the nature of body mass having 

a more likely profound influence in real world TT cycling (Jobson et al., 2007), it 

remains to be seen if accurate efficiency and performance measurement can be 

conducted in the field environment. The 50 % intensity provided similar efficiency  

results to the 60 % Wmax intensity and had greater variability; therefore the 50 % 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Jobson%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=17127577
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intensity provided little additional information and was not included in the steady-

state protocol for Chapters 9 and 10. 
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CHAPTER 9: A FIELD AND LABORATORY COMPARISON OF GRO SS 
EFFICIENCY AND PERFORMANCE 

 

Aspects of the following chapter have been presented externally: Saunders, S. 

C., Brown, M. B and Coleman, D. A. (2014). A laboratory and field comparison of 

gross efficiency at an absolute, relative and performance intensity. Presented at: 

American College of Sports Medicine (ACSM), 27-30th May 2014, Orlando, USA. 

 

9.1 Introduction 

Cycling efficiency and economy are frequently measured in a laboratory  

environment on a fixed cycle ergometer with an artificially stable and controlled 

environment. Road races however, are conducted in the outdoor environment with 

changeable intensities, gradients and enviromental conditions (Atkinson, 

Davison, Jeukendrup and Passfield, 2003; Swain, 1998). Although the laboratory  

provides greater control of the environmental conditions (Akkermans, Sillen, 

Wouters and Spruit, 2012) resulting in greater methodological consistency ; 

exploring the effects of the more varied field environment on energy expenditure 

with road-bicycles may improve the understanding of the factors that influence 

efficiency, the relevance of efficiency measurement and its place within road cycling 

performance modelling (Joyner and Coyle, 2008; Jobson et al., 2012). With the 

advancement of reliable portable and wireless technology in both oxygen uptake 

(Rosdahl et al., 2010) and power measurement (Bertucci et al., 2005), field testing 

is a more practical and realistic alternative for sport scientists which were previously  

limited to a laboratory environment (González-Haro et al., 2007). Currently field 

research has focussed on comparing performance power during time-trials (Smith, 

Davison, Balmer and Bird, 2001), seated and standing positions (Harnish, King 

http://create.canterbury.ac.uk/12679/
http://create.canterbury.ac.uk/12679/
http://www.ncbi.nlm.nih.gov/pubmed/?term=Atkinson%20G%5BAuthor%5D&cauthor=true&cauthor_uid=14579871
http://www.ncbi.nlm.nih.gov/pubmed/?term=Atkinson%20G%5BAuthor%5D&cauthor=true&cauthor_uid=14579871
http://www.ncbi.nlm.nih.gov/pubmed/?term=Davison%20R%5BAuthor%5D&cauthor=true&cauthor_uid=14579871
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jeukendrup%20A%5BAuthor%5D&cauthor=true&cauthor_uid=14579871
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jeukendrup%20A%5BAuthor%5D&cauthor=true&cauthor_uid=14579871
http://www.ncbi.nlm.nih.gov/pubmed/?term=Smith%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=11414669
http://www.ncbi.nlm.nih.gov/pubmed/?term=Smith%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=11414669
http://www.ncbi.nlm.nih.gov/pubmed/?term=Davison%20RC%5BAuthor%5D&cauthor=true&cauthor_uid=11414669
http://www.ncbi.nlm.nih.gov/pubmed/?term=Davison%20RC%5BAuthor%5D&cauthor=true&cauthor_uid=11414669
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bird%20SR%5BAuthor%5D&cauthor=true&cauthor_uid=11414669
http://www.ncbi.nlm.nih.gov/pubmed/?term=Harnish%20C%5BAuthor%5D&cauthor=true&cauthor_uid=17165053
http://www.ncbi.nlm.nih.gov/pubmed/?term=Harnish%20C%5BAuthor%5D&cauthor=true&cauthor_uid=17165053
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and Swensen, 2007) and comparing up-hill and level cycling (Millet, Tronche 

and Candau, 2002). Oxygen uptake kinetics but more specifically, cycling efficiency  

and economy are amongst the latest physiological variables to be tested in the field 

environment (Millet, Tronche, Fuster and Candau, 2002; Bertucci, Betik, Duc and 

Grappe, 2012; Nimmerichter, Haselsberger and Prinz, 2014). It has been reported 

that gross efficiency and cycling economy are higher in the field (GE: 12 % and CE: 

11 %) than when using a bicycle on a fixed Axiom ergometer in the laboratory  

(Bertucci et al., 2012). However, these comparisons may be ergometer specific as 

previous research has suggested that discrepancies exist when comparing different 

laboratory ergometers due to differences in crank inertial load and gearing which 

limits the application of the findings of Bertucci, Betik, Duc and Grappe (2012) to 

the Axiom ergometer (Guiraud et al., 2008). Consequently, there is a need to explore 

the differences with a stationary cycle ergometer (SRM) which is more frequently  

used and considered the new gold standard (Hopker, Myers, Jobson, Bruce and 

Passfield, 2010) to validate laboratory measures of efficiency and economy. 

Standardising conditions for repeat measurements is relatively straightforward in the 

laboratory setting however this is more complex in the field. A previous wind cut off 

threshold < 3.0 m.s-1 has been previously applied when comparing efficiency in the 

field, despite little justification (Bertucci, Betik, Duc and Grappe, 2012). Therefore, 

it was considered advantageous to assess the validity of this threshold and compare 

the effect of wind speed on efficiency and economy measurement in the field. It was 

the aim of this study to investigate gross efficiency at an absolute, relative intensity 

and economy during a performance TT in both a field and laboratory environment. 

It was hypothesised that there would be differences in gross efficiency and economy 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Swensen%20T%5BAuthor%5D&cauthor=true&cauthor_uid=17165053
http://www.ncbi.nlm.nih.gov/pubmed/?term=Millet%20GP%5BAuthor%5D&cauthor=true&cauthor_uid=12370567
http://www.ncbi.nlm.nih.gov/pubmed/?term=Millet%20GP%5BAuthor%5D&cauthor=true&cauthor_uid=12370567
http://www.ncbi.nlm.nih.gov/pubmed/?term=Candau%20R%5BAuthor%5D&cauthor=true&cauthor_uid=12370567
http://www.ncbi.nlm.nih.gov/pubmed/?term=Millet%20GP%5BAuthor%5D&cauthor=true&cauthor_uid=12370567
http://www.ncbi.nlm.nih.gov/pubmed/?term=Millet%20GP%5BAuthor%5D&cauthor=true&cauthor_uid=12370567
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fuster%20N%5BAuthor%5D&cauthor=true&cauthor_uid=12370567
http://www.ncbi.nlm.nih.gov/pubmed/?term=Candau%20R%5BAuthor%5D&cauthor=true&cauthor_uid=12370567
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertucci%20WM%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertucci%20WM%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Duc%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Duc%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Grappe%20F%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertucci%20WM%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertucci%20WM%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertucci%20WM%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Duc%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Duc%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hopker%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20665423
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hopker%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20665423
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jobson%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=20665423
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jobson%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=20665423
http://www.ncbi.nlm.nih.gov/pubmed/?term=Passfield%20L%5BAuthor%5D&cauthor=true&cauthor_uid=20665423
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertucci%20WM%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertucci%20WM%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Duc%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Duc%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
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between field and laboratory measurement but, that the two conditions would be 

closely correlated.     

 

9.2 Methods 

Twenty-eight male participants were recruited from local cycling clubs (see Table  

9.1) and gave written informed consent following approval from Canterbury Christ  

Church University ethics committee. The participants were classified as club level 

cyclists based on their Wmax from the V̇O2max test (Ansley and Cangley, 2009). 

Table 9.1 Participant characteristics. 

N = 27* Mean ± SD 

Age (years) 41 ± 11 

Stature (m) 1.79 ± 0.06 

Mass (kg) 79.9 ± 12.1 

Body fat (%) 19.2 ± 5.6 

V̇O2max (L.min-1) 3.50 ± 0.65 

Wmax (W.min-1) 368 ± 47 
Note: N, number, * = One participant was excluded due to power file corruptions, 

V̇O2max, Maximal oxygen uptake, Wmax, maximum minute power.  

 

The testing occurred over three separate testing days with participants firstly 

completing a laboratory based incremental test to exhaustion (V̇O2max) with the field 

and laboratory efficiency/economy testing completed in a randomised order 7 ± 2 

days apart. Participants were required to refrain from caffeine for 24 hours and 

strenuous exercise in the 48 hours prior to testing. Participants were also required to 

complete a 72 hour food and exercise diary preceding the first visit and to keep  

nutrition and activity similar for the same period prior to testing. Stature (m), body 

mass (kg) and 4-site skinfold (Durnin and Wormesley, 1974) were measured on the 
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first visit. Temperature, humidity and barometric pressure were measured 

immediately prior to testing.  

 

V̇O2 max: 

Laboratory tests were conducted on a cycle ergometer (SRM, Schoberer Rad 

Messtechnik, Welldorf, Germany) that was fitted with the participant’s clipless 

pedals and adjusted to match their road bicycle. The protocol started at 150 W for 5 

minutes as a warm-up and immediately increased by 5 W/15 seconds until volitional 

fatigue or a cadence of > 60 rev.min-1 could no longer be maintained. The maximal 

minute power was determined by the highest average power over one minute and 

used to calculate the relative 60 % steady-state intensity. Breath-by-breath gases 

(Oxycon Mobile, Jäeger, Würzburg, Germany) were collected during the V̇O2max test 

as a habituation for the proceeding trials and to classify the participants maximal 

oxygen uptake.  

 

Laboratory steady-state efficiency and time-trial: 

The efficiency steady-state consisted of an absolute intensity at 150 W and a relat ive 

intensity at 60 % Wmax for 8 minutes each, totalling 16 minutes prior to the 

completion of the TT. Participants were instructed to maintain the same cadence 

throughout the steady-state cycling while the SRM ergometer maintained the pre-

defined power which adjusted for small variances in cadence. Following a five 

minute rest period and a rolling start, the participants conducted a 16.1 km TT with 

the SRM in free cycle mode. Participants had free use of the gears to control power, 

were instructed to complete the TT as fast as possible and remain seated throughout 

(Grappe, Candau, Belli and Rouillon, 1997). Gases were collected throughout 
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steady-state and TT cycling, with the average of the last two minutes of each stage 

used to calculate efficiency, and gases averaged over the duration of the TT for 

economy calculation (See Chapter 6).    

 

Field steady-state and time-trial: 

Field tests were conducted on a closed-road circuit (distance: 1.359 km/lap), ridden 

in a clockwise direction. The participant’s road bicycle was fitted with a rear wheel 

power device (PowerTap Pro, CycleOps, Madison  USA) and display computer 

(Joule GPS Promotion, CycleOps PowerTap, Madison, USA). Both tyre pressures 

were standardised (120 psi) (Grappe et al., 1999) and power offsets zeroed. 

Following a 30 minute equipment warm-up period the Oxycon Mobile was 

calibrated in the same manner as the laboratory tests immediately prior to testing, 

the facemask was secured to the participant and analyser placed in a harness with 

both modules resting on the back of the participant with a total mass of 0.95 kg 

(Appendix 9). Participants were previously familiarised with the circuit and 

completed three laps self-regulating power at 150 Watts and three laps at 60 % Wmax. 

Following a five minute rest period the participants began the TT with a rolling start  

and completed 16.1 km (11.85 laps) as fast as they could with time, power and speed 

data obscured. Participants were instructed to remain seated throughout the TT. 

Wind, temperature and humidity data were also recorded from the local weather 

station. Efficiency and economy sampling were conducted with the same criteria as 

the laboratory tests.  
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9.3 Data analysis 

Descriptive and analytical statistics were calculated with Excel, SPSS and Graph pad 

prism. Outdoor power was adjusted by +2.7 % based on the study by Bertucci et al. 

(2005) and in accordance with validity testing conducted in the laboratory (see 

Appendix 8). The data was assessed for normality with the Shaprio-wilk test. The 

field variables that were considered not normally distributed were: 150 W energy  

expenditure, TT energy expenditure and TT V̇O2 (P < .05). The laboratory measures 

that were considered not normally distributed were; 150 W, 60 % power and 

humidity (P <.05). Consequently, non-parametric tests were conducted when 

performing singular comparisons (related samples Wilcoxon Signed Rank) or 

correlations (Spearman rank tests) for the above variables and paired samples t-tests 

and Pearsons product moment correlations for parametric data. Pearsons product-

moment correlation analysis and linear regression were used to compare TT powers 

in the laboratory and field environment (Hopkins, 2004). To determine the 

differences/bias between laboratory and field conditions, limits of agreement were 

determined with logged power at all three intensities (Nevill and Atkinson, 1997; 

Bland and Altman, 1986). Generalised estimating equations (GEE) were used to 

correct for the differences in power across all workloads by adjusting for energy  

expenditure, for gross efficiency and V̇O2 for economy (Nevill, 1997); they were 

also performed with cadence, temperature and humidity as additional covariates. 

Generalised estimating equations are robust against violations of normality and 

independence of variables, e.g repeated measures, or several measures taken from 

the same participant (Ziegler, Kastnre and Blettner, 1998). To assess the validity of 

disregarding field data, if the average wind was > 3 m.s-1, all data was analysed 

regardless of wind speed and then divided into two groups, ≤ 3 m.s-1 and > 3 m.s-1 
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average wind speed. For the purpose of correlation analysis of gross efficiency , 

power and raw energy expenditure at 150 W and 60 % intensities were log 

transformed with a natural log (LN). Time-trial V̇O2 and power were also log 

transformed (LN) for economy analysis. Covariate corrected data was also used to 

establish relationships with repeated measures analysis (Bland and Altman, 1995).  

 

9.4 Results  

Missing and excluded data files included; one TT gas file due to an occlusion of the 

sampling line, two TT power files due to corruption and one field 150 W power file 

was excluded on the basis that it was 87 W above target power.  

 

Environmental conditions: 

The environmental conditions for both the laboratory and field tests can be seen in 

Table 9.2. Temperature, humidity and barometric pressure were significant ly  

different in the field compared to the laboratory (P < .001).  

 
Table 9.2 Descriptive environmental conditions.  

Environmental parameters  Laboratory Field 
Differenc

e 

Temperature (°C) 22.3 ± 2.1 
16.9 ± 

6.0 
-5.4** 

Relative humidity (%) 53.1 ± 8.4 
79.8 ± 

7.0 
26.7** 

Atmospheric pressure (mmHg) 867 ± 7 1016 ± 8 149** 

Air speed (m.s-1) … 5.1 ± 2.9 … 
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Gust (m.s-1) … 6.7 ± 4.4 … 

Note: ** = P < .001.  

 

Power: 

The participants were able to maintain a similar absolute 150 W (Lab: 147 ± 5 W, 

Field: 154 ± 15 W) and relative 60 % power (Lab: 218.1 ± 25.7 W, Field: 209.4 ± 

26.9 W) in the laboratory compared to the field environment (P > .05) (Figure 9.1). 

The limits of agreement for 150 W were 1.025 x/ 1.113 and 60 % power were 0.999 

x/ 1.071, both were found to not be significant with an equivalent bias of  ̴ 4 W at 

150 W and  ̴  -2 W at 60 % in the field condition (P > .05). The limits of agreement 

for TT power were 0.962 x/ 1.096. The bias was equivalent to  ̴  -10 W in the field 

condition compared to the laboratory (P < .001) (Figure 9.2). There was also a 

significantly larger within trial power variation (SD) during the field TT compared 

to the laboratory (Field: 49 W, Lab: 31 W, P ≤ .001). There was also a significant, 

high positive correlation between TT power in the laboratory and the field (r = 0.80, 

r2 = 0.64, P < .001) (see Figure 9.3). 
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Figure 9.1 A comparison of laboratory absolute power at 150 W, 60 % maximum 

minute power (Wmax), during TT performance and field power determined with 

limits of agreement bias. Note:         = Laboratory,         = Predicted field, ** = P ≤ 

.001.  

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 9.2 The limits of agreement between laboratory and field TT power 

(Watts.min-1).  

 

 

 

 

 

 

 

 

 

Figure 9.3 The relationship between time-trial (TT) power in the field and 

laboratory (P < .001). 
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Cadence: 

Cadence was significantly lower in the field compared with laboratory across all 

intensities (150 W Lab: 91 ± 9, Field: 82 ± 10, 60 % Lab: 93 ± 9, Field: 85 ± 10, TT 

Lab: 97 ± 8, Field: 88 ± 9, rev.min-1, P < .001 in all cases, see Figure 9.4).  
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Figure 9.4 A comparison of field and laboratory cadence at 150 W, 60 % maximal 

minute power (Wmax) and during the time-trial. Note:          = Laboratory,         = 

Field and ** = P < .001.      

 

Efficiency and Economy: 

Gross efficiency in the field was not significantly different (P > .05) compared to 

laboratory testing at 150 W. Field gross efficiency was significantly lower compared 

to the laboratory at 60 % Wmax (P = .003). Cycling economy during the time-trial 

was not significantly different between the two conditions (P = .09). Correcting for 

cadence as well as energy expenditure had no effect on efficiency and economy 

significance classification (150 W: P = 0.849, 60 %: P = .036, TT: P = 0.272). 
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Correcting for energy expenditure, cadence, temperature and humidity resulted in no 

significant differences across all workloads (150 W: P = 0.934, 60 %: P = 0.561, TT: 

P = .065, see Table 9.3). 

Table 9.3 The results from the efficiency and economy generalised estimating 
equations (GEE). 

