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A B S T R A C T

In-vitro fertilization (IVF) has been a transformative advancement in assisted reproductive technology. However, 
success rates remain suboptimal, with only about one-third of cycles resulting in pregnancy and fewer leading to 
live births. This narrative review explores the potential of artificial intelligence (AI), machine learning (ML), and 
deep learning (DL) to enhance various stages of the IVF process. Personalization of ovarian stimulation protocols, 
gamete selection, and embryo annotation and selection are critical areas where AI may benefit significantly. AI- 
driven tools can analyze vast datasets to predict optimal stimulation protocols, potentially improving oocyte 
quality and fertilization rates. In sperm and oocyte quality assessment, AI can offer precise, objective analyses, 
reducing subjectivity and standardizing evaluations. In embryo selection, AI can analyze time-lapse imaging and 
morphological data to support the prediction of embryo viability, potentially aiding implantation outcomes. 
However, the role of AI in improving clinical outcomes remains to be confirmed by large-scale, well-designed 
clinical trials. Additionally, AI has the potential to enhance quality control and workflow optimization within IVF 
laboratories by continuously monitoring key performance indicators (KPIs) and facilitating efficient resource 
utilization. Ethical considerations, including data privacy, algorithmic bias, and fairness, are paramount for the 
responsible implementation of AI in IVF. Future research should prioritize validating AI tools in diverse clinical 
settings, ensuring their applicability and reliability. Collaboration among AI experts, clinicians, and embryolo-
gists is essential to drive innovation and improve outcomes in assisted reproduction. AI’s integration into IVF 
holds promise for advancing patient care, but its clinical potential requires careful evaluation and ongoing 
refinement.

1. Introduction

In-vitro fertilization (IVF) has been a groundbreaking advancement 
in assisted reproductive technology since the birth of the first "test-tube 
baby" in 1978 [1]. This technique has offered hope to millions of couples 
struggling with infertility, providing an alternative pathway to parent-
hood. IVF has evolved significantly over the past four decades, incor-
porating various technological advancements to enhance its efficacy [2]. 
However, despite these innovations, the success rates of IVF remain 
suboptimal, with only approximately one-third of cycles resulting in 

pregnancy and an even smaller proportion leading to the birth of a 
healthy baby. It is important to note that while artificial intelligence (AI) 
offers the potential to optimize certain aspects of IVF, clinical validation 
of AI’s impact on improving live birth rates remains limited.

The challenges faced in IVF involve complex biological, medical, and 
technical factors [3,4]. One of the primary hurdles is the variability in 
patient response to ovarian stimulation protocols [5,6]. Personalizing 
these protocols to suit individual patient profiles is crucial for opti-
mizing the quantity and quality of oocytes retrieved [7–9]. However, AI 
is not capable of directly enhancing oocyte quality; instead, it can help in 
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tailoring stimulation protocols by identifying predictive factors for 
optimal responses [10,11]. Even with personalized approaches, pre-
dicting patient response remains challenging, leading to inconsistent 
outcomes. Furthermore, the selection of high-quality gametes and em-
bryos is essential for improving fertilization rates and embryo viability 
[12,13], yet current methods heavily rely on subjective assessments by 
embryologists.

To address these complexities, AI encompasses various computa-
tional techniques that enable machines to mimic human intelligence 
[14]. Machine learning (ML), a subset of AI, involves the development of 
algorithms that can learn from and make predictions based on data [15]. 
Deep learning (DL), a more advanced subset of ML, utilizes neural net-
works with multiple layers to analyze complex patterns in large datasets 
[16]. These technologies have already demonstrated potential in various 
medical fields, including radiology [17], oncology, and genomics by 
providing precise, data-driven insights that enhance clinical 
decision-making [16].However, the application of AI in IVF remains in 
its early stages, and while early results are promising, comprehensive 
clinical validation is still required before AI can be routinely integrated 
into IVF practices [18].

Recent studies have shown that AI, ML, and DL present opportunities 
to transform IVF practices [18–21]. Integrating AI into IVF can poten-
tially address several critical areas that influence the procedure’s suc-
cess. For instance, AI-driven tools can analyze vast amounts of patient 
data to identify patterns and correlations that may not be apparent to 
human practitioners. This capability can enhance the personalization of 
ovarian stimulation protocols, ensuring that each patient receives the 
most suitable treatment plan [11]. Additionally, AI can improve gamete 
and embryo selection by providing objective assessments based on 
detailed morphological and genetic data [22,23], reducing the 

subjectivity and variability associated with manual evaluations. How-
ever, it is crucial to acknowledge that while AI can standardize and 
streamline certain procedures, its direct effect on improving IVF success 
rates requires further large-scale clinical trials [24].

Moreover, AI can play a significant role in the quality control of IVF 
laboratories [24,25]. By continuously monitoring key performance in-
dicators and laboratory conditions, AI systems can ensure that the 
highest standards are maintained, thus increasing the consistency and 
reliability of IVF outcomes. The scheduling and workflow optimization 
capabilities of AI can also enhance the efficiency of IVF procedures, 
minimizing delays and ensuring the timely handling of gametes and 
embryos [26]. Yet, the impact of these efficiencies on clinical outcomes 
like pregnancy and live birth rates remains to be fully validated in a 
broader clinical context [25].