Covariate Intensity 
Laboratory 

Mean ± SD 

Field 

Mean ± SD 

Difference 

Mean ± SD 

EE 

150 W (GE %) 18.68 ± 4.37 18.7 ± 3.88 0.02 

60 % (GE %) 20.41 ± 2.16 19.02 ± 1.87 -1.39** 

TT (EC W.V̇O2) 76.62 ± 2.10 73.52 ± 1.47 -3.1 

     

EE & CAD 

150 W (GE %) 18.62 ± 4.36 18.76 ± 3.88  0.14 

60 % (GE %) 20.31 ± 2.15 19.11 ± 1.96 -1.2* 

TT (EC W.V̇O2) 76.18 ± 5.62 73.95 ± 4.54 -2.23 
     

EE, CAD, 

TMP & 

HUM 

150 W (GE %) 18.73 ± 4.75 18.66 ± 4.11 -0.07 

60 % (GE %) 19.98 ± 3.29 19.43 ± 3.82 -0.55 

TT (EC W.LO2) 78.19 ± 11.96 71.99 ± 10.45 -6.2 

Abbreviations: SD, standard deviation, EE, energy expenditure, CAD, cadence, 

TMP, temperature, HUM, humidity, GE, gross efficiency, EC, economy. Note: * = 

P < .05, ** = P < .001.   

 

Ventilation (VE) was significantly lower in the laboratory compared with the field 

across all conditions when correcting for power and including all trials (see Figure  

9.5). There were no differences in RER across all intensities when correcting for 

power (P > .05).   
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Figure 9.5 A comparison of field and laboratory ventilation at 150 W, 60 % Wmax 

and during the TT. Where;      = Laboratory,     = Field. Note: ** = P < .001.   

 

Thirteen field and laboratory comparisons were conducted with an average wind 

speed ≤ 3.0 m.s-1 with fourteen > 3.0 m.s-1 (see Table 9.4 for details on environmental 

conditions). Combining the 150 W and 60 % intensities repeated observation 

correlation analysis determined a significant positive correlation in gross efficiency  

between the two conditions (r = 0.406, P = 0.035).  This relationship was improved 

when trials with wind speeds > 3 m.s-1 were excluded (r = 0.651, P = .016). When 

economy values across intensities were combined there was a significant positive 

correlation of very low strength between laboratory and field economy regardless of 

wind speed (r = 0.27, P = .049). This relationship was improved when trials with 

wind speeds > 3 m.s-1 were excluded (r = 0.35, P = .039).  Excluding trials with wind 
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speeds > 3.0 m.s-1 had little effect to the differences in VE and RER between the 

conditions.  

 

Table 9.4 Descriptive environmental conditions separated by a 3.0 m.s-1 wind 

speed threshold.   

Environmental  parameters  Field ≤ 3.0 m.s-1 Field > 3.0 m.s-1 

Number 13 14 

Temperature (°C) 16 ± 6 17 ± 6  

Humidity (%) 80 ± 7  79 ± 9 

Barometric pressure (mmHg) 1019 ± 7  1012 ± 5  

Air speed (m.s-1) 1.4 ± 0.4 4.3 ± 1.5  

Gusts (m.s-1) 1.8 ± 0.7 5.7 ± 2.8 

 

9.5 Discussion 

The main aim of this study was to assess the differences between field and laboratory  

measures of efficiency and economy in cyclists. Gross efficiency at 150 W did not 

show any differences between the two conditions which is consistent with previous 

findings associated with measuring efficiency at low work rates (Poole & Henson, 

1988). This could also be due to the higher variation and therefore lower sensitivity  

at 150 W in comparison to the higher relative powers, demonstrated in both Chapter  

and 8. Only the relative 60 % Wmax intensity was considered significantly different 

(P = .003), with field gross efficiency being 6.8 % lower than laboratory and 

equivalent to an extra 15 W of power generation in the laboratory for a comparable 

energy expenditure in the field. However, the cyclists’ cadence was significantly ~ 

9 % lower in the field compared to the laboratory across all workloads. Preferred 

cadence in the laboratory has been previously reported by Jobson et al., (2012) to be 

within 90-100 rpm, the cyclists fall within this typical range during laboratory but 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Poole%20DC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Henson%20LC%22%5BAuthor%5D


159 
 

not field cycling across all intensities. This difference in cadence combined with 

absolute metabolic differences, have been attributed to flywheel cycle ergometers 

having greater inertia at faster flywheel and pedal speeds (Voigt and von Kiparski, 

1989; Hansen, Jorgensen, Jensen, Fregly and Sjogaard, 2002) Interventions 

exploring the physiological cost of a reduction in cadence in laboratory studies (80 

vs. 100 rev.min-1) have reported a 7 % higher efficiency with the reduction in 

movement speed (Stebbins, Morre and Casazza, 2014). Although this has not been 

demonstrated with field based studies to date, it was considered important to account 

for this by adding cadence as a covariate in the analysis because of the laboratory -

based data. This inclusion reduced the difference in efficiency between laboratory  

and field measures although differences still remained statistically significant (5.9 

%, P = .036). Reporting a lower efficiency in the laboratory is contrary to the study 

by Bertucci, et al. (2012) who reported a 12 % higher gross efficiency in the field. It 

was proposed that the ergometer used in their study did not have a flywheel 

mechanism and therefore had a lower crank inertial load was the main reason for the 

reduced efficiency on their ergometer. Crank inertial load was described as having a 

positive relationship with gross efficiency (Bertucci et al., 2012) and as the SRM 

ergometer in this study had a flywheel it is postulated that the crank inertial load was 

higher and therefore could possibly account for the differences noted in this current 

study. Crank inertial load is one of a number of biomechanical factors that could 

potentially account for the lower field efficiency in this study, the others include; 

gearing (Guiraud et al., 2008), body position (Fintelman, Sterling, Hemida and Li, 

2015) and stabilisation during road cycling.  

Biomechanical factors such as body position and aerodynamic resistance can be 

affected by both wind speed and yaw angle (Fintelman, Sterling, Hemida and Li, 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertucci%20WM%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertucci%20WM%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fintelman%20DM%5BAuthor%5D&cauthor=true&cauthor_uid=25996563
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fintelman%20DM%5BAuthor%5D&cauthor=true&cauthor_uid=25996563
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hemida%20H%5BAuthor%5D&cauthor=true&cauthor_uid=25996563
http://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20FX%5BAuthor%5D&cauthor=true&cauthor_uid=25996563
http://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20FX%5BAuthor%5D&cauthor=true&cauthor_uid=25996563
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2014), which are just two of the many environmental conditions which are 

notoriously difficult to predict and standardise with significantly different conditions 

being reported in this study (P < .001) and by González-Haro, Galilea, Drobnic and 

Escanero (2007). By adding temperature and humidity as additional covariates, it 

resulted in none of the intensities being considered significantly different and 

brought the mean difference to just 2.7 % for the 60 % Wmax intensity. Adding 

temperature and humidity as covariates resulted in ~50 % reduction of the 

differences in gross efficiency compared to only correcting for energy expenditure 

and cadence. Changes in environmental conditions have been shown to influence 

gross efficiency with Hettinga et al., 2007) reporting a reduction of a 0.9 gross 

efficiency unit (equivalent to a 4.4 % reduction), suggesting that efficiency should 

have been lower in the warmer laboratory conditions. The negative effects of a higher 

temperature have been theorised to be caused by an increased priority to dissipate 

heat with increased periphery blood flow (Bertucci, Arfaoui, Janson and Polidori, 

2013). The difference in efficiency reported by Hettinga et al. (2007) was however, 

with a large 20°C increase in temperature, and it is possible that the much smaller 

increase in temperature seen in this study was not sufficient to outweigh other 

physiological and biomechanical factors. 

Bertucci et al. (2012) described a wind speed cut off threshold during field testing 

of < 3 m.s-1, while other field comparisons have failed to state any such criterion 

(Nimmerichter, Haselsberger and Prinz, 2014; Mooses, Tippi, Mooses, Durussel and 

Mäestu, 2015). Despite the field tests being separated by the wind speed threshold 

the average temperature, humidity and atmospheric pressure of each group were very  

similar (Table 9.3) resulting in an equivalent comparison of the environmental 

conditions. The relationship between gross efficiency and economy in the laboratory  

mailto:Hettinga,%20F.J.
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertucci%20W%5BAuthor%5D&cauthor=true&cauthor_uid=23923873
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertucci%20W%5BAuthor%5D&cauthor=true&cauthor_uid=23923873
http://www.ncbi.nlm.nih.gov/pubmed/?term=Janson%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23923873
http://www.ncbi.nlm.nih.gov/pubmed/?term=Janson%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23923873
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertucci%20WM%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
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and field was improved by introducing this wind threshold and this appears to be a 

realistic and justifiable cut off for field data collection.   

TT mean power was 9 % lower in the field condition compared to the laboratory (P 

< .001).  This contradicts a study by Smith et al. (2001) in which a 3 % higher mean 

power in field based 40 km TT compared to the laboratory was reported. Smith et al. 

(2001) also reported that field performance time was 5% slower in the field despite 

the higher power. This discrepancy has been linked to body size, air resistance and 

gradient (Jobson et al., 2007; Peterman, Lim, Ignatz, Edwards and Byrnes, 2015). 

TT mean power was highly and positively correlated between the laboratory and the 

field (r = 0.80, P < .001). Although 64 % of the variance in field power was explained 

by the laboratory assessment this still resulted in 36 % unexplained variance in this 

analysis. Utilising participant’s own road bicycle could have resulted in energy  

transfer inconsistencies between the site of force application at the pedal and power 

measurement in the rear wheel hub. This phenomenon is referred to as ‘drive chain 

efficiency’ where bicycles have differing levels of frictional losses most notably 

effected by gear ratio and chain tension (Spicer, Richardson, Ehrlich and Bernstein, 

2000). Although it is theorised that frictional losses and energy transference could 

cause small but likely consistent differences in the field power measurement; the 

benefits of measuring energy expenditure on the participant’s habitual road bike, 

unlike Nimmerichter, Haselsberger and Prinz (2014) who used a single mountain 

bike, and the ease of fitting the power tap wheel in the field far outweighed the minor 

inaccuracies. In addition, the aim was to intentionally compare the differences 

between a fixed ergometer and free wheeled bicycle as cycling efficiency is far more 

frequently measured on a fixed ergometer in the laboratory. It was believed that 

comparing the two arguably opposing cycling modes, would provide the most 
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applicable comparison to cycling efficiency research conducted on a fixed cycle 

ergometer. Furthermore, due to potential differences in bottom bracket 

configurations hindering SRM crank attachment, and the potential for multiple 

habituation trials required to acclimatise participants to cycling on a treadmill, the 

likelihood of a higher level of error was outweighed for the design of the initial 

research into the comparison between field and laboratory efficiency measurement. 

That being said a more likely explanation for the unexplained portion are varying air 

speed conditions, as only the average air speed was recorded during assessment, and 

the small but relevant changes in gradient, which are both likely contributed to 

significantly higher within trial variations in field power (18 W). Greater undulations 

in power have been attributed to decreased mean power during time-trials, with the 

optimal pacing strategy for a theoretical 0 % gradient TT > 10 minutes, is to maintain 

the highest constant power output (Atkinson, Peacock, St Clair Gibson and Tucker, 

2007). Fluctuations of within trial power are rarely reported but this study 

determined an 18 W (P < .001) higher variation in field power compared with 

laboratory, which could explain why there was an increased ventilatory drive present 

in the field condition. Higher ventilatory drive increases the total energy cost of 

breathing and has been calculated to account for between 0.2 and 0.3 gross efficiency  

units based on an energy cost of breathing  between 2.14 - 2.74 ml.L (Hopker et al., 

2013). Using the same range, the difference in ventilation at 150 W accounted for 

between 0.43-0.54 of a gross efficiency unit and 0.41-0.52 of a gross efficiency unit 

at 60 % Wmax intensity. Using the mean 60 % energy cost of breathing, it would 

reduce the differences in efficiency by 0.4-0.5 gross efficiency units. Thus for the 60 

% intensity with energy expenditure correction the differences would reduce from -

1.39 to -0.93 %; with cadence added as a covariate the reduction would be from -1.2 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Atkinson%20G%5BAuthor%5D&cauthor=true&cauthor_uid=17645369
http://www.ncbi.nlm.nih.gov/pubmed/?term=Atkinson%20G%5BAuthor%5D&cauthor=true&cauthor_uid=17645369
http://www.ncbi.nlm.nih.gov/pubmed/?term=St%20Clair%20Gibson%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17645369
http://www.ncbi.nlm.nih.gov/pubmed/?term=St%20Clair%20Gibson%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17645369
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to 0.74 %; and the difference was almost completely attenuated with the 

environmental conditions added, reducing the difference from -0.55 to -0.09 %. With 

the calculation of the additional ventilation cost the difference in TT economy would 

also be reduced by between 1.09-1.39 W.LO2
-1.min-1. This would reduce the 

difference between the 150 W and 60 % economy differences by more than 40 % 

from -3.1 to -1.86 and -2.23 to -0.99 W.LO2
-1.min-1 respectively. The increased 

energy cost of breathing made only a small reduction to the difference in economy 

at the TT intensity from -6.2 to -4.96 W.LO2
-1.min-1. Overall this suggests that the 

difference in energy expenditure could be accounted by the increase in ventilation 

and the associated additional energy costs. Consequently the differences previously  

reported in field efficiency could be as a result of confounding factors that have not 

been accounted for in past research. This study validates laboratory measurement of 

gross efficiency and time-trial economy when power, cadence and environmental 

factors are either stable or included as confounding variables, and these variables 

need to be considered if the scientist is trying to estimate field based energy  

expenditure. Also of note, based on the different findings reported here compared to 

previous work (Bertucci et al., 2012), the exercise scientist will also need to consider 

available data on their chosen ergometer if making these estimations; as the 

assumption of congruence between Axiom and SRM ergometers field estimates from 

laboratory assessments would have been invalid. 

 

9.6 Conclusion  

This study successfully compared efficiency and performance TT’s both in a field 

and laboratory environment. Due to the variability of the field environmental 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertucci%20WM%5BAuthor%5D&cauthor=true&cauthor_uid=22694978
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conditions and the notion that efficiency is very sensitive to changes in both 

temperature, intensity and cadence (Hettinga et al., 2007; Cámara, Maldonado-

Martín, Artetxe-Gezuraga and Vanicek, 2012), it is believed that it will be very  

difficult to assess the small changes in efficiency that are predicted in Chapter 7 and 

reported in Chapter 8. Therefore field assessment of efficiency changes were not 

pursued in Chapter 10, but field performance TT testing was conducted on the basis 

that TT’s are often conducted in all environmental conditionss and have a smaller 

CV % (Chapter 7). Hence changes in field performance TT’s were thought to be a 

more realistic and robust endeavour to determine small changes. Furthermore, a 

longer period of calorie restriction is likely to induce a greater magnitude of body 

mass change, which is theorised to have a larger effect on field TT performance 

(Jobson et al., 2007).       

 

 

 

 

 

  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Jobson%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=17127577
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CHAPTER 10 - THE EFFECT OF MEDIUM-TERM BODY MASS 
CHANGE ON CYCLING EFFICIENCY AND PERFORMANCE. 

 

10.1 Introduction 

Competitive cyclists are considered a particularly weight conscious population, with 

a large proportion of competitive cyclists indicating that a lower body mass has 

beneficial effects on performance (Haakonssen, Martin, Jenkins and Burke, 2015). 

Body mass reduction is primarily advocated by cyclists due to improvements in 

power to weight ratio, which results in the greatest advantage when climbing uphill 

(Swain, 1994). However, efficiency which is regarded as a key determinant of 

performance, (Olds et al., 1995; Lucia et al., 2002) has also been reported to improve 

with reductions in body mass within the health and weight loss field (Rosenbaum et 

al., 2003; Amati et al., 2008; Goldsmith et al., 2009). Due to exact changes in body 

mass being rarly reported in elite cyclists it is difficult to ascertain and speculate the 

exact physiological efficiency effects with mass reduction, therefore this Chapter is 

reliant at least initially on research from sedentary populations with over-weight and 

obese participants (Rosenbaum et al., 2003; Amati et al., 2008; Goldsmith et al., 

2009). Consequently, in the vast majority of studies where calorie restriction has 

been achieved, efficiency has either not been calculated, or calorie restriction alone 

(without an additional exercise intervention) has failed to significantly improve 

efficiency (Poole and Henson, 1988, Amati et al., 2008). Low power outputs, 

grouping bias and high variation in efficiency due to a lack of habituation to cycling, 

may explain why differences have not been found with medium-term calorie 

restriction (Amati et al., 2008). Although calorie restriction has been reported to be 

one of the most popular means for reducing body mass (Haakonssen et al., 2015) it 

has the potential to hinder cycling performance over longer periods by also causing 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Haakonssen%20EC%5BAuthor%5D&cauthor=true&cauthor_uid=25203649
http://www.ncbi.nlm.nih.gov/pubmed/?term=Haakonssen%20EC%5BAuthor%5D&cauthor=true&cauthor_uid=25203649
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jenkins%20DG%5BAuthor%5D&cauthor=true&cauthor_uid=25203649
http://www.ncbi.nlm.nih.gov/pubmed/?term=Burke%20LM%5BAuthor%5D&cauthor=true&cauthor_uid=25203649
http://www.ncbi.nlm.nih.gov/pubmed/?term=Haakonssen%20EC%5BAuthor%5D&cauthor=true&cauthor_uid=25203649
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a reduction in fat-free mass (Clark, 2015). The ratio of fat mass to fat-free mass 

reduction varies between studies with a tendency to range from ~3:1 to ~2:1 

(fat:FFM) (Rosenbaum et al., 2003; Larson-Meyer et al., 2006; Amati et al., 2008), 

with the difference in ratio likely due to the severity of calorie restriction and 

duration of intervention. Conversely, a moderate calorie deficit with athletes has 

resulted in significant changes in fat mass between 23-31 % with no reported 

reductions in lean mass (combined mass of organs, bones, muscle, water and 

connective tissue) (Garthe, Raastad and Sundgot-Borgen, 2011). The maintenance 

of lean mass was attributed to four strength and conditioning sessions per week 

implemented during the intervention (Garthe, Raastad and Sundgot-Borgen, 2011); 

although a previous study by Connolly, Romano and Patruno, (1999) also reported 

lean mass maintenance without the addition of exercise. Reductions in fat-free mass 

but more specifically lean mass would be considered detrimental to performance by 

reducing maximal power output and TT performance (Martin, Davidson and 

Pardyjak, 2007). Therefore, there is a need to investigate the effect of calorie 

restriction in a non-obese regularly exercising population to determine the impact 

upon power output and TT performance.  