Despite significant advancements in assisted reproductive technol-
ogy, the success rates of in-vitro fertilization (IVF) remain disappoint-
ingly low, with only about one-third of cycles resulting in pregnancy and 
even fewer leading to live births. This highlights a pressing need for 
more effective and reliable methods to enhance IVF outcomes. The 
rationale for this review is rooted in the potential of artificial intelli-
gence (AI), machine learning (ML), and deep learning (DL) to address 
these challenges by providing objective, data-driven tools that can 
optimize various stages of the IVF process. The novelty of this review lies 
in its comprehensive examination of how these advanced technologies 
can be integrated into IVF practices to improve patient-specific stimu-
lation protocols, gamete and embryo selection, and overall laboratory 
efficiency. The primary objectives of this narrative review are to explore 
current evidence supporting the use of AI, ML, and DL in IVF, to identify 
the potential benefits and limitations of these technologies, and to 
outline future directions for research and clinical implementation. This 

Fig. 1. Different applications of AI integrated into IVF practices.
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review aims to contribute to ongoing efforts to enhance IVF success rates 
and reduce patient emotional and financial burdens by synthesizing the 
latest findings and proposing new avenues for innovation. Fig. 1 below 
highlights different applications of AI integrated into IVF practices.

2. Methods

2.1. Literature search

A comprehensive literature search was conducted to gather relevant 
studies and articles on the application of artificial intelligence (AI), 
machine learning (ML), and deep learning (DL) in in-vitro fertilization 
(IVF). The literature databases searched included PubMed, Scopus, Web 
of Science, and Google Scholar. The search was performed using a 
combination of keywords and MeSH terms, such as "artificial intelli-
gence," "machine learning," "deep learning," "in-vitro fertilization," "IVF," 
"ovarian stimulation," "oocyte quality," "embryo selection," "sperm se-
lection," and "IVF outcomes." The search was limited to articles pub-
lished in English from January 2000 to July 2024 to capture the most 
recent and relevant advancements in the field.

While this review adhered to a structured methodology, it is 
important to clarify that it is a narrative review, not a systematic one. 
The goal was to explore and synthesize emerging themes and advance-
ments in the application of AI in IVF, rather than to evaluate the efficacy 
of interventions systematically. Thus, the approach prioritized concep-
tual synthesis and thematic organization over strict quantitative 
analysis.

2.2. Inclusion and exclusion criteria

The review included peer-reviewed articles and reviews that 

addressed the use of AI, ML, and DL in various aspects of IVF. Relevant 
studies discussed AI’s impact on ovarian stimulation protocols, gamete 
selection, embryo assessment, and IVF laboratory quality control. Arti-
cles providing data on AI-driven IVF outcomes, such as pregnancy rates, 
live birth rates, and embryo viability, were considered. The search 
initially yielded 315 articles. After reviewing titles and abstracts, 118 
articles were deemed potentially relevant. Following a detailed full-text 
review, 53 studies were included based on inclusion criteria, as sum-
marized in Fig. 2. Articles not directly related to IVF, those focusing on 
other reproductive technologies, non-English publications, and studies 
without a clear focus on applying AI, ML, or DL in IVF were excluded.

2.3. Risk of bias evaluation

As this review is a narrative synthesis, it does not systematically 
evaluate the risk of bias for included studies. However, efforts were 
made to ensure reliability by selecting studies published in peer- 
reviewed journals and critically appraising their methodological rigor 
during data extraction.

2.4. Synthesis of results

Findings from the selected studies were synthesized narratively, 
focusing on conceptual and thematic insights into AI applications across 
the IVF process. The studies were grouped based on key aspects of IVF, 
including ovarian stimulation, gamete selection, embryo selection, and 
laboratory management. The themes identified during data extraction 
were structured to reflect critical areas of AI integration in IVF including 
personalization of ovarian stimulation protocols, gamete and embryo 
selection, quality control in IVF laboratories, and workflow optimiza-
tion. The narrative synthesis critically analyzed AI applications’ 

Fig. 2. PRISMA flow diagram of the article selection process.
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potential benefits and limitations, aiming to provide a comprehensive 
overview of current evidence and highlight areas for future research.

3. Personalization of ovarian stimulation protocols

Ovarian stimulation protocols are critical to in-vitro fertilization 
(IVF) success as they optimize the number and quality of oocytes 
retrieved [5,27]. These protocols typically involve the administration of 
gonadotrophins to stimulate the ovaries to produce multiple follicles 
and to retrieve a sufficient number of mature oocytes that can be 
fertilized to create viable embryos [28]. Personalization of ovarian 
stimulation has become increasingly important due to the variability in 
patient characteristics such as age, ovarian reserve, and hormonal pro-
file [29,30]. For instance, younger patients with a higher ovarian reserve 
may require different stimulation protocols compared to older patients 
or those with diminished ovarian reserve. Despite personalized ap-
proaches, predicting individual patient responses to stimulation remains 
challenging. Suboptimal stimulation can lead to various issues, 
including ovarian hyperstimulation syndrome (OHSS), poor oocyte 
quality, and, ultimately, lower IVF success rates [31].

Artificial intelligence (AI) can potentially revolutionize the person-
alization of ovarian stimulation protocols by leveraging vast datasets 
and advanced analytical techniques [21,32]. Recent advances in AI, 
particularly in machine learning (ML) and deep learning (DL), have 
shown promise in improving the accuracy and efficacy of these pro-
tocols. AI can analyze extensive datasets comprising patient character-
istics, historical responses to stimulation protocols, and IVF outcomes 
[33,34]. AI can provide insights that may elude traditional analysis by 
identifying patterns and correlations within these datasets [35]. For 
instance, AI can identify subtle correlations between specific patient 
profiles and their responses to different stimulation protocols, enabling 
more precise treatment tailoring.