Fluctuations in body mass have been described in longitudinal studies to change by 

as much as 7 kg in a competitive cyclist (Coyle, 2005) and with endurance training 

to reduce by 12.5 kg equivalent to 0.63 kg.week-1 (Lee, Kumar & Leong, 1994).  

Body mass variations are therefore, also likely to occur with medium-term studies, 

albeit to a lesser extent but, particularly when energy expenditure is manipulated 

through training. Despite the potentially confounding effect of body mass and 

composition changes over the course of a study, variations are rarely reported.  The 

majority of studies exploring efficiency are classified as medium-term, defined as 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Garthe%20I%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Garthe%20I%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sundgot-Borgen%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Garthe%20I%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Garthe%20I%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sundgot-Borgen%20J%22%5BAuthor%5D
http://fampra.oxfordjournals.org/search?author1=Josephine+Connolly&sortspec=date&submit=Submit
http://fampra.oxfordjournals.org/search?author1=Theresa+Romano&sortspec=date&submit=Submit
http://fampra.oxfordjournals.org/search?author1=Marisa+Patruno&sortspec=date&submit=Submit
http://www.ncbi.nlm.nih.gov/pubmed/?term=Martin%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=19255451
http://www.ncbi.nlm.nih.gov/pubmed/?term=Martin%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=19255451
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pardyjak%20ER%5BAuthor%5D&cauthor=true&cauthor_uid=19255451
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20L%5BAuthor%5D&cauthor=true&cauthor_uid=8148923
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20L%5BAuthor%5D&cauthor=true&cauthor_uid=8148923
http://www.ncbi.nlm.nih.gov/pubmed/?term=Leong%20LC%5BAuthor%5D&cauthor=true&cauthor_uid=8148923


167 
 

ranging from 2 to 12 weeks (Broom, Hopkins, Stensel, King and Blundell, 2014); (3 

weeks: Louis, Hausswirth, Easthope and Brisswalter, 2012, 7 weeks: Nalcakan, 

2014, 12 weeks: Kristoffersen, Gundersen, Leirdal, Iversen, 2014), with 6 weeks 

being one of the most popular intervention durations (Luttrell and Potteiger, 2003; 

Hintzy, Mourot, Perrey and Tordi, 2005, Williams et al., 2009, 6 & 12 weeks: 

Hopker et al., 2010). Subsequently, it is yet to be quantified how changes in body 

mass over the most frequently used intervention duration (6 weeks) can influence 

changes in efficiency in a non-obese cycling population, which may have previously  

confounded or exaggerated results from medium-term repeated measures design 

studies. It was therefore, the aim of this study to build on the previous study in 

Chapter 8 to see the effect of a longer period of calorie restriction, but with testing 

under isocaloric dietary conditions (neutral energy balance) representing a more 

ecologically valid scenario of pre-race season preparation.  

 

10.2 Methods 

Twenty-nine male participants who had been cycling for a minimum of two years 

gave their written informed consent to participate in the investigation and 

satisfactorily completed a health questionnaire. The physical characteristics of the 

participants were as follows; age 40 ± 11 yrs, height 1.79 ± 0.07 m, body mass 77.5 

± 7.2 kg, body fat 18 ± 5 %, V̇O2max 47.19 ± 8.62 ml.kg.min-1, Wmax 373.0 ± 42.9 

W.min-1, relative Wmax 4.84 ± 0.60 W.kg-1.min-1 (mean ± SD).  

 

Experimental protocol: 

Participants visited the laboratory on six separate occasions with a V̇O2max and an 

efficiency/TT visit repeated in a consecutive three phase format (two pre, two post 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Louis%20J%5BAuthor%5D&cauthor=true&cauthor_uid=21638070
http://www.ncbi.nlm.nih.gov/pubmed/?term=Louis%20J%5BAuthor%5D&cauthor=true&cauthor_uid=21638070
http://www.ncbi.nlm.nih.gov/pubmed/?term=Easthope%20C%5BAuthor%5D&cauthor=true&cauthor_uid=21638070
http://www.ncbi.nlm.nih.gov/pubmed/?term=Easthope%20C%5BAuthor%5D&cauthor=true&cauthor_uid=21638070
http://www.ncbi.nlm.nih.gov/pubmed/?term=Williams%20AD%5BAuthor%5D&cauthor=true&cauthor_uid=19417225
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and two follow-up visits). The conditions within the laboratory were; temperature, 

21.4 ± 2.2 °C; humidity, 51.6 ± 8.0 %, barometric pressure, 755 ± 9 mmHg. 

Anthropometric measures were conducted on every visit; height (m), body mass 

(kg), six-site skinfold (mm) (Bicep, Tricep, Subscapular, Iliac crest, Thigh and Calf) 

by an ISAK accredited Anthropometrist. Body density was determined using the 

Durnin and Womersley (1974) equation. Body density was converted to a body fat 

% using the Siri equation (1956) (see Chapter 6). All exercise testing was conducted 

on an electromagnetically braked cycle ergometer (SRM, Jülich, Germany) which 

was calibrated according to manufacturer’s instructions prior to testing. The 

ergometer was adjusted to the participant’s road bicycle geometry and fitted with 

compatible pedals. Oxygen uptake (V̇O2, L.min-1), carbon dioxide production 

(V̇CO2, L.min-1) and RER were calculated via a portable breath-by-breath indirect 

calorimetry system (Oxycon Mobile, Jäeger, Carefusion, Hoechberg, Germany). 

Participants were randomised to either a body mass reduction intervention or were 

provided with no dietary instruction in the six week period between the pre and post 

visits. The follow-up phase was conducted six weeks after the post intervention tests 

where no dietary instructions were provided for either group. Testing was performed 

at a similar time of day to control for circadian variance. The participants were asked 

to refrain from consuming caffeine for 24 hours, undertaking strenuous exercise for 

48 hours and arrive fully hydrated before each test (Pringle and Jones, 2002; Jenkins 

et al., 2008).  

 

V̇O2max visit: 

An incremental exercise test to exhaustion was performed at the beginning of each 

phase to determine Wmax (W.min-1) and V̇O2max (L.min-1) using the same protocol 
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that has been previously described in Chapter 6. This informed the sub-maximal 

starting intensity for the steady-state 60 % Wmax efficiency test. A familiarisat ion 

16.1 km TT was conducted on the first pre visit. 

 

Efficiency and TT visit: 

Resting metabolic rate (joules.sec-1) was assessed with the participants in the supine 

position, wearing a heart rate monitor (Polar Wearlink, Polar Electro Oy, Kempele, 

Finland) and facemask for 20 minutes for the purpose of RMR and net efficiency  

calculation. Resting metabolic rate and HRR, (beats.min-1) were determined by the 

average 10 second data and 1 second data respectively between 10-20 min. 

Anthropometric data collection separated RMR and efficiency measurement. 

Participants cycled at two steady-state intensities for eight minutes each at an 

absolute 150 W intensity and a relative 60 % Wmax intensity (Hopker et al., 2013). 

During a standardised five minute recovery period a finger prick blood sample was 

collected in a capillary tube, syringed into a disposable cartridge (EC8+, Abbott, IL, 

USA) and placed in a PCA (i-STAT, Portable 200, Abbott, IL, USA). This provided 

a measure of the participants; blood urea nitrogen (BUN). The 16.1 km self-paced 

TT detailed; a rolling start, data-restricted to distance covered (m) and for 

participants to remain seated, with gas collection throughout.  

 

Efficiency and Economy: 

Oxygen uptake and V̇CO2 were averaged from 10 second breath-by-breath data 

between minutes 6:00-8:00 and 14:00-16:00 during steady-state cycling and 

averaged across the whole 16.1 km TT. Power was averaged at the same equivalent 
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time-intervals. Gross, net efficiency and economy were calculated as outlined in 

Chapter 6.  

 

Field TT power: 

Thirteen participants also conducted an additional 16.1 km TT test both pre- and 

post-intervention in the field environment on a closed-road circuit to assess the effect 

of the intervention on performance power and time. This testing was opportunist in 

nature and considered secondary to the original proposal which resulted in only a 

selection of participants being able to conduct field testing. This was based on the 

flexibility of the participants and the compatibility of their road bicycle. The 

participant’s road bicycle was fitted with a rear wheel power device (PowerTap Pro, 

CycleOps, Madison, USA) and display computer (Joule GPS Promotion, CycleOps 

PowerTap, Madison, USA). Both tyre pressures were standardised (120 psi) 

(Grappe, Candau, Barbier, Hoffman, Belli and Rouillon, 1999) and power offsets 

zeroed. Participants were previously familiarised with the circuit and completed 

three laps self-regulating power at 150 W and three laps at 60 % Wmax. Following a 

five minute rest period the participants began the TT with a rolling start and 

completed 16.1 km (11.85 laps) as fast as they could with time, power and speed 

data obscured. Participants were instructed to remain seated throughout the TT. 

Wind, temperature and humidity data were also recorded from the local weather 

station.  

 

Dietary instructions and training monitoring: 

All participants provided a three day food diary prior to testing. The body mass 

reduction group were instructed to use portion control to reduce their total calorie 



171 
 

intake by ~ 500 kcal.day-1 without altering macronutrient ratios. They were also 

instructed to consume an isocaloric diet in the three days prior to testing. Compliance 

with the intervention and pre-testing protocol were determined by body mass change 

and pre-testing food diaries (Appendix 5). Particular emphasis was given to ensure 

participants consumed the same meal two hours prior to testing. Training data was 

obtained from online recording programs (STRAVA, Garmin Connect+ and 

Training Peaks). Data was collated in weekly segments to assess differences in 

distance, time and elevation in the six weeks preceding the participant’s 

commencement of the study and between the three phases of the study.   

 

10.3 Data analysis 

The data was analysed based on original group assignment into either intervention 

group or control group. Descriptive and analytical statistics were calculated using 

Excel, SPSS and Graph Pad Prism. All data was checked for the presence of outliers 

and the Shapiro-Wilk test used to assess normality. The following variables were 

found to violate the assumptions of normality; body mass (P < .001), lean mass (P < 

.001), Na+ (P <.05), K+ (P < .001), CL- (P < .05), pH (P < .001) and PCO2 (P < .001). 

Consequently, non-parametric tests were conducted when performing singular 

comparisons (related samples Wilcoxon Signed Rank) or correlations (Spearman 

rank tests) for the above variables with paired samples t-tests and Pearsons product 

moment correlations for parametric data. Two-way repeated measures ANOVA’s 

were used to assess TT power, RMR, training and dietary data between group and 

across phases. Where data violated assumptions of sphericity, Greenhouse-Geisser 

results were used. Generalised estimating equations in a two phase format adjusted 

for the variance in logged (LN) energy expenditure (j.sec-1) for gross and net 
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efficiency at 60 % Wmax and logged V̇O2 was used to adjusted TT economy. The 150 

W intensity was not corrected for energy expenditure due to the limited variation in 

power (CV = 0.7 %). Pre- and post-intervention VE and RER were corrected for 

power with GEE’s to explore the specific changes in these parameters.  

 

For the purpose of correlation and regression analysis, power and energy expenditure 

measured at 60 % Wmax  and TT intensity were log transformed (LN) before 

allometric scaling was applied to gross, net efficiency and economy (Atkinson & 

Batterham, 2012). Pearson product-moment and Spearman rank correlat ions 

highlighted variables with a significant relationship to efficiency and performance 

power. An alpha level of significance for all tests was set at 95 % (P ≤ 0.05).  

 

A secondary analysis assigned groupings based on mass change forming a mass 

reduction and mass increase group to assess if the results differed based on mass 

change (three participants were moved in total; two participants into experimental 

and one into control). The reasoning for a secondary analysis was due to the 

possibility that there may have been cross contamination between the intervention 

and non-dietary instruction group.   

 

10.4 Results  

Group physical characteristics: 

Twenty-nine males completed a pre and post intervention phase with twenty-four 

completing the follow-up phase. Based on data from the V̇O2max test, the participants 

were classified as ‘club level’ based on mean Wmax, according to Ansley and Cangley  

(2009). There were no differences in physical characteristics between groups 
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measured at the pre intervention stage (Table 10.1). The group that received no 

dietary instruction between the six week pre and post phase gained body mass and 

are referred to as the mass increase group.  

 

Table 10.1 Physical characteristics comparing mass reduction and increase group at 

the pre intervention phase. 

  
Dietary intervention  

Mean ± SD 

Mass increase 

Mean ± SD 

N 13 16 

Age (yrs) 42 ± 11 38  ± 12 

Body mass (kg) 75.9  ± 4.9 78.8 ± 8.9 

SF Body fat (%) 19.2 ± 3.5 17.7 ± 6.7 

V̇O2max (L.min-1) 3.49 ± 0.68 3.76 ± 0.62 

V̇O2max (ml.kg.min-1) 46.26  ± 8.64 47.94  ± 8.81 

Wmax (W.min-1) 366  ± 31 379  ± 51 

Wmax (W.kg-1.min-1) 4.86  ± 0.38 4.83  ± 0.74 

Note: SD, standard deviation, N, number, SF, skinfold, V̇O2max, maximal oxygen 
uptake, Wmax, maximal minute power. No significant differences existed between 
the two groups (P > .05).  
 
 
Body composition: 

Between the pre- and post- phase there was a 3.03 % reduction in body mass in the 

dietary intervention group and a 2.41 % increase in the group that received no 

intervention (mass increase) and were statistically significant changes (P < .001) (see 

Table 10.2). There was a significant reduction in fat-free mass in the dietary  

intervention group pre to post (P < .001), and there was a significant increase in the 

mass increase group (P < .05). There was a significant decrease in fat mass in the 

intervention group and a significant increase in fat mass for the increase group pre 
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to post (P < .05). Participants were considered mass stable in the follow-up phase as 

there were no significant differences in either the dietary intervervention group (-0.3 

kg) or mass increase group (0.1 kg) (P > .05).  

 

Table 10.2 Changes in body composition pre and post intervention. 

  Dietary intervention Mass increase 

Body mass ∆ (kg) -2.3 ± 1.5** 1.9 ± 1.9** 

Fat mass ∆ (kg) -1.0 ± 1.1* 1.2 ± 1.6* 

Fat-free mass ∆ (kg) -1.3 ± 0.9** 0.7 ± 1.0* 

Note: * = P < .05, ** = P < .001.  

Cadence: 

There were no significant differences in cadence during efficiency measurement in 

the dietary intervention group (150 W: 91 ± 8, 60 %: 92 ± 8, TT: 97 ± 7 rev.min-1) 

or mass increase group (150 W: 91 ± 9, 60 %: 94 ± 9, TT: 96 ± 7 rev.min-1) across 

phases (P > .05).  

 

Laboratory TT power:  

There was no main effect for group (P > .05), but there was a phase effect (P = .049) 

for TT power, there was also a significant group x phase interaction pre to post 

intervention in TT power (P = .006). There was no significant main effect or 

interaction of time-trial power between post and follow up (P > .05) (see Figure 10.1 

and Table 10.3).  
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Figure 10.1 Change in TT performance power across all phases and between 

groups. Note:        = Mass increase,        = Dietary intervention, Interaction* = 

Interaction effect (P < .05). Error bars represent standard error of the mean (SEM).  

 

Table 10.3 Change in time-trial power (W.min-1) from pre to post and post to 
follow-up. 

Group 
∆ Pre to 

post 95 % CI 
∆ Post to 
follow-up 95 % CI 

Dietary 
 intervention 

5.0 -12 to 22 7.85 -8.3 to 24.0 

Mass increase -14.2 -23 to -5.6 -10.24 -29.2 to 8.7 

Note: ∆, delta (change), CI, confidence interval.  

 

Field TT power:  

Six participants from the dietary intervention and seven from the mass increase group  

conducted field TT’s. The environmental conditions are presented in Table 10.4 and 

were reasonably stable with only a significant reduction in temperature in the post 

testing. The mean TT power for both groups was 237 W, although the mass reduction 

group had a smaller distribution of mean power of 21 W and the mass increase a 55 

W standard deviation in TT power. The mass reduction group power increased by 

17 W post intervention whereas the mass increase group displayed similar TT power 
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with only a 2 W reduction. Despite the increase in power in the dietary intervention 

group and stability in power in the mass increase group, TT time was slightly lower 

post, attributed to variable weather conditions (albeit not significant) (Figure 10.2).   

 

 

 

 

 

 

 

 

Figure 10.2 Change in field TT time from pre to post intervention. Note:        = Mass 

increase,        = Dietary intervention, with no significant difference (P > .05). Error 

bars represent standard error of the mean (SEM). 

 

Table 10.4 Descriptive field environmental conditions pre and post intervention.  

Environmental conditions  
Pre 

intervention  
Mean ± SD 

Post 
intervention 
Mean ± SD  

Difference 

Temperature (°C) 17.7 ± 5.4 13.0 ± 4.2 -4.7* 

Humidity (%) 79.6 ± 7.2 80.0 ± 5.1 0.4 

Atmospheric pressure (mmHg) 1015 ± 4 1018 ± 12 3 

Air speed (m.s-1) 5.6 ± 2.7 3.9 ± 2.7 1.7 

Air gust (m.s-1) 7.5 ± 4.7 4.9 ± 3.6 2.6 

Note: * = P < .05.  
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Resting metabolic rate: 

There was no significant main effect or group interaction between pre to post RMR 

or post to follow-up (P > .05) (see Table 10.5). 

 

Table 10.5 Change in resting metabolic rate (joules.sec-1) from pre to post and post 
to follow-up.  

Group  ∆ Pre to post  95 % CI ∆ Post to follow-up 95 % CI 

Dietary 
intervention 

-1.30 -8.8 to 6.2 -1.60 -9.5 to 6.3 

Mass increase 2.06 -6.7 to 11 5.17 -5.8 to 16.2 

Note: ∆, delta (change), CI, confidence interval.  

 

Economy at TT: 

There was no significant main effect in economy for phase or group between pre and 

post intervention (P > .05), there was a significant group x phase interaction (P = 

.005). Pairwise comparisons indicated a significant reduction in the mass increase 

group economy pre to post intervention (82.99 to 78.89 W.LO2
-1.min-1, P = .004). 

There was no significant main effect or interaction between post and follow-up 

(77.01 to 78.47 W.LO2
-1.min-1, P > .05) (see Figure 10.3 and Table 10.6). 
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Figure 10.3 Economy during the TT across all phases and between groups. Note:           

___= Mass increase,  = Dietary intervention, Interaction* = Interaction effect (P 

< .05). Error bars represent SEM. 

 

 
Table 10.6 Change in economy (W.LO2

-1.min-1) from pre to post and post to    
follow-up. 

Group  ∆ Pre to 
post  

95 % CI ∆ Post to 
follow-up 

95 % CI 

Dietary  
intervention 

1.46 -1.3 to 4.2 1.28 -1.7 to 4.3 

Mass increase -4.10 -6.6 to -1.6 -2.0 -3.6 to 4.0 

Note: ∆, delta (change), CI, confidence interval.  

 

Gross efficiency at 150 W:  

There was no significant effect of phase (P > .05) or group (P > .05) but there was a 

significant interaction (P = .039) comparing pre to post intervention in gross 

efficiency at 150 W (Figure 10.4). Pairwise comparisons indicated a significant 

decrease in efficiency pre to post in the mass increase group (21.00 to 19.58 %, P = 

.028). There were no differences in gross efficiency at 150 W in the dietary  

intervention group between pre and post (20.76 to 20.79 %) (P > .05).   
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Figure 10.4 The effect of body mass change on gross efficiency (%) at 150 W. 

Note:      = Mass increase,      = Dieatary intervention, Interaction* = Interaction 

effect (P < .05), Group* = Group difference (P < .05). Error bars represent SEM. 

 

Gross efficiency at 60 % maximal power: 

Three efficiency calculations from pre-testing, three from post-testing and one from 

follow-up at the 60 % Wmax intensity were excluded on the basis of an RER > 1.0. 

No significant main effects of group or phase were present in gross efficiency at 60 

% Wmax when controlling for energy expenditure pre to post intervention (P > .05). 

There was a significant phase group interaction in 60 % Wmax gross efficiency (P < 

.01). Pairwise comparisons indicated no significant change in gross efficiency with 

the dietary intervention (21.27 % to 21.64 %) (P >.05) and a significant reduction in 

gross efficiency with mass increase (22.11 to 21.36 %) (P < .01) when measured at 

60 % Wmax (see Figure 10.5).  
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Figure 10.5 The effect of body mass change on gross efficiency (%) at 60 % Wmax. 

Note:      = Mass increase,  = Dietary intervention. Interaction* = Interaction 

effect (P < 0.01). Error bars represent SEM. 

 

Net efficiency at 150 W: 

There was a significant main effect of phase (P < .01), but no main effect for group  

or interaction in net efficiency measured at 150 W when comparing pre to post 

intervention (P > .05). Pairwise comparisons indicated a significant reduction in the 

mass increase group (24.14 to 23.10 %) (P < .01) (see Table 10.7).  

 

Net efficiency at 60 % maximal power: 

No significant phase or group differences were found in net efficiency at 60 % Wmax 

pre to post intervention (P > .05). There was a significant phase and group interact ion 

when controlling for energy expenditure (P < .05). The pairwise comparisons 

indicated that there was a significant reduction in net efficiency at 60 % Wmax in the 

mass increase group pre and post (P < .05).  No differences in net efficiency at 60 % 

Wmax in the dietary intervention group between pre and post were present (Figure  

10.6).  



181 
 

0

22

23

24

25

26

Pre Post Follow-up

Interaction*

N
et

 e
ffi

ci
en

cy
 (

%
) 

at
 6

0%
 M

M
P

 
Figure 10.6 The effect of body mass change on net efficiency (%) at 60% Wmax. 

Note:  = Mass increase,      = Dietary intervention, Interaction** = Interaction 

effect (P < 0.001). Error bars represent SEM.   

 
Table 10.7 Overall changes in cycling efficiency as a result of a medium-term 
body mass change intervention. 

          Dietary intervention             Mass increase  
Efficiency Intensity ∆ Absolute  ∆ Relative ∆ Absolute  ∆ Relative  

GE (%) 
150 W 0.03 ± 1.18 0.14 ± 5.65 -1.42 ± 2.27 -7.03 ± 11.24 

60 % 0.85 ± 1.72 3.96 ± 8.02 -0.75 ± 1.64 -3.39 ± 7.54 

NE (%) 
150 W -0.31 ± 1.74 -1.30 ± 7.28 -1.05 ± 3.77 -4.35 ± 15.62 

60 % 0.41 ± 1.39 1.73 ± 5.87 -0.80 ± 3.02 -3.24 ± 12.37 

Note: ∆, delta (change), GE, gross efficiency, NE, net efficiency and SD, standard 

deviation.  

 

There was no significant phase, group or interaction effects in 150 W, 60 % gross 

and net efficiency post to follow-up (P > .05) (Table 10.8).  
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Table 10.8 Overall changes in cycling efficiency from post intervention to     
follow-up.  

          Dietary intervention             Mass increase  
Efficiency Intensity ∆ Absolute  ∆ Relative ∆ Absolute ∆ Relative 

GE (%) 150 W -0.05 ± 2.14 -0.27 ± 10.53 0.51 ± 3.43 2.61 ± 14.95 

 60 % -0.25 ± 1.19 -1.14 ± 5.49 0.19 ± 2.97 0.90 ± 12.37  

NE (%) 150 W  -0.01 ± 3.90 -0.03 ± 16.49 0.71 ± 7.72 3.12 ± 33.31 

 60 %  -0.50 ± 1.64 -2.10 ± 6.90 0.51 ± 3.60 2.14 ± 15.16 

Note: ∆, delta (change), GE, gross efficiency, NE, net efficiency.  

Ventilation and respiratory exchange ratio: 

No phase, group or interaction effects were identified in VE at 150 W or at 60 % 

Wmax (P > .05), however there was a significant phase effect of VE during the TT (P 

< .05) and no interaction (P >.05). Pairwise comparisons identified that only 

difference was a reduction in VE in the intervention group (pre: 125.3, post: 115.7 

L.min-1, P < .05). There were no significant differences in phase, group or interact ion 

effects in RER across all of the intensities (P > .05).   

 

Predicting changes in performance economy: 

Changes in TT economy had the strongest relationship with changes in net efficiency  

at 60 % (r = 0.709), and changes in economy at 60 % Wmax (r = 0.722), (P < .001) 

showing significant high positive correlations (Figure 10.7). 
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Figure 10.7 The relationship between changes in TT economy verses changes in 

60 % economy (left graph) (y = 0.4739x -0.3436, r2 = 0.503) and 60 % net 

efficiency (right graph) (y = 0.1581x -0.2438, r2 = 0.522). Note: ∆, delta (change), 

TT, time-trial.   

 

 

Training data:   

There was a significant phase effect of training distance (P = .039), and elevation (P 

= .03) but not average time or speed (P >.05) when comparing 6 weeks prior to the 

study and 6 weeks during the intervention period. There were no significant group  

differences or interactions (P > .05) (Figure 10.8).  
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Figure 10.8 Top left - showing average training distance (km). Top right - showing 

average training time (min). Bottom left - showing average speed (km.h-1). Bottom 

right – showing elevation. Note:       = Mass increase,       = Dietary intervention, 

Phase* = Phase effect (P < .05). Prior to study = six weeks prior to the 

commencement of the study, Phase 1-2 = during the six week intervention period, 

Phase 2-3 = during six week follow-up period. 

 

  
 

 

 

 

 

 

0

200

400

600

800

1000

1200

1400

Prior to
Study 

Phase
 1- 2

Phase 
2 - 3

Phase*
D

is
ta

nc
e 

(k
m

)

0

600

1000

1400

1800

2200

2600

3000

3400

Prior to
 Study

Phase
1-2

Phase
2-3

Ti
m

e 
(m

in
)

0

18

20

22

24

26

28

30

32

Prior to
Study

Phase
1-2

Phase
2-3

S
pe

ed
 (

km
. h-1

)

0

2000

4000

6000

8000

10000

12000

Prior to
study

Phase
1-2

Phase
2-3

Phase*

E
le

va
tio

n 
(m

)



185 
 

Dietary data:  

There were no significant phase, group or interaction effects between CHO: 396.5 ± 

120.9 g.day-1, FAT: 83.0 ± 30.9 g.day-1, PRO: 111.8 ± 37.8 g.day-1 (g) and total 

kilocalories 2681.6 kcal.day-1, intake across all three phases and between groups (P 

> .05) (Figure 10.9). The average macronutrient ratio throughout the study was 

CHO: 67.1 %, FAT: 14.0 %, PRO: 18.9 %.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.9 Top left - Showing average Carbohydrate (CHO) intake (g.day-1). Top 

right - Showing average Fat (FAT) intake (g.day-1). Bottom left – Showing average 

Protein (PRO) intake (g.day-1). Bottom right – Showing average total energy intake 

(kcal.day-1). Dietary data averaged across the three days prior to Pre, Post and 

Follow-Up testing. Note:  = Mass increase,       = Dietary intervention. No 

significant differences were present.  
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10.4.1 Post-hoc group analysis  

By allocating participants based on body mass change rather than original group 

allocations, the results did not change direction but overall the changes became 

stronger. Physical characteristics did not significantly change (P > .05), but the 

magnitudes of the changes in mass (∆ 0.1-0.3 kg) and body composition (0.1-0.2 

kg) increased slightly (Table 10.9).    

 
Table 10.9 Changes in body composition pre and post intervention with group 
allocations determined by body mass change. 

  
Mass reduction Mass increase 

Body mass ∆ (kg) -2.4 ± 1.4** 2.2 ± 1.3** 

Fat mass ∆ (kg) -1.1 ± 1.4* 1.3 ± 0.9* 

Fat-free mass ∆ (kg) -1.4 ± 0.8** 0.9 ± 0.9 

Note: * = P < .01, ** = P < .001.  

The secondary analysis had the most notable influence on gross efficiency at the 60 

% intensity where a greater magnitude of improvement was present with body 

mass reduction from (P < .05 to < .01) (Table 10.10). This was also visually 

apparent when comparing efficiency at the 60 % intensity based on original 

grouping and post-hoc body mass change (Figure 10.10).  

 

 
Table 10.10 Overall changes in cycling efficiency as a result of a medium-term 
body mass change using post-hoc group allocations.  

          Mass reduction            Mass increase  

Efficiency Intensit
y ∆ Absolute ∆ Relative  ∆ Absolute ∆ Relative 

GE (%) 
150 0.17 0.81 -1.24 -6.04 

60 % 0.66 3.13 -0.99 -4.26 

NE (%) 
150 0.35 1.42 -0.98 -4.11 

60 % 0.53 2.22 -1.01 -4.11 

Note: ∆, delta (change), GE, gross efficiency, NE, net efficiency. 
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Figure 10.10 The effect of body mass change on gross efficiency (%) with original 

group allocations compared to post-hoc body mass change at 60 % Wmax. Note:                                          

= Mass increase,  = Mass reduction. Interaction* = Interaction effect (P < 0.01). 

Left graph is based on original intervention and control groups. Right graph is 

based on group’s determined by post-hoc body mass change. Error bars represent 

SEM.  

 
10.5 Discussion  

It was the aim of this study to determine the effect of a six week moderate calorie 

restriction intervention on efficiency and TT performance power in participants 

accustomed to cycling.  

 

Body mass reduction: 

Gross and net efficiency were significantly improved at the 60 % Wmax intensity (GE: 

3.96 % and NE: 1.73 %) following a 2.3 kg reduction in body mass (3.02 % body 

mass). If comparing the body mass effect based on post-hoc group allocations the 

improvement was equivalent to 3.13 % of a gross efficiency unit and 2.22 % for net 

efficiency. The reduction in body mass was in-line with the linear predictions from 
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the results presented in Amati et al. (2008). This is the first study to show that 

improvements in efficiency can be achieved with ‘only’ calorie restriction with 

participants accustomed to cycling riding at substantially higher power outputs 

(~223 W) than have previously been investigated. This finding is in concurrence with 

the similar efficiency improvements (4 %) reported by Amati et al., (2008), despite 

a longer duration (16 weeks) and a much larger reduction in body mass (8.3 kg). It 

could therefore be theorised that the majority of the improvements in efficiency  

occur during moderate-length calorie restriction, with only a small proportion of the 

improvement in efficiency attributed to the magnitude of mass reduction. It is 

important to note that a significant improvement was not found at 150 W and yet 

there was a tendency for efficiency to improve; suggesting that efficiency differences 

at lower power outputs are conducive but more difficult to detect, most likely due to 

the higher variability seen in Chapter 7. Cycling TT economy also increased by 1.90 

% based on original group allocations or by 5.2 % based on post-hoc body mass 

change groups, both values were however below the typical error (5.78 %) (Chapter 

7). The higher economy change had the potential to equate to a 7 W increase in power 

for the same energy expenditure. However, in a similar manner and supporting the 

findings of Chapter 8, the participants were unable to utilise the energy saving and 

produce a noticeably higher power output during the TT. Reductions in RMR have 

been speculated to potentially contribute to reductions in efficiency and economy, 

however RMR did not change following the ~500 kcal.day-1 deficit, suggesting that 

this level of moderate calorie restriction is suitable for participants that exercise 

regularly, and more importantly is a sustainable method of mass reduction due to 

RMR stability. Previous studies that have reported substantially lower RMR with 

body mass reduction have been in the more severe calorie restriction studies (Grande, 
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Anderson and Keys, 1958; Dulloo and Jacquet, 1998; Hill, 2004), with moderate 

deficits showing little change (Foster et al., 1990). RMR stability therefore suggests 

that the improvement in gross efficiency at 60 % Wmax intensity was predominantly  

due to reductions in exercise energy expenditure, confirmed with net efficiency also 

showing improvement. This phenomenon where RMR remains stable and the 

majority of the improvements in energy expenditure are when exercising, have been 

previously reported by Amati et al. (2007). It is theorised that the improvement seen 

in exercise and not RMR could be attributed to the reductions in fat mass reducing 

the demand of blood to the periphery for cooling due to a reduction in subcutaneous 

insulation. Although adipose tissue has a very low metabolic rate accounting for 

between 3-5 % of RMR in non-obese participants, during exercise the muscles 

produce 3-4 times more heat than mechanical energy (Dullo, 2010) and so a 

reduction in the insulation of heat energy could have a large impact upon 

performance. This is based on the notion that the rate of heat storage, determined by 

the rate of heat production minus heat dissipation (Webb, 1995), will be slower with 

a thinner subcutaneous adipose layer and that exercising in cooler environments 

represents a similar scenario to a reduction in environmental temperature, 

demonstrated to have a higher gross efficiency than hot environments (Hettinga et 

al., 2007). Additionally, a reduction in the metabolic cost of the 1.3 kg or 1.7 % of 

fat-free mass could also account for the energy saving during exercise and why there 

was little change at rest. This theory could also explain why differences were not 

found at 150 W due to the lower exercise intensity causing a smaller metabolic 

demand. Muscle tissue at rest only accounts for between 20-30 % of the total RMR 

and so a small reduction in muscle mass at rest is unlikely to have a large influence 

on 24 hour REE (Zurlo, Larson, Bogardus, and Ravussin, 1990). If the change in 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Dulloo%20AG%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Jacquet%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Webb%20P%5BAuthor%5D&cauthor=true&cauthor_uid=7733392
mailto:Hettinga,%20F.J.
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FFM mass were assumed to be a pure reduction in lean tissue it is estimated to 

account for an 16.9 kcal.day-1 reduction in REE or 18.2 kcal.day-1 with post-hoc 

analysis (Hill, Cateracci and Wyatt, 2006). Based on the average RMR in this study 

(2088 kcal.day-1) the reduction in lean mass at rest is estimated to cause only a 0.81 

% reduction in RMR. However, the metabolic rate of lean mass during exercise can 

increase by 50-100 times the energy cost at rest resulting in a multiplication of the 

change in lean mass energy expenditure, which would have a greater potential and 

more probable effect while exercising (Bhagavan, 1992).  A possible reason for the 

reduction in fat-free mass, if assumed to be primarily muscle mass, is theorised to be 

as a result of a lower production of the insulin-like growth factor-1 (IGF-1), reducing 

the body’s ability to synthesise lean tissue (Benardot and Thompson, 1999). IGF-1 

has been reported to decrease during short-term calorie restriction (Smith, 

Underwood and Clemmons 1995) but has been reported to stabilise in long-term (1 

year) moderate calorie deficit studies (Fontana, Weiss, Villareal, Klein 

and Holloszy, 2008). The pattern of IGF-1 following a calorie restriction 

intervention would therefore coincide with both short- and medium-term calorie 

restriction, where similar changes in lean mass have been reported 

(Krotkiewski, Landin, Mellström and Tölli 2000). A reduction in lean mass could 

also suggest why improvements in TT power were not found as it may have had an 

opposing effect on the small amount of energy that was saved during the TT. 