Machine learning algorithms can develop predictive models to esti-
mate each patient’s optimal type and dose of gonadotropins [36]. These 
models consider various factors, including age, body mass index (BMI), 
antral follicle count (AFC), and anti-Müllerian hormone (AMH) levels. 
AI models can predict the best day for monitoring a patient, trigger day 
options, and the number of oocytes [11]. AI systems can integrate data 
from previous IVF cycles to refine predictions for future treatments. This 
iterative learning process allows the AI to improve its recommendations 
continuously. By incorporating historical patient data, AI can enhance 
the personalization of stimulation protocols, resulting in improved 
clinical outcomes. Moreover, AI can also facilitate real-time adjustments 
to stimulation protocols [37]. By monitoring patients’ responses during 
the stimulation phase, AI algorithms can recommend modifications to 
the dosage or type of gonadotropins. This dynamic approach ensures 
that the protocols are constantly optimized to achieve the best possible 
outcomes, reducing the incidence of complications like OHSS and 
enhancing overall treatment efficacy [21].

4. Gamete selection

Gamete selection is a pivotal step in the in-vitro fertilization (IVF) 
process, significantly impacting fertilization success rates and subse-
quent embryo development [38]. Accurately selecting high-quality 
sperm and oocytes can enhance the likelihood of successful fertiliza-
tion, implantation, and a successful pregnancy [39]. While effective to 
some extent, traditional methods of gamete selection are often subjec-
tive and reliant on embryologists’ expertise [40]. Advances in artificial 
intelligence (AI) and deep learning (DL) offer the potential to revolu-
tionize gamete selection by providing objective, data-driven tools that 
can improve the accuracy and consistency of these assessments [41].

4.1. Sperm classification and selection

Traditional sperm selection methods rely heavily on manual 

assessment and basic laboratory techniques such as visual evaluation of 
motility and morphology using microscopy [42,43]. These methods are 
inherently subjective and can vary significantly between practitioners. 
Manual assessment is also time-consuming and may not always accu-
rately predict the fertilization potential of sperm [42]. AI and DL tech-
nologies can significantly enhance sperm selection by analyzing 
motility, morphology, and other relevant parameters with high preci-
sion [24,44]. While some studies indicate comparable outcomes be-
tween AI-based and traditional methods, DL models, trained on large 
datasets of sperm images and associated outcomes, can classify sperm 
quality more accurately than traditional methods [45,46]. These models 
can identify subtle morphological features and motility patterns that 
correlate with successful fertilization. For instance, DL algorithms can 
analyze high-resolution video footage of sperm movement to assess 
motility parameters such as velocity, linearity, and amplitude of lateral 
head displacement [47]. By providing a more objective and precise 
assessment of sperm quality, AI and DL can improve the chances of 
selecting the best sperm for fertilization. This not only increases the 
likelihood of successful fertilization but also enhances the overall 
quality of the resulting embryos. AI-driven sperm selection can be 
particularly beneficial in cases of male factor infertility, where the se-
lection of the highest-quality sperm is critical for achieving positive 
outcomes.

4.2. Oocyte quality assessment

Oocyte quality is a crucial determinant of successful fertilization and 
subsequent embryo development [48,49]. Traditional assessment 
methods for oocyte quality primarily rely on morphological criteria 
observed under a microscope, such as the appearance of the zona pel-
lucida, cytoplasm, and polar body [50]. However, these assessments are 
subjective and can vary between embryologists, leading to in-
consistencies in oocyte quality assessment. AI offers a transformative 
approach to oocyte quality assessment by providing objective analyses 
based on high-resolution images of oocytes [11,51]. Advanced image 
analysis techniques powered by AI can identify subtle features that 
correlate with oocyte quality, which may not be discernible through 
manual evaluation. For example, AI algorithms can assess the ooplasm’s 
homogeneity, the zona pellucida’s integrity, and the presence of cyto-
plasmic inclusions or vacuoles, all of which are important indicators of 
oocyte health.

Furthermore, AI can integrate data from multiple imaging modal-
ities, such as time-lapse microscopy and confocal imaging, to compre-
hensively assess oocyte quality. Time-lapse imaging allows continuous 
monitoring of oocyte development, providing dynamic information that 
AI can analyze to predict developmental potential [52]. By combining 
morphological data with dynamic developmental patterns, AI can 
enhance the accuracy of oocyte quality assessment, leading to better 
fertilization rates and higher-quality embryos.

4.3. Integration of genetic data

In addition to morphological assessments, the integration of genetic 
data into AI-driven gamete selection processes holds significant promise. 
Preimplantation genetic testing (PGT) can identify chromosomal ab-
normalities and genetic disorders in oocytes and embryos [53]. AI al-
gorithms can analyze genetic data alongside morphological and 
developmental information to provide a more holistic assessment of 
gamete quality [54]. This integrated approach can improve the selection 
of genetically normal gametes, thereby increasing the chances of a 
successful pregnancy and reducing the risk of genetic disorders.

Table 1 provides an overview of how AI applications and models can 
enhance the various aspects of gamete selection in IVF, improving pre-
cision, objectivity, and overall outcomes.
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5. Embryo annotation and selection

Embryo annotation and selection are critical steps in the in-vitro 
fertilization (IVF) process, significantly influencing the likelihood of 
successful implantation and pregnancy [60,61]. Traditional methods for 
selecting embryos primarily rely on morphological assessment, where 
embryologists visually evaluate the embryos under a microscope. This 
assessment typically considers cell number, symmetry, and fragmenta-
tion factors. Some clinics also incorporate genetic testing, such as pre-
implantation genetic testing (PGT), to identify chromosomal 
abnormalities [62,63]. However, these methods are inherently subjec-
tive and can vary between embryologists, leading to inconsistent and 
sometimes inaccurate predictions of embryo viability [64].

5.1. Traditional methods

Morphological assessment of embryos involves examining their 
appearance at various stages of development [64]. On Day 3, embryos 
are usually evaluated based on the number and regularity of blastomeres 
and the degree of fragmentation. On Day 5, the focus shifts to the for-
mation and quality of the blastocyst, including the appearance of the 
inner cell mass and the trophectoderm [65]. While these assessments 
provide valuable information, they do not always correlate with the 
embryo’s ability to implant and develop into a healthy pregnancy. These 
evaluations are subjective, with significant variability between embry-
ologists’ assessments. Genetic testing, such as PGT, can provide addi-
tional insights into the chromosomal status of embryos [53]. By 
identifying aneuploidies, genetic testing can help select embryos with 
the highest potential for successful implantation [66]. However, PGT is 
invasive, expensive, and not universally available. Moreover, it cannot 
assess an embryo’s functional potential beyond its chromosomal 
makeup, leaving gaps in predicting overall viability.

5.2. AI in embryo selection

Artificial intelligence (AI) and deep learning (DL) technologies have 
the potential to revolutionize embryo selection by providing more 
objective, accurate, and comprehensive assessments [14,15]. AI can 
analyze large datasets of time-lapse imaging and morphological data to 
predict embryo viability more precisely than traditional methods. 
Time-lapse imaging systems capture continuous images of embryos as 
they develop, providing a detailed record of their morphological 
changes. AI algorithms can analyze these time-lapse videos to identify 
patterns and developmental milestones associated with successful im-
plantation and development [67]. AI can provide a more dynamic and 
nuanced assessment of embryo quality by examining parameters such as 
cleavage patterns, blastocyst formation, and the timing of key devel-
opmental events. Recent studies have demonstrated that AI models 
analyzing time-lapse imaging can significantly improve the accuracy of 
embryo viability predictions [23]. For instance, AI can detect subtle 
morphological changes and dynamic behaviors difficult for human ob-
servers to discern. These models can predict implantation potential with 
higher accuracy, leading to better embryo selection for transfer and 
increased implantation rates.

In addition to time-lapse imaging, AI can enhance the traditional 
morphological assessment of embryos. Deep learning models, particu-
larly convolutional neural networks (CNNs), can be trained on large 
datasets of embryo images to recognize features that correlate with high 
viability [68]. These models can analyze static images of embryos at 
various stages of development, providing an objective assessment that 
reduces inter-embryologist variability. AI-driven morphological assess-
ments can identify features such as blastomere symmetry, cell junction 
quality, and the degree of fragmentation with greater precision than 
manual evaluations. By combining these assessments with time-lapse 
imaging data, AI provides a comprehensive analysis encompassing 
static and dynamic aspects of embryo development.

Table 1 
AI applications in gamete selection.

Aspect of Gamete Selection Traditional Methods AI Applications/Models Used Benefits of AI Applications

Sperm Classification and 
Selection [44]

Manual assessment using microscopy for 
motility and morphology

DL models (e.g., Convolutional Neural Networks) 
analyzing high-resolution images and video footage

- Increased precision and objectivity in 
motility and morphology assessment 
- Identification of subtle features 
correlating with fertilization potential 
- Improved consistency and reliability in 
sperm selection

Motility Analysis [55] Visual inspection of sperm movement 
under a microscope

Computer Vision and DL models analyzing motility 
patterns

- Detailed quantification of motility 
parameters 
- Enhanced detection of optimal motile 
sperm 
- Reduced subjectivity in motility 
assessment

Morphology Assessment 
[56]

Kruger’s strict criteria assessed visually 
by embryologists

Machine Learning models (e.g., Support Vector 
Machines) trained on large datasets of sperm images

- Objective classification of sperm 
morphology 
- Higher accuracy in identifying sperm with 
optimal morphology 
- Consistency across different observers and 
laboratories

Oocyte Quality Assessment 
[51,57]

Morphological evaluation of zona 
pellucida, cytoplasm, and polar body

AI-based image analysis (e.g., Convolutional Neural 
Networks) on high-resolution oocyte images

- Objective analysis of subtle morphological 
features 
- Integration of multiple imaging modalities 
- Improved selection of high-quality 
oocytes

Real-time Adjustments [58,
59]

Adjustments based on manual 
observation and clinical judgment

AI-driven real-time recommendations for sperm and 
oocyte quality assessment

- Dynamic optimization of selection criteria 
- Immediate feedback for embryologists 
- Enhanced decision-making during the 
selection process

Data Integration from 
Previous Cycles [51]