Currently there are no studies that have demonstrated an improvement in efficiency  

and simultaneously measuring improvements in performance; it is therefore 

unknown that without the reduction in lean mass if participants are able to utilise the 

savings in energy expenditure.    

http://www.ncbi.nlm.nih.gov/pubmed/?term=Fontana%20L%5BAuthor%5D&cauthor=true&cauthor_uid=18843793
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fontana%20L%5BAuthor%5D&cauthor=true&cauthor_uid=18843793
http://www.ncbi.nlm.nih.gov/pubmed/?term=Villareal%20DT%5BAuthor%5D&cauthor=true&cauthor_uid=18843793
http://www.ncbi.nlm.nih.gov/pubmed/?term=Klein%20S%5BAuthor%5D&cauthor=true&cauthor_uid=18843793
http://www.ncbi.nlm.nih.gov/pubmed/?term=Holloszy%20JO%5BAuthor%5D&cauthor=true&cauthor_uid=18843793
http://www.ncbi.nlm.nih.gov/pubmed/?term=Krotkiewski%20M%5BAuthor%5D&cauthor=true&cauthor_uid=10702758
http://www.ncbi.nlm.nih.gov/pubmed/?term=Landin%20K%5BAuthor%5D&cauthor=true&cauthor_uid=10702758
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mellstr%C3%B6m%20D%5BAuthor%5D&cauthor=true&cauthor_uid=10702758
http://www.ncbi.nlm.nih.gov/pubmed/?term=T%C3%B6lli%20J%5BAuthor%5D&cauthor=true&cauthor_uid=10702758
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Diet has also been a factor that has been shown to influence economy and efficiency  

values. In this study dietary analysis supported the notion that the participants were 

not calorie restricted in the three days prior to testing and demonstrated a very small 

increase in carbohydrate intake and total kcal consumed (pre to post). This increase 

was likely attributed to natural overcompensation in dietary intake following a period  

of calorie restriction, which has been previously reported in both animal and human 

studies when ‘alternate day fasting’ (Varady and Hellerstein, 2007). To determine if 

the small changes could have influenced the efficiency improvement, changes in 

CHO (g) were correlated with changes in efficiency, but a negligible relationship  

found (r = .0145, P = 0.62). Interestingly the largest difference in macronutrient ratio 

was reported between post and follow-up testing where no differences in efficiency  

were found. Additionally substrate usage was not affected by calorie restriction as 

no differences were reported in macronutrient usage based on RER values and 

protein oxidation via BUN readings (P = .689). Previous research that has reported 

changes in efficiency with dietary interventions have demonstrated that much larger 

macronutrient changes (30 % versus 70 % total kcal from CHO) are necessarily to 

induce a ~ 0.5 % change (Cole et al., 2013). Consequently dietary changes were 

ruled out as a confounding factor. A decrease in training volume with a negligib le 

increase in intensity was present between pre and post testing in the mass reduction 

group. Based on a study by Kriskoffersen et al. (2014) who recruited a similar 

population type and conducted an intervention over the same duration, reported that 

efficiency remained stable with the prescription of high intensity training. Therefore, 

it would seem unlikely that efficiency would be influenced by a much smaller 

training alteration and if anything, would have had an opposing negative influence 

upon efficiency and is unlikely to account for the improvement.       
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Body mass increase: 

Fluctuations in control group body mass and body composition are commonly  

reported with a specific tendency for gains in both body mass (1-1.9 kg) and fat mass 

(0.8-1.4 kg) while FFM tends to increase (Spence, Galantino, Mossberg 

and Zimmerman 1990; Treuth et al., 1985; Dove, 2008). Hence the finding in this 

study that mass and fat mass increased in the control group is not a new concept and 

is further supported with the gain in body mass during the control phase of Chapter 

8. Exploring the effect of mass increase was not an original intension of this study, 

however, the non-dietary intervention group increasing mass provided a more 

comprehensive perspective of the relationship between efficiency and body mass 

change. The non-intervention group that gained mass increased by an average of 1.9 

kg or 2.2 kg with post-hoc analysis which was in proportion to the decrease in the 

mass reduction group, providing a comparable change in mass. The increase in mass 

caused a greater detrimental effect on gross efficiency by reducing it by -7.03 % at 

150 W, -3.39 % at the 60 % Wmax intensity. The results were comparable with post-

hoc group allocations with a reduction in efficiency of -6.04 % at 150 W and -4.26 

% at the 60 % intensity. Net efficiency reduced by 4.35 % in the mass increase group  

at 60 % Wmax and again was similar with post-hoc group allocations at 4.11 %.  Body 

mass changes have been likewise explored by Goldsmith et al. (2009) who increased 

and decreased body mass both by 10 % of initial mass, but despite the same 

magnitude of change, efficiency decreased by a higher percentage in the mass 

increase group (25 %) than it increased with the mass reduction group (15 %). The 

research by Goldsmith et al. (2009) was conducted at very low power outputs (10-

50 W), and would usually be a criticism, however in combination with the findings 

in this study it suggests that body mass has a greater potential to reduce efficiency  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Spence%20DW%5BAuthor%5D&cauthor=true&cauthor_uid=2375667
http://www.ncbi.nlm.nih.gov/pubmed/?term=Galantino%20ML%5BAuthor%5D&cauthor=true&cauthor_uid=2375667
http://www.ncbi.nlm.nih.gov/pubmed/?term=Galantino%20ML%5BAuthor%5D&cauthor=true&cauthor_uid=2375667
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zimmerman%20SO%5BAuthor%5D&cauthor=true&cauthor_uid=2375667
http://www.ncbi.nlm.nih.gov/pubmed/?term=Treuth%20MS%5BAuthor%5D&cauthor=true&cauthor_uid=8002507
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than it does to improve, irrespective of the power output in which efficiency is 

measured.  

RMR did not significantly change in the mass increase group and changes were 

within the 95 % confidence intervals presented in Table 10.5. RMR has been 

reported to change by 10 j.s-1 with much greater mass increase (7.6 kg) and over a 

similar time period (Diaz, Prentice, Goldberg, Murgatroyd and Coward, 1992), but 

10 j.s-1 would still be considered within the typical error of RMR measurement (11 

%) presented in Chapter 7. This further suggests that the RMR remains quite stable 

during medium-term mass increase and that the detrimental effect to efficiency was 

due to exercising energy expenditure increasing and not RMR. There was no 

difference in the pre-testing dietary data to provide an indication that the increase 

was due to increased energy intake, however, this only provided a three day 

measurement and therefore an increased energy intake during the six week period 

could not be dismissed. Another possibility for the mass increase was the reduction 

in energy expended through training, demonstrated with a phase effect in total 

distance, time and elevation. This reduction in training from pre- to post-intervention 

occurred in both groups making the conditions paralleled and therefore arguably  

uninfluential to efficiency measurement if considering the interaction effect. The 

reduction in training distance is estimated to account for a net increase of 92.67 

kcal.day-1, based on the reduction in training distance by 28.16 km.week-1 and an 

average energy expenditure of 9.56 kcal.min-1 when participants were exercising at 

150 W in the laboratory. The 150 W intensity provided the closest estimate based on 

an average training speed of 24.9 km.h-1 equating to 129 W if the training was 

conducted on the SRM ergometer. Despite the equation being an estimation, it 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Diaz%20EO%5BAuthor%5D&cauthor=true&cauthor_uid=1414963
http://www.ncbi.nlm.nih.gov/pubmed/?term=Diaz%20EO%5BAuthor%5D&cauthor=true&cauthor_uid=1414963
http://www.ncbi.nlm.nih.gov/pubmed/?term=Goldberg%20GR%5BAuthor%5D&cauthor=true&cauthor_uid=1414963
http://www.ncbi.nlm.nih.gov/pubmed/?term=Murgatroyd%20PR%5BAuthor%5D&cauthor=true&cauthor_uid=1414963
http://www.ncbi.nlm.nih.gov/pubmed/?term=Coward%20WA%5BAuthor%5D&cauthor=true&cauthor_uid=1414963
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provided an indication that a reduction in energy expenditure through training was 

unlikely to be responsible for the increases in body mass.  

Unlike the mass reduction group where power remained relatively stable, the mass 

increase group produced 5.2 % less power during the laboratory TT following mass 

gain, which equated to a 37 second slower simulated TT. Nonetheless the TT time 

calculation only takes into account the power reduction and does not consider 

changes in biomechanical factors such as; increased frontal surface area and great er 

inertia affecting both acceleration/deceleration and incline cycling, due to the 

multiplication of acceleration due to gravity that would further hinder TT time 

(McGinnis, 2005; Jobson et al., 2007). These biomechanical principles would 

suggest that an increase in body mass has the potential to have a much larger 

detrimental effect on field performance than laboratory. Even so the performance 

TT’s conducted in the field environment pre and post intervention contradicted this 

notion, with only a 2 W detriment to performance with a negligible 1.64 % 

improvement in time, likely linked to the variable temperature and moderate but 

consistent wind speeds. Assessing the potential influence of submaximal efficiency  

on changes in TT power, the changes in efficiency at 150 W (r2 = 0.0554) and 60 % 

Wmax (r2 = 0.0105) did not help explain the reduction in performance TT power in 

the mass increase group.  Body composition analysis indicated a non-significant 

increase in FFM (0.7 kg) following mass gain, which based on the significant 

positive association with lean leg mass and peak performance power (r = 0.614), 

would have been predicted to result in a marginal increase in power or at the least 

maintenance (Winter, Brookes and Hamley 1991). Therefore it would appear that 

the increase in FFM seen in this study may not have been attributed specifically to 

lean mass and that the other components of FFM such as; fluid content (Fairburn and 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Jobson%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=17127577
http://www.ncbi.nlm.nih.gov/pubmed/?term=Winter%20EM%5BAuthor%5D&cauthor=true&cauthor_uid=1856910
http://www.ncbi.nlm.nih.gov/pubmed/?term=Winter%20EM%5BAuthor%5D&cauthor=true&cauthor_uid=1856910
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hamley%20EJ%5BAuthor%5D&cauthor=true&cauthor_uid=1856910
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Cooper, 2014) and carbohydrate storage (Kreitzman, Coxon and Szaz, 1992) could 

have accounted for the increase. FFM was not significantly altered while fat mass 

increased by 1.2 kg. It is theorised that in the same way that a reduction in 

subcutaneous fat mass could improve efficiency, that an increase could reduce 

efficiency by increasing the demand on the periphery to dissipate excess heat and 

thereby reduce the rate and effectiveness of oxygen delivery to the working muscles. 

Despite limited within group differences that are interpreted with caution, the 

reduction in body mass and increase in body mass between groups provided a body 

mass difference of 4.2 kg, a 2.2 kg difference in fat mass and a 2 kg fat-free mass 

change. This indicated significant interactions between TT power, TT economy, 

gross efficiency at 150W, 60% Wmax and net efficiency at 60 %. This suggests that 

it is possible to manipulate TT power, economy and cycling efficiency with both 

mass increase and decrease and that they diverge in opposing directions. The 

presence of the interactions strengthens the level of interpretation and speculation 

regarding the positive influence of body mass reduction and negative influence of 

body mass gain on performance, efficiency and economy.  

 

Follow-up: 

The follow-up phase failed to show any significant differences to sub-maximal 

efficiency, with a tendency for gross and net efficiency to return to similar baseline 

values following the six week follow-up which saw mass maintenance in both 

groups. Utilising the research by Goldsmith et al. (2009) who found both a 

significant improvement (15 %) and decrease (25 %) in efficiency following two 

weeks of weight stability after either a 10 % reduction or a 10 % increase in body 

mass respectively; it could be inferred that the change in efficiency following mass 
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alteration is attenuated between 2-6 weeks after initial change. The small 

improvement in TT economy in the mass reduction group also appeared to be 

attenuated with body mass maintenance but in the mass increase group tended to 

reduce further with maintenance (although not significantly). None of the 

submaximal economy or efficiency measurements provided a very strong associat ion 

between performance TT economy, however, in the interest of being able to predict  

changes in TT economy from submaximal intervals of economy and efficiency, the 

highest intensity provided the best indicator of changes in energy expenditure during 

TT performance. It is therefore suggested that the greater the relative power output 

the more valid an efficiency measurement, assuming that assumptions of anaerobic 

respiration and steady-state are adhered.  

 

10.6 Conclusion 

Efficiency only slightly increased, with performance remaining consistent during 

moderate calorie restriction. This was despite inducing a significant level of body 

mass and fat mass reduction. Conversely, an increase in mass had a greater negat ive 

effect on both efficiency and performance measures in the participants that gained 

mass. These findings also suggest that the changes in the rate of energy production 

and power output may only be a temporary change that returns to original values 

within six weeks of maintaining either the increased or decreased mass. 

Consequently the changes in energy expenditure are unlikely to be as a direct result  

of mass change, and are more likely linked with the hormonal and metabolic 

processes during dietary induced positive and negative energy balance.  
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CHAPTER 11: GENERAL DISCUSSION 

 

This chapter will review the thesis aims and further explore the factors that influence 

efficiency and performance, by conducting retrospective analysis of the key 

variables across experimental chapters. Overall implications, limitations and future 

research directions will also be discussed along with a final thesis conclusion.   

 

11.1 Review of thesis aims 

11.1.1 Body mass change and efficiency 

The primary aim of this thesis was to assess the effect of body mass change on 

steady-state cycling efficiency and TT performance (16.1 km). The results indicated 

that a -2.4 kg reduction in body mass positively influenced gross efficiency by 3.13 

%, or 0.66 % of a gross efficiency unit (based on post-hoc body mass change group  

allocations) (Chapter 10). This improvement represented half of the overall 

improvement in efficiency reported following six weeks of high intensity training 

(Hopker, Coleman, Passfield and Wiles 2010; 6.5 % relative improvement) and was 

similar to the 3.57 % change seen across a competitive cycling season (January to 

September) (Hopker, Coleman and Passfield, 2009). Therefore, six weeks of 

moderate calorie restriction not only has the ability to improve gross efficiency in a 

trained population, but to a comparable degree as the improvements seen towards 

the end of a competitive racing season. Furthermore, the improvement was also akin 

to the changes reported by Amati et al. (2008), despite a far greater mass change (8.2 

kg) and duration (16 weeks), which resulted in ~ 4 % improvement in gross 

efficiency. While larger proportional improvements in net efficiency (~ 10 %) have 

been reported with 10 % body mass changes similar to those presented in Amati et 

javascript:__doLinkPostBack('','ss%7E%7EAR%20%22Hopker%2C%20James%22%7C%7Csl%7E%7Erl','');
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al. (2008), these studies tended to be conducted with untrained participants and 

measured at very low power outputs (10 & 50 W) (Rosenbaum et al., 2003; 

Goldsmith et al., 2010). It is therefore suggested that the majority of the 

improvements observed with trained participants following mass reduction are likely  

achieved between 2-6 weeks of energy imbalance. This concept is based on the 

consideration that efficiency was stable in the short-term study (Chapter 8), and the 

changes observed in the medium-term study (Chapter 10) being comparable to 

previous studies with substantially greater mass reduction. Declines in exercise 

rather than resting energy expenditure, were considered primarily responsible for the 

overall improvement, demonstrated by net efficiency showing a similar trend to 

improve (2.22 %), coupled with stability in RMR (-0.2 j.sec-1) (post-hoc group  

allocations). Stability in RMR has previously been reported by Foster et al. (1990), 

utilising a moderate calorie restriction, but numerous other studies implementing 

high calorie deficits have largely opposed this finding concluding that changes in 

energy expenditure were almost exclusively from RMR (Apfelbaum, Bostsarron and 

Lacatis, 1971; Poole and Henson, 1988; Hill, 2004). However, this research is in 

support of the findings of Amati et al. (2008), who reported a preference for changes 

to occur in exercising energy expenditure rather than RMR. Despite differences in 

the severity of energy expenditure, it is theorised that small alterations in cellular 

efficiency, be that in peripheral or central systems, are easier to detect during 

exercise due to the multiplication of energy expenditure along with any potential 

energy saving or increment (Bhagavan, 1992). Still, it is difficult to fully address to 

which degree each component of TDEE alters, due to the complex and often 

expensive measurement equipment required, combined with strict participant 

protocols. The adaptations in energy expenditure are also likely to be a rather 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Apfelbaum%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Apfelbaum%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lacatis%20D%22%5BAuthor%5D
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individualistic process, influenced by genetic factors (Maclean et al., 2011), specific 

macronutrient ratios (Cole, Coleman, Hopker and Wiles, 2014), training status and 

type (Hopker, Coleman and Wiles, 2007) and body composition (Kriketos, Sharp, 

Seagle and Hill, 2000), which further hinders the determination of the dominant 

changes in TDEE with energy imbalance.  

Investigating the effect of a positive energy balance on efficiency was not a main 

aim of this thesis, but a mass gain of 2.2 kg (post-hoc groupings) appeared to have a 

stronger negative effect on gross efficiency (-4.26 %), when compared to an 

equivalent mass reduction. This finding that mass gain resulted in a great er 

detrimental effect on efficiency relative to mass reduction has been previously  

reported (Goldsmith et al., 2010). Unfortunately, despite Goldsmith et al. (2010) 

measuring glycolytic and oxidative enzyme markers they were unable to explain the 

seemingly negative bias for a reduction in efficiency due to mass gain.  Alike to the 

mass reduction condition, the reductions in efficiency were predominantly attributed 

to changes in exercise energy expenditure rather than RMR. By combining 

individual change values from the short-term (Chapter 8) and medium-term study 

(Chapter 10), correlation analysis demonstrated a significant low to moderate 

negative relationship between changes in efficiency and changes in body mass (r = -

0.423, P = .011) (Figure 11.1). This analysis was repeated with body fat change, 

which had a similar but slightly weaker relationship (r = -0.41, P = .014) (Figure  

11.2) and with fat-free mass change, which had a negligible negative relationship (r 

= -.24, P = 0.163). Remarkably, changes in absolute body mass explained a similar 

level of variation as estimated fat mass change, despite a simplistic two 

compartmental body composition model making several assumptions that have the 

potential to increase error. Conversely, estimated fat-free mass change provided little 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Maclean%20PS%5BAuthor%5D&cauthor=true&cauthor_uid=21677272
http://www.ncbi.nlm.nih.gov/pubmed/?term=Coleman%20D%5BAuthor%5D&cauthor=true&cauthor_uid=24022570
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hopker%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24022570
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hopker%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24022570
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hopker%20JG%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=Kriketos%20AD%5BAuthor%5D&cauthor=true&cauthor_uid=10776900
http://www.ncbi.nlm.nih.gov/pubmed?term=Kriketos%20AD%5BAuthor%5D&cauthor=true&cauthor_uid=10776900
http://www.ncbi.nlm.nih.gov/pubmed?term=Seagle%20HM%5BAuthor%5D&cauthor=true&cauthor_uid=10776900
http://www.ncbi.nlm.nih.gov/pubmed?term=Seagle%20HM%5BAuthor%5D&cauthor=true&cauthor_uid=10776900
http://www.ncbi.nlm.nih.gov/pubmed?term=Hill%20JO%5BAuthor%5D&cauthor=true&cauthor_uid=10776900
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explanation of the changes in efficiency, likely attributable to fat-free mass not 

simply representing lean mass, but numerous other variable components of body 

tissue. This retrospective analysis fortifies the concept that efficiency has a negat ive 

relationship with body mass and composition change, and that efficiency can be both 

positively and negatively influenced by body mass and composition perturbations. 