Manual review of patient history and 
past IVF outcomes

AI models integrating historical patient data for 
personalized predictions

- Improved personalization of gamete 
selection 
- Continuous refinement of selection 
criteria based on past outcomes 
- Enhanced IVF success rates through 
tailored approaches

D.B. Olawade et al.                                                                                                                                                                                                                             Journal of Gynecology Obstetrics and Human Reproduction 54 (2025) 102903 

5 



AI’s ability to integrate and analyze diverse datasets allows for the 
development of predictive models that can forecast embryo viability 
[69]. These models can incorporate morphological data, time-lapse 
imaging, and genetic information to provide a holistic assessment. By 
identifying embryos with the highest potential for successful implanta-
tion and development, AI can increase implantation rates and reduce the 
number of cycles required to achieve a successful pregnancy [22]. For 
example, machine learning algorithms can be trained on historical IVF 
data, including patient demographics, stimulation protocols, and out-
comes. These models can then predict the likelihood of success for new 
patients, helping clinicians make more informed decisions about embryo 
selection and transfer.

Table 2 provides a comprehensive overview of how AI models and 
tools are being used to enhance various aspects of embryo annotation 
and selection, improving precision, objectivity, and overall IVF 
outcomes.

6. Quality control and key performance indicators monitoring

Consistent quality control in IVF laboratories is crucial for main-
taining high standards and ensuring the success of assisted reproductive 
technologies [75]. Quality control encompasses a range of practices to 
monitor and optimize laboratory conditions and procedures to achieve 

the best possible patient outcomes. Key performance indicators (KPIs) 
such as fertilization rates, blastocyst formation rates, and clinical preg-
nancy rates are essential metrics that reflect the laboratory’s perfor-
mance and overall effectiveness [76]. Monitoring these KPIs allows 
laboratories to identify improvement areas, ensuring that all IVF pro-
cesses function optimally. High standards in quality control are not only 
critical for achieving successful pregnancies but also for maintaining 
patient trust and adhering to regulatory requirements [75.

Artificial intelligence (AI) offers significant advancements in the 
realm of quality control by enabling continuous monitoring and analysis 
of laboratory conditions and procedural outcomes [77]. Machine 
learning (ML) algorithms can process vast amounts of data from various 
sources within the laboratory, including environmental sensors, proce-
dural logs, and patient records [78]. By analyzing this data, AI systems 
can identify patterns and deviations from established KPIs that may 
indicate potential issues or areas for improvement. For instance, AI can 
monitor environmental conditions such as temperature, humidity, and 
air quality within the laboratory to ensure they remain within optimal 
ranges for gamete and embryo culture. Any deviations from these pa-
rameters can be immediately flagged, allowing laboratory staff to take 
corrective actions before these conditions negatively impact the IVF 
outcomes. Additionally, AI can track procedural adherence, ensuring 
that protocols are followed consistently, which is crucial for maintaining 

Table 2 
AI applications in embryo annotation and selection.

Aspect of Embryo Selection Traditional Methods AI Models/Tools Used Benefits of AI Applications

Morphological Assessment 
[68]

Visual assessment of cell number, 
symmetry, and fragmentation

Convolutional Neural Networks (CNNs) 
analyzing static images of embryos

- Objective and consistent assessment 
- Reduced inter-embryologist variability 
- Enhanced identification of viable embryos

Time-Lapse Imaging Analysis 
[61]

Manual observation of developmental 
stages

Time-lapse imaging systems with AI (e.g., 
EmbryoScope, Eeva)

- Continuous monitoring of embryo 
development 
- Detection of subtle morphological changes 
and dynamic behaviors 
- Improved prediction of implantation 
potential

Dynamic Monitoring [23] Periodic manual checks of embryo 
development

AI algorithms analyzing time-lapse videos - Identification of key developmental 
milestones 
- More accurate assessment of embryo quality 
- Better selection of embryos for transfer

Genetic Data Integration [53]. Preimplantation Genetic Testing (PGT) 
for aneuploidies

AI models integrating genetic, morphological, 
and developmental data

- Comprehensive assessment of embryo quality 
- Increased selection accuracy for genetically 
normal embryos 
- Reduced risk of genetic disorders

Predictive Modeling [69] Predictions based on clinical judgment 
and experience

Machine Learning models (e.g., Random Forest, 
Support Vector Machines)

- Data-driven predictions of embryo viability 
- Integration of diverse data sources (e.g., 
patient history, stimulation protocols) 
- Improved decision-making for embryo 
transfer

Real-time Adjustments [70,
71]

Adjustments based on manual 
observation and clinical judgment

AI-driven real-time recommendations - Dynamic optimization of selection criteria 
- Immediate feedback for embryologists 
- Enhanced decision-making during the 
selection process

Scoring Systems [72,73] Embryo grading based on visual criteria AI-generated scoring systems (e.g., Life 
Whisperer, iDAScore)

- Objective and reproducible scoring 
- Better prediction of implantation and 
pregnancy outcomes 
- Streamlined workflow in the embryology lab

Outcome Prediction [74] Predictions based on historical success 
rates

AI models analyzing historical IVF data (e.g., IVF 
outcome prediction models)

- Personalized predictions of success rates 
- Tailored treatment recommendations 
- Higher chances of successful pregnancy with 
fewer cycles

Dynamic Monitoring (Time- 
lapse Imaging) [52]

Periodic manual observation of oocyte 
development stages

AI models analyzing time-lapse video to assess 
developmental potential

- Continuous monitoring of oocyte 
development 
- Identification of optimal developmental 
patterns 
- Prediction of fertilization and embryo 
development potential