 
 

 

 

 

 

 
 
 
 

 
Figure 11.1 The relationship between body mass change and the changes in gross 

efficiency at 60 % Wmax, (Number = 35), r2 = 0.1792, y = -0.5670x + -0.2112.  
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Figure 11.2 The relationship between fat mass change and changes in gross 

efficiency at 60 % Wmax, (Number = 35), r2 = 0.1679, y = -0.8039x + -0.6310.  
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Figure 11.3 The relationship between FFM change and changes in gross efficiency 

at 60 % Wmax, (Number = 35), r2 = 0.05799, y = -0.5399x + -0.5290.  

 
Currently the mechanisms for the changes in efficiency can only  be speculated at 

this stage, and as cellular alterations are beyond the scope of this research, however 

both pulmonary and cardiovascular areas can be explored. Based on initial 

examinations; blood parameters, V̇O2 and RER were largely unable to identify or 

explain the mechanistic improvement in steady-state efficiency, with an interact ion 

of V̇O2 only present during performance economy measures. Although it is 

acknowledged that specific assumptions surrounding cycling economy during a 

performance TT may be violated, the change in economy was similar to gross and 

net efficiency variables measured during steady-state cycling. Unfortunately further 

analysis was unable to determine if the reduction in V̇O2 was as a result of changes 

in O2 extraction or ventilation. This could be attributable to a heightened sensitivity  

of the measures to noise at a lower tier of oxygen uptake measurement, and/or, the 

reduction in V̇O2 was sufficiently distributed between reductions in O2 extration and 

ventilation. Nonetheless, it is conceivable that VE could be influenced more 

mechanistically, as there is evidence to suggest that a reduction in body mass, but 
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particularly visceral and torso subcutaneous fat, can reduce intra-abdominal pressure 

which intern reduces air-way resistance (Pelosi et al., 1997; Aaron et al., 2004). 

Traditionally air-way resistance has been assessed in regard to maximal values, but 

it is possible that it could result in a lesser contraction of the ventilation muscles 

during sub-maximal intensities, resulting in less energy being expended. By utilising 

research from Vella, Marks and Robergs (2006) who reported an average oxygen 

cost of 2.44 (ml.L) to ventilate between 35-50 % maximum ventilation, it is possible 

to calculate the change in ventilation cost. Assuming a consistent RER value and 

using the changes in VE at the 150 W workload to minimise discrepancies with 

exercise intensity; reduced VE in the mass reduction group attributed only 0.03 % of 

the 0.17 % increase in efficiency, with an increase in VE in the mass gain group  

accounting for a similar but opposing -0.04 % of the -1.24 % overall reduction in 

gross efficiency. Consequently the changes in ventilation are likely to have only a 

very small role/if any on the alterations in efficiency, as energy expenditure changes 

in the same direction, but the cost of ventilation is unable to account for the majority  

of the changes observed.  

Cardiovascular adaptations provide an indication of more central mechanistic details 

and have the potential to partially explain the changes in exercising energy  

expenditure. Heart rate changes have yet to be fully explored in this thesis, and so 

further analysis indicated that heart rate and gross efficiency at 150 W had a non-

significant negative relationship of low strength when combining data across 

experimental studies (N = 43, r = -0.30, P = .054), this relationship was only 

marginally improved when using data solely from the medium-term study (N = 28, r 

= -0.342, P = .075). Consequently reductions in heart rate have the potential to only 

partially explain a proportion of the changes in efficiency, and would not be 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Pelosi%20P%5BAuthor%5D&cauthor=true&cauthor_uid=9074968
http://www.ncbi.nlm.nih.gov/pubmed/?term=Aaron%20SD%5BAuthor%5D&cauthor=true&cauthor_uid=15189920
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recommended as a reliable marker for efficiency change, as heart rate only accounted 

for 19 % of the variation.  

A specific theoretical reason for utilising body mass to influence efficiency was 

based on the thermoregulatory response of exercise; founded by the theory that 

peripheral veins dilate to increase heat dissipation from the epidermis, which may  

result in lower blood availability and reduced oxygen delivery (Bertucci et al. 2013; 

Hettinga et al. 2007). By altering the thickness of the subcutaneous adipose tissue, it 

was theorised to change the insulating capabilities and change the magnitude of the 

vasodilation mechanism during the same exercise intensity and environmental 

conditions. Therefore a reduction in subcutaneous fat could improve 

thermoregulation and improve efficiency, with an increase in body fat likely to 

reduce the effectiveness of heat dissipation and result in a higher energy cost during 

exercise. Considering that 75-88 % of the chemical energy obtained from ATP 

hydrolysis has the potential to be transferred as heat energy (based on efficiency  

values in this thesis), it is possible that a small improvement in heat dissipation 

effectiveness could improve oxygen delivery, and therefore whole organism 

efficiency. Although thermoregulatory responses were not measured during this 

study, if they made a substantial contribution to efficiency change, it could be argued 

that a marker for this mechanism would likely be changes in skinfold thickness. To 

explore this theory, further analysis was conducted assessing the relationship  

between the changes in the sum of six skinfold sites to changes in gross efficiency . 

Explicitly, data points from the medium-term study were used due to the limited time 

for subcutaneous fat to be reduced within the short-term study. Utilising adjusted 60 

% Wmax intensity, the analysis demonstrated a non-significant low associat ion 

between changes in skinfold and gross efficiency (N = 22, r = -0.36, P = 0.114). 
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Although the relationship was in the correct direction with the above theory, there 

was only a small potential influence of the mechanistic parameters in non-obese 

participants, and that the absolute mass change was likely too low for there to be a 

substantial thermoregulatory influence.    

Fat free mass perturbations during body mass reduction are commonly reported with 

a negative energy balance, with the majority of studies reporting a loss in fat-free 

mass, unless specific resistance training is prescribed (Clark, 2015). Conversely 

increases in body mass often result in an increase in fat-free mass, with a steeper 

increase during the initial stages of mass gain and a proportional shrinking of fat-

free mass gain with greater body mass increments (Mingrone et al., 2001). By 

combining both short and medium-term studies; body mass reduction induced a 

reduction in fat mass relative to fat-free mass at a ratio of 1.4:1 (kg) respectively, in 

addition mass gain altered body composition at a ratio of 1.2:1 (kg) (fat mass:fa t -

free mass). Although the ratio of fat-free mass change is quite high relative to 

previous longer-term studies (Rosenbaum et al., 2003; Goldsmith et al., 2010), it is 

important to note that short- and medium-term studies have a tendency to alter 

numerous components of fat-free mass such as; hydration, glycogen storage and food 

stuffs within the gastrointestinal tract (Corvilain, et al., 1995; Heymsfield et al., 

2012). Furthermore, reductions in visceral fat have been noted to outweigh 

subcutaneous fat reductions during the initial stages of an energy imbalance (Chaston 

and Dixon, 2008; Bakker et al., 2015). As body fat estimations with skinfo ld 

measurement are reasonably unaffected by the above variations, FFM as the 

opposing compartment tends to be particularly affected as all other changes are 

assumed to be as a result of fat-free mass. Supposing that a proportion of the changes 

in fat-free mass were as a result of lean mass change, due to lean tissue being 3.25 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Clark%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=25973403
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mingrone%20G%5BAuthor%5D&cauthor=true&cauthor_uid=11555829
http://www.ncbi.nlm.nih.gov/pubmed/?term=Corvilain%20B%5BAuthor%5D&cauthor=true&cauthor_uid=7485502
http://www.ncbi.nlm.nih.gov/pubmed/?term=Heymsfield%20SB%5BAuthor%5D&cauthor=true&cauthor_uid=22257646
http://www.ncbi.nlm.nih.gov/pubmed/?term=Heymsfield%20SB%5BAuthor%5D&cauthor=true&cauthor_uid=22257646
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chaston%20TB%5BAuthor%5D&cauthor=true&cauthor_uid=18180786
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dixon%20JB%5BAuthor%5D&cauthor=true&cauthor_uid=18180786
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times more metabolically active than subcutaneous tissue (Hill, Cateracci and Wyatt, 

2006). Therefore reductions or increases in lean mass are theoretically more likely 

to result in changes in absolute energy expenditure. However, the two compartmenta l 

body composition measure, make it difficult to determine the precise resultant 

decrease or increase in lean tissue. Overall gross efficiency seemed to be more 

sensitive to increases in body mass, with concurrence across all exercise intensit ies. 

This would suggest that there is a type of negative bias within physiology whereby 

it would appear easier to reduce efficiency than it is to improve.  

Interestingly the follow-up phase demonstrated that the process of energy imbalance 

rather than the absolute mass change, was most likely responsible for the changes in 

efficiency, as during the follow-up phase where body mass remained stable and 

participants were assumed to be in a neutral energy balance, efficiency appeared to 

return to pre-testing values. Therefore the follow-up results suggest that the 

mechanism for efficiency change is more likely linked with a physiological process 

that is present only during energy imbalance, rather than a mechanical 

advantage/disadvantage due to changes in total mass, fat-mass, lean mass or 

thermoregulation. This mechanism has been specifically noted with energy intake 

deficit (Rosenbaum et al., 2003), with body mass reductions as a result of exercise 

failing to reduce energy expenditure (Fontana and Klein, 2007). In addition, once 

energy balance is achieved, the majority of the benefits are not present following six 

weeks of mass maintenance. This implies that efficiency may only be temporarily  

affected following the cessation of an energy restriction/increase period, and could 

call into question the longevity of the improvements reported in previous training 

studies (Hintzy, Mourot, Perrey and Tordi, 2005; Hopker, Coleman, Passfield and 

Wiles 2010). This also suggests that a reasonably reactive energy imbalance 

javascript:__doLinkPostBack('','ss%7E%7EAR%20%22Hopker%2C%20James%22%7C%7Csl%7E%7Erl','');
javascript:__doLinkPostBack('','ss%7E%7EAR%20%22Hopker%2C%20James%22%7C%7Csl%7E%7Erl','');
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mechanism is responsible for the efficiency change. Resting metabolic rate showed 

the largest (albeit very slight) changes, during the follow-up trial when the 

participants had been mass stable. This could either suggest a possible delay in the 

reaction of RMR as a compensatory homeostatic mechanism, or that the energy  

imbalance and total mass change was insufficient to induce a change in RMR as a 

homeostatic mechanism. If employing the set-point theory the mass stability  

observed following six weeks of free-living conditions would suggest that either the 

mass reduction was not severe enough or of an adequate duration to induce a body 

mass return, or that body mass return takes longer than initial mass change. With the 

studies in combination, these findings suggest the presence of a homeostatic control 

process during exercise, but that it is delayed, based on stability in the short-term 

study and reductions in exercising energy expenditure detectable after six weeks. 

Therefore it seems logical to consider that the change in energy expenditure 

following 2-6 weeks of mass change, is predominantly process orientated, rather than 

linked to physical changes of body mass (based on the follow-up phase), at least 

during the early stages of mass perturbation. It is not inconceivable that greater mass 

changes would likely have a larger effect on the biomechanical and thermoregulatory  

factors influencing efficiency and energy expenditure; as although dependent on 

starting body fat %, have a greater potential for change.  

 

11.1.2 Performance and efficiency 

The notion that efficiency has been described as a key determinant of performance 

(Horowitz et al. 1994; Olds et al., 1995; Lucia et al., 2002), provided the early  

justification for assessing efficiency in combination with performance, and making 

the link with performance an important secondary aim for this thesis. Utilising 
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unique participants across studies, Figure 11.4 demonstrates that initial gross 

efficiency has a positive, low strength association with TT performance power (r = 

0.135, P = .364). This indicated that gross efficiency explains less than 2 % of the 

variation in performance power and is unable to differentiate between participants 

performance. To provide a comparison, absolute Wmax (Figure 11.5) and V̇O2max 

(Figure 11.6) were also assessed in the same manor, as they are considered to have 

a robust predictive ability regarding performance power. Both Wmax (r = 0.907, P < 

.001 ) and V̇O2max (r = 0.642, P < .001) variables presented significant, much stronger 

and positive correlations with TT power. Therefore it is disputed that efficiency may  

not be a key performance determinant in an absolute sense and there may be merit  

to downgrade the efficiency performance relationship. While it is clear that gross 

efficiency if compared to V̇O2max and Wmax is not analogous in regard to being able 

to predict or differentiate between participants starting performance, it is argued that 

if all other variables stayed the same that an improvement in efficiency would likely  

result in an improvement in performance.  
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Figure 11.4 The relationship between time-trial power and gross efficiency at 150 

W by combining data from Study 2 (Chapter 8) and Study 4 (Chapter 10). 

(N = 47), r2 = 0.01834, y= 0.007005x + 18.99 
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Figure 11.5 The relationship between time-trial power and Wmax by combining 

data from Study 2 (Chapter 8) and Study 4 (Chapter 10). (Number = 47), r2 = 

0.8218, y= 0.8830x + 129.7 
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Figure 11.6 The relationship between TT power and absolute V̇O2max by 

combining data from Study 2 (Chapter 8) and Study 4 (Chapter 10). (Number = 

47), r2 = 0.4124, y= 10.13x + 1047. 

  
 
The results from the medium-term study (Chapter 10) suggest that an efficiency  

improvement or reduction does indeed result in a similar mirrored effect on TT 

performance power, with a greater reduction in efficiency in the mass increase group  
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having a greater negative influence (mass reduction: 1.9 W increase, Mass increase: 

-15.1 W reduction). The results from the short-term study (Chapter 8) also support 

the concept that efficiency is linked with performance as both efficiency and 

performance power remained seemingly unaffected by short-term calorie restriction 

(relative change in GE at 60 % Wmax: .04 % & TT performance power: -1 W). This 

is a novel finding as performance improvements are rarely empirically tested and are 

often assumed based on performance models (Joyner and Coyle, 2008) or predicted 

based on purely efficiency improvements. When predicting performance changes 

with efficiency fluctuations it is often assumed that the saving in efficiency is able 

to equate to a direct and equivalent change in power output. However Cole (2015) 

showed this not to be the case, with efficiency improvements only accounting for 

~33 % of the total 5 % (88 s improvement over a 16.1 km laboratory TT) 

performance improvement following a combined pre, during and post dietary  

intervention. These differences are highlighted in Table 11.1 where actual 

performance changes are compared to predicted. Gross efficiency showed no change 

in the short-term study and so performance was similarly predicted to remain stable. 

Due to changes in the medium-term study, the analysis suggested that not only can 

the direction of performance change be correctly predicted, but also to a large extent 

the magnitude, with the mass increase group prediction differing by only 3 W and 7 

W in the mass increase group. These prediction differences are within the natural 

variation of performance power outlined in Chapter 7 (CV: 2.28-3.89 %).  
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Table 11.1 Predicted verses actual changes in laboratory performance based on 

gross efficiency changes measured during the 60 % Wmax.  

Intervention 
∆ Gross 

efficiency         
(% GE unit) 

∆ Predicted 
performance 

(W.min-1)  

∆ Laboratory 
performance 

(W.min-1) 

Short-term  

Calorie 
restriction 

(N = 17) 

+0.01 +0.13 -1  

Medium-term  

Mass reduction 

(N = 14)  

+0.66 +8.62 +1.9  

Mass increase  

(N = 15)  
-0.93 -12.14 -15.1  

Note: Performance change based on an average TT power of 280 W and an average 
gross efficiency of 21.45 %, ∆, delta (change), N, number, GE, gross efficiency.  
 

While it is acknowledged that performance changed only marginally with mass 

reduction, the results nonetheless suggest that mass reduction can at the least 

maintain absolute power. This is despite mass reduction often being associated with 

a negative influence on absolute power, due to a proportion of the reduced mass 

consisting of fat-free mass, which often predisposes reductions in hydration status, 

CHO storage (Heymsfield et al., 2012) and lean mass (Stein et al., 1991); all factors 

that can reduce performance (Heigenhauser, Sutton and Jones, 1983). Considering 

that energy intake manipulation does not have a direct mechanistic pathway to 

improve performance power, the results suggest that efficiency may have been the 

crucial reason for the significant interaction. This notion is strengthened by the 

understanding that there were no significant differences in both Wmax and V̇O2max 
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variables in either groups (P > .05). It is however noteworthy that real world 

performance is determined by a multifaceted interaction of a number of variables 

and that it is too simplistic to consider that improvements in efficiency will always 

result in an improved performance. Conversely it must also be acknowledged that 

reductions in mass while maintaining absolute power will inevitable result in an 

improvement in power to weight ratio, which both the simulated laboratory TT and 

flat field TT will not reflect. Had a separate measure of time to climb an incline been 

measured, it would seem likely that the performance differences would have been 

more pronounced. Subsequently both the changes in laboratory performance and 

predicted performance do not take into account the additional potential for mass 

change to influence field performance as a result biomechanical variables. These 

include the potential for small physical changes in; leg mass and inertia, total rider 

mass, and rider position inducing changes in both frontal surface area and drag 

coefficient (particularly if aerodynamic body position is restricted by excess fat  

mass) (Kyle, 2003; Hopker et al., 2010). Thus changes in biomechanical variables 

can be both positively and negatively influenced by body mass change, and 

theoretically would cause an additive effect in the same direction of performance 

change observed in this research. Consequently the results suggest that mass 

reduction can at the least maintain absolute power, providing support for the current 

elite practice to reduce mass prior to a cycling race (Coyle, 2005; Moore, 2015). In 

summary the above performance findings suggest that mass reduction tended to 

either maintain or slightly improve TT power, whereas mass increase had a tendency  

to reduce performance power. 
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11.1.3 V̇O2max and efficiency  

Prev ious studies have reported that  gross efficiency has an inverse relat ionship with 

V̇O2max in world class professional road cyclists (N = 11, r = -0.63, P = 0.04) (Lucia 

et al., 2002). As V̇O2max and efficiency  calculations are inherently dependent on 

abso lute V̇O2 values, a common criticism is that an inverse relationship could be 

partly due to gas analysis calibration error, with tests conducted on the same day, 

utilising the periodic calibration of equipment. However, by conducting testing on 

separate days it is likely to alleviate some of these issues, albeit increasing the 

potential for inter-day variation. Therefore a tertiary aim of this thesis was to explore 

if a similar relationship existed in trained club level cyclists by measuring the two 

variables on different days. To assess the relationship, data was pooled from all 

studies, which indicated a significant moderate to high inverse relationship (r = -

0.671, P < .001). This finding was very similar to the relationship reported by Lucia 

et al. (2002) and indeed suggests that the same relationship is present in club level 

cyclists. Considerin g that efficiency  and V̇O2max values are intrinsically linked with 

abso lute V̇O2, it is proposed that cyclists with a higher absolute V̇O2max utilise a 

similarly higher V̇O2 at a relative exercise intensity, which results in a lower 

efficiency. Thus to improve efficiency, a lower V̇O2 for the same sub-maximal 

intensity would be required. Conversely the relationship may also explain why 

cyclists often appear similar despite differences in absolute V̇O 2max values, 

suggesting that a cyclist with a lower V̇O2max may be able to compensate by having 

a higher efficiency. Currently the most plausible reason for the inverse relationship  

is still speculated to be linked to either genetic factors and or the dominance of type 
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I muscle fibres in the participants with the highest efficiency values (Horowitz, 

Sidosis and Coyle, 1994; Lucia et al., 2002).   

11.1.4 Lung volume and function 
 
Lung capacity (VC) and function (FEV1 & FEV1 %) were speculated earlier in this 

thesis to provide a potential physiological marker to explain absolute efficiency . 

However, following further analysis by combining data across studies (N = 45), 

neither of the lung parameters had a significant relationship with gross efficiency at 

150 W (r ≤ 0.2, P < .05). Consequently despite a reasonably substantial cohort of 

participants, lung capacity and functioning appeared to explain very little of the 

variation in gross efficiency at a fixed absolute work load.   

 

11.2 Implications of the findings  

11.2.1 Performance  

Changes in efficiency have been demonstrated in this thesis to have implications for 

both laboratory and field performance power (Chapter 10). On average the 

reduction in mass in the medium-term study resulted in a 5.4 second quicker 

laboratory TT, with an increase in mass resulting in a 37.4 second slower laboratory  

TT. Utilising changes in field performance power, TT performance was calculat ed 

to be 74.5 seconds quicker with mass reduction and 9.3 seconds slower with mass 

gain. Raw power was used for the calculation of time to further minimise the 

potential confounding influence of environmental conditions to control for trials not 

being conducted on the same day (see Appendix 10 for power to time conversions). 

Had all trials been completed on the same day, time would have been equivalent to 

absolute power with all factors being equal. It is important to note that field 
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performance based on recorded time improved equally in both groups (~ 30 sec) with 

environmental conditions attributed for the discrepancy. It would be anticipated that 

if all trials were conducted at the same time/within a short period of times (in line 

with TT races) the changes in power would have reflected differences between the 

groups, for time changes post intervention. The above calculations based on a simple 

power to time relationship, do not take into account the biomechanical changes as a 

result of body mass change, which are likely to have an additive effect. To provide 

context for the changes in calculated performance, the top five results from the last 

three 16.1 km National TT Championships were obtained and presented in Table  

11.2. On average only 7 seconds separated the top five TT places, with just 13 

seconds differentiating between 1st, 2nd and 3rd place. Assuming a bell shaped curve, 

the time separating TT placing is likely to be even closer towards the average cyclist  

time, resulting in a greater potential to influence placing for a similar time difference. 

For this reason, a small overall increase or decrease in performance power over the 

duration of a TT can have very real positioning consequences despite seemingly  

small changes in absolute power.   
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Table 11.2 The mean top five placed 16.1 km National TT Championship results 
from 2013-2015.   

Intervention Time (min:sec) 
Difference with previous 

(sec) 

1st place 

 

18:52 
5 

2nd place 18:57 
8 

  

3rd place 19:05 
10 

  

4th place 19:15 
6 

  

5th place 19:22 
N/A 

  

Note: Data obtained from: Cycling Weekly (2013), Snowdon Sports (2014) and 

Jones and Wynn (2015), (Events, N = 3).  

 
 

Equally, if improvements in efficiency were either not able to translate to an increase 

in absolute power, or that an increase in power was not considered beneficial, for 

instance during consecutive road race cycling with energy conservation being 

considered a key tactic (Baker, 2013). Using efficiency change, it is also possible to 

calculate the potential energy saving cost/additional cost of cycling. As this research 

did not find any considerable changes in RMR, energy expenditure calculations were 

determined solely on changes in gross cycling efficiency. Based on an overall 0.66 

% improvement in efficiency achieved in the mass reduction group, 7.4 kcal.hr-1 

would be conserved while cycling at 60 % Wmax. Conversely by gaining mass the 

reduction in efficiency would equate to a 10.4 kcal.hr-1 greater energy expenditure. 
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Although these values are reasonably minor, amateur and professional cyclists 

frequently undertake several hours of cycling per week, often conducting multiple 

consecutive days of training and racing, which would result in an accumulation of 

these values. It is also noteworthy that these changes were achieved with only a small 

± 3 % change in body mass, enabling the potential for either greater mass change or 

a combination of intervention strategies to further alter efficiency. Additionally, 

reductions in absolute energy expenditure following a fixed work load intensity may  

allow a cyclist to maintain a higher power while remaining sub-threshold. As both 

lactate and onset of blood lactate accumulation thresholds are considered to influence 

performance (Ghosh, 2004), maintaining a higher power while remaining sub-

threshold could have added implications for both physiological exercise demands 

and performance.   

 

11.2.2 Short-term calorie restriction 

Two weeks of moderate calorie restriction did not demonstrate that it influenced 

efficiency or performance, and suggested that homeostatic control adaptations 

following moderate calorie restriction are either not present or currently  

undetectable. Therefore it could be inferred that efficiency is a reasonably robust 

measure and that it may not be completely necessary to ensure an isocaloric diet is 

consumed in the days leading up to laboratory testing, if the deficit is only mild (< 

500 kcal.day-1) and conducted for a short period (< 2 weeks). Hence the results 

provide some support for the practice of weight-cycling during a competitive season.   

 

11.2.3 Field and laboratory comparison 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ghosh%20AK%5Bauth%5D
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This thesis also sort to explore the logistics of measuring gross efficiency in an 

outdoor field environment (Chapter 9). The findings indicated that there was a 

higher power variation in the field condition but that the vast majority of participants 

were able to maintain the desired steady-state powers for efficiency assessment. 

When comparing between a stationary cycle ergometer in a controlled environment 

and a power measurement device on a road bicycle, the results specified that it was 

essential to control for differences in power output and cadence, with temperature 

and humidity variables also having an influence on efficiency. Specifically this 

research validated the use of a wind cut-off threshold of ≤ 3 m.s-1 to reduce testing 

variability that was previously proposed by Bertucci et al. (2012). Accordingly it 

was demonstrated that it is possible to measure efficiency in the field, with the most 

consistent field measure of gross efficiency being recorded at the 60 % Wmax 

intensity, matching laboratory measurement. While the analysis demonstrated an 

ability to account for confounding variables, the study indicated the importance of 

strict environmental criteria.  

 

11.3 Limitations  

Both the severity of the hypocaloric intervention and the magnitude of body mass 

reduction were limited in regard to the desire of this research to recruit club level 

cyclists that train frequently. Recruiting club level cyclists opposed to sedentary  

participants was projected to limit the possibility of a training effect and overcome a 

large criticism of previous weight loss research (Amati et al., 2008; Rosenbaum et 

al., 2003). However to ensure sufficient and safe mass reduction, the calorie 

restriction was set at a moderate -500 kcal.day-1 for health, well-being and to 
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minimise lean mass reduction. Cyclists recruited for the intervention group had to 

have a minimum of 18 % body fat to satisfy ethical approval, which is at the upper 

end of what is considered a typical body fat % for a cyclist (7-18 %) (Knechtle, 

Knechtle and Rosemann, 2009). Despite the recruitment criteria, all cyclists were 

classified according to Wmax as club level (Ansley and Cangley, 2009). As a result  

of intervention constraints, the implications for this thesis are somewhat limited to 

changes in body mass of 2.4 ± 1.4 kg, with mass changes greater than this currently  

only speculated to induce additional effects on efficiency and performance.   

 

Few studies have assessed the effect of cycling efficiency on measured changes in 

performance (Jobson et al., 2012), and although this investigation did measure pre- 

and post-performance, it only utilised a 16.1 km TT that is considered a reasonably  

short cycling distance. This distance was used for several reasons; to minimise closed 

road circuit resources, ensuring portable equipment battery time limits were not 

exceeded and to ensure participant testing time was manageable considering multiple 

variables and test visits. In addition 16.1 km time-trials are considered a normal and 

popular race distance (Jones and Wynn, 2015). Theoretically it is feasible that a 

longer TT distance could have induced a performance detriment in the mass 

reduction group. This concept is based on the relationship between energy restriction 

and lower muscle glycogen stores, which are unlikely to be stressed to the point of 

limiting performance during ~26 minutes of cycling (Ivy, 1991). A longer TT 

distance may also result in more consistent power output over the course of the 

performance trial, which could add greater accuracy when detecting changes. Thus 

a longer TT may induce a better ‘steady-state’ performance measure and in 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ivy%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=2011684
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combination with an overall decrease in RER values, would also increase the 

legitimacy of calculating gross efficiency during such performance.     

 

 

Regarding research design, the non-dietary intervention group in the medium-term 

study increased mass to an almost identical but opposing degree as the mass 

reduction group. Although this improved the understanding of the influence of 

energy imbalance on efficiency resulting in significant interactions, the lack of a 

control group was an initial criticism of a key study by Amati et al. (2008). Based 

on data from both the short- and medium-term studies, the research is the first to 

evidence that club level cyclists may find it difficult to maintain a set body mass 

when requested, and that by providing only basic mass stability guidelines during a 

control period, mass tends to increase. Furthermore, not all participants that were 

prescribed a hypocaloric diet were able to demonstrate mass reduction, with some 

participants either remaining mass stable or increasing mass. The initial short-term 

intervention demonstrated a high degree of compliance, with 87.5 % of the 

participants reducing mass, with only 12.5 % either gaining or maintaining mass. 

However, despite similar compliance strategies, six weeks of calorie restriction 

resulted in a greater level of non-compliance with 23.5 % either gaining or 

maintaining mass (based on initial intervention group allocations). It is postulated 

that the increase in duration coupled with the seasonal time of year were two of the 

most probable causes for the reduction in compliance. Inter-individual differences 

with energy balance however cannot be completely ruled out as having an influence 

on the rate and magnitude of total body mass and fat mass change. Therefore an 

important finding is that a greater level of monitoring may be needed with longer-
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term studies to minimise mass gain during control periods, and that calorie restriction 

studies may require over recruitment at a greater proportion linked to the duration of 

the intervention.  

Substantial efforts were made to standardise the food intake and training of 

participants in the three days prior to testing in particular, however recording food 

intake is often reported to result in an observation effect (~ 5 % reduction in energy  

intake) and an under reporting of food intake (5-20 % reduction in energy intake) 

(Wrieden, Peace, Armstrong and Barton, 2003). This continues to be a limitation of 

research in this field and could only be addressed with an invasive clinical setting 

where food is provided and intake monitored 24 hours a day for the intervention 

period. This clinical approach is expensive, disruptive to participants and removes a 

level of applicability. Technical error with training recording equipment at times 

limit ed the detail that could be obtained, but again is something that is common with 

training monitoring.  

Gross efficiency provides a measure of whole organism efficiency and as such only 

provides an indication of the dominant resultant direction of efficiency change. 

While additional variables were measured alongside efficiency and performance 

such as; blood parameters, HR and the component parts of oxygen uptake, little 

mechanistic evidence was apparent to explain why efficiency changes occurred. 

Consequently this thesis may only really speculate as to the causes of efficiency  

change with further investigation required.  

 

11.4 Future directions  
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It is theorised that gross efficiency could be manipulated further by either combining 

efficiency interventions or increasing the severity and or the duration of the energy  

imbalance. The simplicity of energy intake manipulation leaves a multitude of 

interventions that could be conducted alongside. It is theorised that by either 

increasing the severity of the restriction and or the duration of the intervention, it 

could potentially further influence efficiency, via a greater opposing influence of the 

homeostatic control mechanisms. This may lead to substantial change in RMR which 

would be combined with changes in exercise energy expenditure. Based on previous 

research utilising magnitude of change as the main criteria, further mass reduction 

combined with high intensity exercise is speculated to be a likely candidate for 

inducing efficiency changes (Hopker et al., 2010). Research by Amati et al. (2008) 

demonstrated an impressive additive efficiency effect when severe calorie restriction 

was combined with a substantial increase in exercise volume. However it is unknown 

if an additive effect could be observed with participants already accustomed to 

cycling, even if a novel form of high intensity training was implemented. 

Furthermore, based on the compliance from the final study of this thesis, the more 

aggressive calorie restriction/longer-term diet might be better explored initially in a 

number of well controlled case studies to assess outcomes before significant 

resources are invested for a large scale intervention.  

 

Changes to macronutrient ratios could not only induce further changes in efficiency  

be could also be used to manipulate the rate of mass reduction, due to differences 

between macronutrient storage efficiency (Donato and Hegsted, 1985). It is theorised 

that a high protein, low glycaemic index (GI) diet has the most potential to induce a 

higher level of mass reduction, in comparison to the same kcal intake but with a 
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dominance of CHO (Gallego et al., 2016). High protein low GI diets have been 

shown to cause a lower blood sugar spike, resulting in a lower tendency to store 

energy that has also been shown to increase satiety levels (Paddon-Jones et al., 

2008).  

 

The follow-up phase in the medium-term study highlighted the possibility that 

efficiency may only be temporarily altered following changes in energy balance; 

therefore an area that may be worth investigating is to track the efficiency return to 

pre intervention values. This would potentially enable a more precise use of calorie 

restriction to manipulate efficiency prior to a cycling race, while ensuring a sufficient 

period of time to consume an isocaloric diet, limiting the negative effects.  

 

Unfortunately this research was unable to reveal the mechanistic causes for the 

changes in efficiency and so future research could incorporate additional variables 

such as; skin and core temperature measurement, and hormone and enzyme response 

tracking, in an attempt to determine the causes of efficiency change in club level 

cyclists. Of particular interest would be insulin, leptin and ghrelin as they are closely  

linked with metabolism and have previously been investigated in calorie restriction 

studies using sedentary participants (Maclean et al., 2011; Hardie, Ross and Hawley, 

2012). The enzyme AMPK as a key metabolic regulator, would also interesting to 

explore in regard to mass change, but, could also provide a novel avenue to further 

explore the relationship with efficiency, V̇O2max and performance power.   

 

Little is currently known about muscular changes in trained cyclists as a result of 

energy imbalance, with gross efficiency values only providing an overall change in 

http://ajcn.nutrition.org/search?author1=Douglas+Paddon-Jones&sortspec=date&submit=Submit
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energy expenditure. By measuring changes in muscle glycogen stores, oxidat ive 

enzymes and muscular activation, it could help explain where the physiological 

efficiency changes take place. Another possibility is the use of a dual-energy X-ray  

absorptiometry scanner which can be used as a 3-compartmental model, or a multi-

compartmental model approach, which can utilise up to a 4-compartmental model 

(Andreoli et al., 2004). Utilising a variety of techniques to further separate key 

components of body composition, would more accurately calculate the changes. This 

would allow for a more precise analysis to determine the proportion of efficiency  

change that could be attributed specifically to lean mass change.  

 

The field and laboratory comparison study was successful in measuring efficiency  

in the field environment, however variation differences were present with 

environmental conditions and power. While environmental conditions are accepted 

to be difficult to control in a field environment, testing in a velodrome would provide 

an alternative to alleviate the differences. Also, although the TT course was 

reasonably level, due to participants having to manually adjust power output in the 

field compared to a computer controlled electronic brake on the laboratory  

ergometer, power variation was higher in the field. The disparity between the 

variations could be improved by requiring participants to manually control power in 

the laboratory condition, or allow several sessions of power meter training prior to 

field efficiency measurement. Another potential endeavour regarding ergomet er 

comparison, would be to determine the differences between efficiency measured 

with a free-wheeled bicycle on a treadmill, rollers and with a turbo trainer to further 

understand the mechanical influences on cycling efficiency.  
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11.5 Conclusion 

Over the course of this thesis body mass change has been explored in regard to 

changes in efficiency and performance. The investigations within this thesis were 

able to achieve notable body mass change with results indicating that efficiency can 

be both positively and negatively influenced in participants accustomed to cycling. 

Importantly, only exercising energy expenditure and not RMR was observed to be 

influenced by energy imbalance, with both efficiency and performance power 

appearing unaffected by short-term moderate calorie restriction. The research 

provides further evidence that during energy imbalance that energy expenditure and 

in turn efficiency is adjusted accordingly in the opposing direction of mass change 

in an attempt to maintain a stable body mass. This energy saving could therefore in 

part explain the commonly described weight loss plateau. Based on the results from 

investigations throughout this thesis and combined with retrospective analysis 

conducted in this chapter, the statement that efficiency is considered a key 

determinant of performance has been called into question. On the previso that further 

research substantiated the findings in this thesis, the statement could be rephrased 

with efficiency being considered an important variable to induce changes in 

performance, rather than a key determinant. Comparisons between field and 

laboratory efficiency measurement indicated that it was indeed possible to measure 

efficiency in the field environment and that efficiency measured in the field may  

appear lower than the laboratory unless changes in power, cadence and 

environmental conditions are considered. Mechanistic reasons for the changes in 

efficiency remained allusive and further research is required to highlight the most 

likely physiological and or biomechanical process which results from energy  

imbalance and body mass change.       
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APPENDICIES 

Appendix 1: Illustration of the factors influencing cycling efficiency 
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Appendix 2: Participant information 

 

Research Title: The effect of a six week dietary intervention on indoor and outdoor 
cycling efficiency and performance. 