Genetic Assessment 
Integration [53]

Preimplantation Genetic Testing (PGT) 
based on chromosomal analysis

AI models combining genetic data with 
morphological and developmental information

- Comprehensive assessment of genetic and 
morphological quality 
- Increased selection accuracy for genetically 
normal gametes 
- Reduced risk of genetic disorders in resulting 
embryos

D.B. Olawade et al.                                                                                                                                                                                                                             Journal of Gynecology Obstetrics and Human Reproduction 54 (2025) 102903 

6 



the quality and viability of gametes and embryos.
AI-driven quality control systems can also provide real-time feed-

back and recommendations based on the analysis of KPI data [79]. For 
example, if fertilization rates are observed to be below expected levels, 
AI algorithms can analyze procedural data to identify potential causes, 
such as variations in sperm or oocyte handling techniques, and suggest 
modifications to improve outcomes [32]. Similarly, if blastocyst for-
mation rates are suboptimal, AI can recommend adjustments in culture 
conditions or protocols based on historical data and current trends [20]. 
By continuously monitoring and optimizing laboratory conditions and 
procedures, AI helps ensure that each IVF process is performed to the 
highest standards [9,80]. This enhances the likelihood of successful 
pregnancies and reduces errors and variability, ultimately contributing 
to better patient outcomes and increased confidence in IVF treatments. 
Furthermore, AI’s ability to analyze complex datasets and provide 
actionable insights can support ongoing improvements in laboratory 
practices. Continuous learning and adaptation of AI algorithms based on 
new data can drive innovations and refine IVF protocols, ensuring that 
laboratories remain at the forefront of assisted reproductive technolo-
gies [81]. This dynamic approach to quality control, underpinned by AI, 
represents a significant advancement in pursuing excellence in IVF 
outcomes as highlighted in Table 3.

7. Procedural scheduling and workflow optimization

Efficient scheduling and workflow management are critical in busy 
IVF laboratories, where timely execution of procedures is paramount for 
maintaining the quality of gametes and embryos [89]. Delays or in-
efficiencies in the workflow can lead to suboptimal conditions, which 
may negatively impact fertilization rates, embryo development, and 
overall IVF success rates. Common challenges include coordinating 
multiple procedures that need to occur within specific time windows, 
managing the availability of laboratory staff and equipment, and 
responding to unexpected changes, such as equipment failures or vari-
ations in patient needs. Inefficient scheduling can result in extended 
waiting times, increased stress for patients and staff, and potentially 
lower clinical outcomes [90].

Artificial intelligence (AI) offers transformative potential for opti-
mizing scheduling and workflow management in IVF laboratories [11]. 
By analyzing historical data and real-time workflow patterns, AI can 
predict the optimal timing for various procedures, ensuring that each 
step is carried out at the most appropriate moment. This optimization 
can significantly reduce waiting times and enhance the timely handling 
of gametes and embryos, ultimately improving laboratory efficiency and 
success rates. AI can analyze extensive datasets from past cycles to 
identify patterns and bottlenecks in the workflow. By understanding 
these patterns, AI algorithms can forecast busy periods and allocate re-
sources accordingly [91]. This ensures that critical procedures, such as 
oocyte retrieval, fertilization, and embryo transfer, are performed 
without unnecessary delays [92]. For example, AI can predict peak times 
for laboratory activities and suggest optimal staff scheduling to meet 
these demands.

Machine learning (ML) algorithms can predict the best timing for 
each procedure based on various factors, including patient-specific data, 
laboratory conditions, and historical outcomes. This predictive capa-
bility ensures that procedures are scheduled when conditions are most 
favorable, enhancing the quality of gametes and embryos [41]. For 
instance, AI can determine the optimal time for oocyte retrieval based on 
the maturation status of the follicles, ensuring that oocytes are collected 
at their peak quality [21]. AI-driven scheduling tools can adapt to un-
expected changes, such as equipment malfunctions or sudden shifts in 
patient conditions. By continuously monitoring the workflow and 
available resources, AI can make real-time adjustments to the schedule, 
ensuring that disruptions are minimized. This adaptability is crucial in 
maintaining smooth operations and avoiding delays that could 
compromise the quality of the IVF process [57].

AI can also optimize allocating laboratory resources, including staff, 
equipment, and lab space. By predicting the needs for each procedure 
and ensuring that resources are available when needed, AI helps avoid 
overbooking and underutilization. This efficient allocation not only 
improves workflow but also enhances the working environment for 
laboratory staff, reducing stress and potential errors. Several AI-driven 
scheduling tools are being developed and implemented in IVF labora-
tories [93]. These tools utilize advanced algorithms to create dynamic 
schedules that can be adjusted in real-time based on changing condi-
tions. For example, AI platforms can integrate data from patient man-
agement systems, laboratory information systems, and real-time 
monitoring devices to provide comprehensive scheduling solutions. 
These platforms offer features such as automatic rescheduling in 
response to delays, predictive analytics for resource planning, and 
real-time alerts for staff and patients.