Researcher: Samantha Saunders      Tel: 01227 767700 ext (3145) 
                                                           Research Tel: 07840 254143 
               e-mail: s.saunders311@canterbury.ac.uk 

Superviser: Dr. Damian Coleman    Tel : 01227 782639     
                          e-mail :damian.coleman@canterbury.ac.uk 
 
Superviser: Dr. Mathew Brown       Tel: 01227 767700 ext (3168)   
                          e-mail: mathew.brown@canterbury.ac.uk  
 
Invitation to take part 

You are invited as a volunteer to take part in a research investigation. Before you decide 
to take part it is important for you to understand why the research is being conducted 
and what will be required of you should you agree to be involved. Please take time to 
read the following information carefully and discuss it with the researcher. If there is 
anything that is not clear or if you would like more information please do not hesitate to 
ask.  

Background 

Recently, a great amount of research has been conducted on cycling efficiency due to 
the publication of a controversial case study on Lance Armstrong, suggesting that 
efficiency improvements were the reason for his domination in the sport. So far, some 
of the largest reported improvements in cycling efficiency have been reported in a long 
term weight- loss and exercise study, however it is unknown if these improvements 
occur in habitual cyclists. This study therefore aims to assess the effect of 6 weeks of 
moderate calorie restriction on cycling efficiency and 10 mile time-trial performance 
compared to a control group.    

Efficiency explained 

Efficiency provides an indication of your ability to convert stored energy (e.g. fat and 
carbohydrate) into power at the pedals. We measure the amount of total energy you use 
by monitoring inspired and expired oxygen and carbon dioxide and we can measure the 

http://www.google.co.uk/imgres?q=canterbury+christ+church+logo&hl=en&safe=off&sa=X&qscrl=1&nord=1&rlz=1T4SVEC_enGB390GB397&biw=1163&bih=561&tbs=isz:l&tbm=isch&prmd=imvns&tbnid=s8VK9iVh1jALYM:&imgrefurl=http://bioblitzuk.wordpress.com/2010/10/21/canterbury-christ-church-bioblitz/&docid=hylTTuZarNif5M&imgurl=http://bioblitzuk.files.wordpress.com/2010/10/cccu-logo-2colour.jpg&w=2906&h=1181&ei=gNQGT7DSHMvZ8gPuqrDJBA&zoom=1
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power you produce from cranks with strain gauges. Your efficiency is then calculated 
by dividing the energy you produce (power) by the total amount of energy that you use 
and is presented as a percentage.    

Location 

Canterbury Christ Church University, North Holmes Road, Canterbury, Kent, CT1 1QU 
(Sports Science Laboratory: Ag 59) and Fowlmead Country Park, Deal, Kent, CT14 0BF. 
The majority of testing will take place at the University with a maximum of three visits 
to Fowlmead (dependant on equipment compatibility).   

What will be expected of you?  

If you decide to take part in this study you will be asked to attend the sport science 
laboratory on six occasions with an additional three visits to Fowlmead’s closed road 
circuit over a 17 week period. All participants will be asked to record and keep similar 
their diet three days before testing. Participants in the dietary intervention group will be 
asked to maintain a usual diet (same types of foods) except reduce their calorie intake by 
500 kcal per day for 6 weeks. For example if your usual calorie intake is 3000 kcal you 
will be asked to consume 2500 kcal per day. Participants in the control group will be 
asked to maintain their usual diet and training.  

 

Study schedule 

Group 
Weeks 1, 2 & 

3 
Weeks 3-8 

Weeks 8, 9 & 
10 

Weeks 10-15 
Weeks 15, 
16 & 17 

Control Visit 1: 
Induction, 

maximal test 
and time-trial 
familiarisation                                             
Visit 2/3: TT 

in lab                             
Visit 2/3: TT 
at Fowlmead 

Control 

Visit 4: 
M aximal test                                        

Visit 5/6: TT in 
lab                             

Visit 5/6: TT at 
Fowlmead 

Control 
Visit 7: 
M aximal 

test                                        
Visit 8/9: 
TT in lab                             
Visit 8/9: 

TT at 
Fowlmead 

Dietary 
intervention 

Dietary 
intervention 

Control 
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60 % 
150 W 

Visit 1, 4 and 7: Induction and Maximal test (VO2max)  

You will be shown around the lab; the study protocols will be discussed with the 
opportunity to ask questions and then asked to fill out an informed consent and health 
questionnaire. Some simple measurements will then be recorded.  

- Height and mass 
- Estimated body fat % using a 6-site skinfold caliper technique 
- Lung capacity 
- Finger prick blood sample 

   

You will complete a 5 minute warm-up and then a maximal aerobic (V̇O2max) test 
starting at 150 W increasing by 5 W every 15 seconds until volitional exhaustion or you 
can no longer maintain your pedal rate (Figure 1). Afterwards you will complete a 
familiarisation 16.1 km time-trial.                             

                Maximal effort 

                     

                        
                  Cool down  
                    Start                                              
           

            Figure 1. V̇O2max test. 

Visit 2, 5 and 8: Self-paced laboratory 16.1 km (10 mile) Time-Trial  

Pre measurements - Body mass and resting energy expenditure (lying down for 20 
minutes while your O2 and CO2 are analysed). You will then complete a standard warm-
up at 150 W and 60 % of the maximum intensity achieved during the VO2max test for 8 
minutes each. The 16.1 km self-paced time-trial (Figure 2) will then commence after a 
finger-prick blood sample. You will then complete a cool down.        

                             16.1 km time-trial 

         

     

Figure 2. Ramped start to the 16.1 km time-trial protocol. 

Visit 3, 6 and 9: Self-paced outdoor 16.1 km Time-trial  

An outdoor 16.1 km time-trial will be performed on a closed road circuit at Fowlmead 
Country Park. A specialized power tap wheel or SRM cranks will be fitted to your road 
bike and you will wear a portable gas analysis system that weighs 950g. Outdoor TT’s 
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are dependent on equipment compatibility with your bike and not all cyclists will be 
required to perform outdoor testing.  

 

To participate in this study you must: 

 Be a male aged between 18-65 years  Have been cycling regularly for at least 1 year.   Have an estimated body fat of 13% or above (dietary intervention group only).   Have been weight stable for the last 2 months.    Be a non-smoker  Not be taking any medications (for high cholesterol, high blood pressure, etc.)  Have no known heart conditions or diabetes.  Be without injury or illness.   Not be taking any performance enhancing substances (excluding caffeine).  

 

Prior to all visits you will be expected to:  

 Avoid participation in any strenuous exercise for 48 hours (above regular 
training intensities).  Avoid drinking alcohol and caffeinated drinks (i.e. coffee, tea, and cola) for 
24 hours.   Consume the same food 3 days prior to testing.   In the 2 hours before the testing session consume no food or energy drinks 
and drink only plain water (aim to consume around 1 litre of water prior to 
testing).  Bring appropriate cycling shorts, T-shirt/jersey, cycling shoes, pedals and if 
possible your bicycle on the first visit.   

  

Advantages of taking part 

A benefit of taking part in this study is that you will receive feedback, with explanations, 
on your body composition (e.g. % body fat), cardio-respiratory fitness (e.g. maximal heart 
rate, maximal oxygen uptake and efficiency) and time-trial performance (e.g. average 
power output, cadence and time).  

Disadvantages of taking part 

The main disadvantage of taking part in this study is probably the time commitment. To 
complete all aspects of the study you will be required to attend the lab on six occasions, 
and complete three outdoor time-trials which equates to 10-15 hours of your time: 2 hours 
for the first visit and 1.5 hours per visit thereafter. Although every effort will be made to 
keep lab time as succinct as possible, equipment malfunctions can happen and you may 
be asked to re-attend sessions. There is the possibility of muscle soreness after testing; 
however, this should be no different to the feeling after an intense training session. You 
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will be asked to complete a 3 day food diary and exercise log at the beginning of the study 
which will require a few moments to complete. You will also be asked to keep your diet 
and exercise similar 3 days prior to testing with particular consistency to the meal prior 
to testing while noting down any changes.      

Additional information  

You may at any time withdraw from the Study. You do not have to give any reason, and 
no one can attempt to dissuade you. If you ever require any further explanation, please do 
not hesitate to ask. If you refuse to give consent to participation in this study, or withdraw 
from it at a later time, it shall not prejudice you in any way. 

In addition, the following withdrawal criteria also apply: 

 If you have any known injuries.  At the request of the researcher – Miss Samantha Saunders, supervisor Dr 
Damian Coleman or Dr. Mathew Brown.  Failure of the equipment to record. 

 

Any information obtained during this study will remain confidential as to your identity: 
if it can be specifically identified with you, your permission will be sought in writing 
before it is published. Other material, which cannot be identified with you, will be 
published or presented at meetings with the aim of benefiting others. The results of this 
study will be published as part fulfilment of a PhD thesis with intent to submit the research 
at conference and as a journal article.  You have a right to obtain copies of all papers, 
reports, transcripts, summaries, and other material published or presented, on request to 
the researcher or their supervisor, if appropriate.  

All information will be subject to the conditions of the Data Protection Act 1989 and 
subsequent statutory instruments. Experimental records, including paper records and 
computer files, will be held for a minimum of 5 years, in conditions appropriate for the 
storage of personal information. You have right of access to your records at any time. 

A full scientific protocol for this Study has been approved by Canterbury Christ Church 
University Research Ethics Committee. This protocol complies with all current 
legislation, including the Draft Additional Protocol to the Council of Europe Convention 
on Human Rights and Biomedicine on Biomedical Research (CDBI/INF (2001) 5 dated 
18 July 2001). Further details of the approval will be provided to you if you wish and you 
have a right to have a copy of the full protocol to retain, if you so request of the researcher.  
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Appendix 3: Health questionnaire 

 

Department of Sport Science, Tourism and Leisure 
 

Sport Science Health and Fitness Questionnaire 
 

Name: ……………………………………………………. 

Date of Birth: ………………  Age: ………   Sex: ….…. 

 

Please answer the following questions by circling  the appropriate response and if 

necessary providing extra information in the spaces provided. 

ANY INFORMATION CONTAINED HEREIN WILL BE TREATED AS 
CONFIDENTIAL 

 

1. How would you describe your present level of fitness?  

Untrained / Moderately trained / Trained / Highly trained 

2. Average number of hours spent exercising   ………….………….per wk 

3. How would you describe your present bodyweight?  

Underweight / Ideal / Slightly overweight / Very overweight 

4. How would you describe your smoking habits?   

Non smoker / Previous smoker / Currently smoking 

5. How would you describe your alcohol intake? 

Never Drink / An occasional drink / A drink every day / More than one drink a day    

(Note 1 drink = 1 unit) 

http://www.google.co.uk/imgres?q=canterbury+christ+church+logo&hl=en&safe=off&sa=X&qscrl=1&nord=1&rlz=1T4SVEC_enGB390GB397&biw=1163&bih=561&tbs=isz:l&tbm=isch&prmd=imvns&tbnid=s8VK9iVh1jALYM:&imgrefurl=http://bioblitzuk.wordpress.com/2010/10/21/canterbury-christ-church-bioblitz/&docid=hylTTuZarNif5M&imgurl=http://bioblitzuk.files.wordpress.com/2010/10/cccu-logo-2colour.jpg&w=2906&h=1181&ei=gNQGT7DSHMvZ8gPuqrDJBA&zoom=1
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6. Have you had to consult your doctor within the last six months?   Yes / No 

If you have answered yes, please give details:………………………………………. 

7. Are you presently taking any form of medication?   Yes / No 

If you have answered yes, please give details:……………………………………… 

8. Do you suffer or have you ever suffered from any of the following? 

a.  Diabetes   Yes / No b.  Asthma         Yes / No 

c.  Epilepsy   Yes / No d.  Bronchitis         Yes / No 

e.  Any form of heart complaint Yes / No  f.  Serious Back or Neck Injury Yes / No 

g.  High blood pressure            Yes / No   h.  Aneurysm 1 or Embolism2    Yes / No 

1: Arterial wall weakness causing dilation. 2: Obstruction in the Artery. 

9. Is there a history of heart complaint in your family?          Yes / No 

If you have answered yes, please give details:……………………………………… 

10. Do you have any allergies?                Yes / No 

If you have answered yes, please give details:……………………………………… 

11. Do you currently have any form of muscle or joint injury?             Yes / No 

If you have answered yes, please give details:……………………………………… 

12. Have you had to suspend your normal training/physical activity in the last two 

weeks?                 Yes / No 

If you have answered yes, please give details:…………………………………………… 
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Appendix 4: Informed consent form  

 

CONSENT FORM 

Title of Project: The short term effects of calorie restriction on cycling efficiency and 
time-trial performance.  

Name of Researcher: Samantha Saunders, Dr. Damian Coleman and Dr. Mathew 
Brown  

Contact details:  

  Address:  

Tel:  
Email:           

                   Please initial box 

1. I confirm that I have read and understand the information sheet for 
the above study and have had the opportunity to ask questions.  

2. I understand that my participation is voluntary and that I am free to 
withdraw at any time, without giving any reason.  

3. I understand that any personal information that I provide to the 
researchers will be kept strictly confidential  

4. I agree to take part in the above study.  

 

________________________ ________________            ____________________ 

Name of Participant Date Signature 

 

 

___________________________ ________________             ____________________ 

Researcher Date Signature 

 

Copies: 1 for participant 1 for researcher 
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Appendix 5: Food record sheet  

                                    Day     Month    Year 

Day…………day               Date:       /         / Day Order: 

 

Please use a separate line for each item eaten; write in weight of plate; leave a line between different 
‘plate’ entries. 

A B C D E F Office Use  

Time Food eaten Brand name of 
each item 
(except fresh 
food) 

Full description of each item 
including: 

-whether fresh, frozen, dried, 

canned. cooked: boiled, 
grilled, fried, roasted. 

Weight 

Served 

Weight of 

Leftovers 

Actual 

Weight 

am/pm home away (gms) (gms) (gms) 
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Appendix 6: Exercise activity diary 

EXERCISE 

LOG  Name: 

 

    
        
 

Date: 
 

 

  Sleep (hrs): ________  Day: 

Exercise 

Type of 

training 

Durati

on Distance Intensity* 

Heart 

rate  

Difficulty*

* Notes  

Example 

1: Cycling   
Continu

ous  
3 hrs 40 miles 13 mph 160 bpm Medium Hilly course 

                

                

                

                

                

                

*Intensity: Mph/Kph or Light/Moderate/Vigorous **Difficulty: Easy/Medium/Hard 

        
 

Date: 
    

Sleep (hrs): 

___________ 

              Day: M  Tu  W  Th  

Fr  Sa  Su 

Exercise 

Type of 

training 

Durati

on Distance Speed  

Heart 

rate  Difficulty* Notes  
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Appendix 7: Laboratory set-up  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



276 
 

Appendix 8: Simultaneous SRM and PowerTap measurement 

Simultaneous power measurement with SRM cranks and a Powertap wheel fitted to a 
road bicycle while cycling on a treadmill in the laboratory. 

Minute average SRM (W) Powertap (W) Difference (W) Difference (%) 
1 94.17 91.23 -2.93 -3.22 
2 93.97 91.30 -2.67 -2.92 
3 110.22 105.47 -4.75 -4.50 
4 115.32 112.37 -2.95 -2.63 
5 138.79 135.92 -2.88 -2.12 
6 158.75 153.77 -4.98 -3.24 
7 169.38 163.98 -5.39 -3.29 
8 176.70 171.63 -5.07 -2.95 
9 192.91 187.88 -5.03 -2.67 
10 203.93 198.62 -5.31 -2.67 
11 214.98 209.97 -5.01 -2.39 
12 223.26 217.35 -5.91 -2.72 
13 226.53 220.10 -6.43 -2.92 
14 230.83 225.78 -5.04 -2.23 
15 232.92 229.23 -3.68 -1.61 
16 253.29 248.55 -4.74 -1.91 
17 260.18 252.42 -7.76 -3.07 
18 269.43 263.82 -5.61 -2.13 
19 281.17 275.48 -5.68 -2.06 
20 290.82 285.73 -5.08 -1.78 
21 302.99 296.15 -6.84 -2.31 
22 312.12 305.43 -6.68 -2.19 
23 315.06 310.67 -4.39 -1.41 
24 323.77 318.60 -5.17 -1.62 
25 325.06 319.48 -5.57 -1.75 
26 335.53 328.12 -7.42 -2.26 
27 346.98 341.50 -5.48 -1.61 
28 355.13 350.50 -4.63 -1.32 
29 365.79 359.73 -6.06 -1.68 
30 375.78 372.53 -3.25 -0.87 
31 384.16 379.87 -4.29 -1.13 
32 391.93 386.97 -4.97 -1.28 
33 400.78 395.91 -4.87 -1.23 

Average 256.74 251.70 -5.05 -2.23 
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Appendix 9: The arrangement of the Oxycon Mobile and PowerTap wheel in the 
field. 
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Appendix 10: SRM power and time, and power and speed curve   

 

 

 

 

 

 

 

 

 

 

 

The exponential power and speed curve from the SRM ergometer.  R2 = 0.9985.  
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The relationship between power and time to complete a 16.1 km TT using a non-liner 
regression line with a two-phase association. Y = 8512 + [(43.92-8512)*96.19*.01] * 
[1-exp(-0.1593*x)] + [(43.92-8512)*(100-96.19)*.01] * [1-exp(-0.04006*x)], R2 = 
0.9992. (GraphPad Software Inc. 2007). 
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