AI-driven scheduling reduces waiting times by optimizing the 
schedule and ensuring the timely execution of procedures. This im-
proves the overall patient experience and reduces the stress associated 
with the IVF process [94]. Timely handling of gametes and embryos 
ensures they are maintained optimally, enhancing their quality and 
viability. This can lead to higher fertilization rates, better embryo 
development, and increased success rates for IVF cycles [25]. Enhanced 
laboratory efficiency is another significant benefit of AI-driven sched-
uling. By streamlining the workflow, reducing bottlenecks, and 
improving overall efficiency, laboratories can handle a higher volume of 
cycles without compromising quality. AI’s ability to adapt to unexpected 
changes ensures that the laboratory can respond quickly to disruptions, 
maintaining smooth operations and minimizing delays. Additionally, AI 
optimizes the allocation of resources, ensuring that staff, equipment, 
and lab space are used efficiently, reducing waste, and enhancing 
productivity.

8. Challenges of AI application in IVF

The application of artificial intelligence (AI) in in-vitro fertilization 
(IVF) presents significant challenges that must be addressed before 
widespread clinical adoption [93]. One major issue is the lack of 
large-scale clinical validation. Many AI models in IVF are developed and 
tested on small, single-center datasets, which limits their generaliz-
ability. These studies are often conducted in highly controlled envi-
ronments with relatively homogeneous patient populations, lacking 
diversity in real-world clinical settings. Without robust, multi-center, 
randomized controlled trials that validate these models across various 
patient demographics and clinical contexts, the efficacy and safety of 
AI-driven tools remain uncertain. For instance, while some studies 
suggest AI improves embryo selection accuracy, few provide long-term 
outcome data, such as live birth rates or the health of children born 
through AI-guided IVF.

One reason for inconsistent findings across different centers is the 
lack of standardized recording and reporting practices. Variations in 
how data is collected, interpreted and reported can lead to discrepancies 
in AI performance and make it difficult to compare results across studies. 
For example, centers may use different criteria for evaluating embryo 
quality or success rates, which can influence AI model training and re-
sults. Establishing a consensus on standardized data collection, detailed 
recording of IVF outcomes, and uniform reporting protocols for AI ap-
plications in IVF would help ensure consistency and allow for more 
reliable cross-center comparisons. Such standardization would enable a 
more precise evaluation of AI’s effectiveness across different clinical 
environments.

Another significant challenge is bias in the datasets used to train AI 
models. AI relies heavily on historical data to identify patterns and make 
predictions [95]. If the data used to train these algorithms does not 
represent the broader population, it can introduce significant bias, 
resulting in inequitable treatment outcomes. For example, most AI 
models in IVF have been developed using data from predominantly 
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Western populations, which may not accurately reflect the diversity of 
reproductive health issues across different ethnicities, age groups, or 
socio-economic backgrounds. This bias could lead to unequal success 
rates, where certain patient groups benefit more from AI-guided treat-
ment than others. Addressing this requires the development of more 
diverse and representative datasets encompassing a more comprehen-
sive range of patient demographics and regular auditing of AI systems to 
identify and correct bias. The failure to mitigate these biases risks 
perpetuating health disparities in reproductive medicine.

Data privacy and security are also critical concerns in the application 
of AI in IVF. Given that AI systems require access to large datasets, 
including sensitive personal and genetic information, the potential for 
data breaches or misuse is a significant ethical concern [96]. Patients 
undergoing IVF are already in a vulnerable position, and the improper 
handling of their data could lead to privacy violations, discrimination, 
or other harm. Current regulatory frameworks such as the General Data 
Protection Regulation (GDPR) in Europe and the Health Insurance 
Portability and Accountability Act (HIPAA) in the United States offer 
guidance on protecting patient information, but the use of AI necessi-
tates even stricter protocols [97–99]. The integration of AI into clinical 
practice demands robust encryption methods, secure storage solutions, 
and strict access controls to safeguard patient data at every stage of the 
process.

In addition to privacy concerns, ethical transparency remains a 
crucial challenge in AI-driven IVF. Many AI algorithms function as 
"black boxes," meaning that their decision-making processes are not 
easily interpretable by clinicians or patients [100,101]. This lack of 
transparency can lead to challenges in clinical practice, where health-
care providers may struggle to explain or justify AI-driven recommen-
dations to patients. For example, suppose an AI model suggests the 
selection of one embryo over another without a clear rationale. In that 
case, it may be difficult for clinicians to gain patient trust or confidence. 
Moreover, AI algorithms typically base their recommendations on sta-
tistical patterns rather than considering individual patient preferences, 
lifestyle factors, or other clinical nuances that human judgment might 

factor into decision-making. This can result in over-reliance on AI sys-
tems, where clinicians follow AI recommendations without thoroughly 
evaluating their relevance or applicability to the patient’s case [96,102]. 
Developing more interpretable AI models and ensuring clinicians are 
trained to critically assess AI-generated outputs in the context of their 
professional expertise are essential.

9. Conclusion

Artificial intelligence (AI), machine learning (ML), and deep learning 
(DL) have the potential to significantly transform in-vitro fertilization 
(IVF) practices by providing objective, data-driven tools that enhance 
various stages of the IVF process. These technologies can personalize 
ovarian stimulation protocols, ensuring that each patient receives the 
most effective treatment based on their unique characteristics. By 
optimizing gamete selection through precise assessments of sperm and 
oocyte quality, AI can improve fertilization rates and embryo viability. 
Additionally, AI-driven embryo selection can lead to higher implanta-
tion success rates, reducing the number of cycles required to achieve 
pregnancy and thus lowering the emotional and financial burdens on 
patients [39]. Integrating AI into quality control and workflow optimi-
zation further enhances the efficiency and effectiveness of IVF labora-
tories. AI’s ability to continuously monitor and analyze key performance 
indicators (KPIs) helps maintain high standards and consistent out-
comes. Moreover, AI-driven scheduling and resource management can 
streamline laboratory operations, minimizing delays and ensuring the 
timely handling of gametes and embryos.

Despite the promising benefits, the application of AI in IVF must be 
approached with careful consideration of ethical implications. Ensuring 
data privacy and security is paramount to protect sensitive patient in-
formation. AI algorithms must be trained on diverse datasets to avoid 
biases and ensure fairness and inclusivity in care. Regular audits and 
updates of AI models are necessary to maintain their accuracy and 
mitigate any emerging biases. Continued research and development are 
crucial to refine AI technologies further and validate their efficacy in 

Table 3 
Quality control and key performance indicators monitoring in IVF.

Component Traditional Methods AI Models/Tools Used Key Performance Indicators 
(KPIs)

Advantages of AI

Environmental 
Monitoring [76]

Manual recording and periodic 
checks of temperature, 
humidity, air quality

AI-driven environmental sensors 
and IoT devices

Temperature stability, 
humidity levels, air quality

Continuous real-time monitoring, immediate 
deviation alerts, consistent optimal 
conditions

Fertilization Rates 
[82]

Manual calculation and 
periodic analysis based on 
fertilization success

Machine Learning algorithms 
analyzing fertilization data

Number of fertilized oocytes, 
fertilization rate per cycle

Real-time analysis, early identification of 
issues, data-driven recommendations for 
improvement

Blastocyst Formation 
[83]

Visual assessment and manual 
recording of blastocyst 
development stages

Time-lapse imaging systems with AI 
analysis (e.g., EmbryoScope)

Blastocyst formation rate, 
time to blastocyst stage

Continuous monitoring, precise tracking of 
developmental stages, better prediction of 
blastocyst viability

Clinical Pregnancy 
Rates [76]

Retrospective analysis of 
clinical pregnancy outcomes

Predictive analytics models 
integrating multiple data sources

Clinical pregnancy rate, 
implantation rate

Real-time tracking, predictive insights for 
improving protocols, enhanced 
understanding of success factors

Procedural 
Adherence [84]

Manual checks and audits of 
adherence to protocols

Workflow management systems 
with AI (e.g., electronic lab 
notebooks with AI analytics)

Adherence to protocols, the 
incidence of deviations

Automated adherence tracking, immediate 
feedback on deviations, improved protocol 
consistency

Embryo Culture 
Conditions [79,85]

Manual observation and 
recording of cultural conditions

AI-driven monitoring systems 
analyzing cultural conditions

Culture media pH levels, 
oxygen concentration

Continuous monitoring, optimal condition 
maintenance, reduced variability in embryo 
development

Gamete and Embryo 
Handling [76]

Manual assessment and 
periodic reviews

AI algorithms analyzing handling 
data and procedural videos

Handling error rate, gamete/ 
embryo viability post- 
handling

Identification of best practices, reduction of 
handling errors, consistent high-quality 
gamete and embryo handling

KPI Tracking and 
Reporting [86]

Manual compilation and 
analysis of KPI data

AI-based dashboards and reporting 
tools (e.g., Tableau with integrated 
AI)

Fertilization rates, blastocyst 
formation rates, clinical 
pregnancy rates

Real-time KPI tracking, automated reporting, 
easy identification of trends and issues

Root Cause Analysis 
of Failures [87]

Retrospective manual analysis 
of procedural failures

AI-driven root cause analysis tools 
(e.g., anomaly detection algorithms)

Failure rates, time to identify 
and correct issues

Faster identification of failure causes, data- 
driven insights, preventive measures 
implementation

Continuous 
Improvement [82,
88]

Periodic reviews and manual 
updates of protocols

Continuous learning AI systems 
updating protocols based on new 
data

Improvement rate, protocol 
update frequency

Dynamic protocol optimization, 
incorporation of the latest evidence, ongoing 
performance enhancement
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clinical settings. Collaborative efforts between AI experts, reproductive 
endocrinologists, embryologists, and ethicists will be essential to 
address the challenges and maximize the potential of AI in IVF. By 
adhering to ethical standards and continuously improving AI applica-
tions, the IVF field can offer more effective, equitable, and efficient 
treatments, ultimately enhancing the overall success rates and patient 
experiences in assisted reproductive technology.
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[43] Marzano G, Chiriacò MS, Primiceri E, Dell’Aquila ME, Ramalho-Santos J, Zara V, 
et al. Sperm selection in assisted reproduction: a review of established methods 
and cutting-edge possibilities. Biotechnol Adv 2020;40:107498.

[44] You JB, McCallum C, Wang Y, Riordon J, Nosrati R, Sinton D. Machine learning 
for sperm selection. Nat Rev Urol 2021;18(7):387–403.

[45] Hicks SA, Andersen JM, Witczak O, Thambawita V, Halvorsen P, Hammer HL, 
et al. Machine learning-based analysis of sperm videos and participant data for 
male fertility prediction. Sci Rep 2019;9(1):16770.

[46] Spencer L, Fernando J, Akbaridoust F, Ackermann K, Nosrati R. Ensembled deep 
learning for the classification of human sperm head morphology. Adv Intell Syst 
2022;4(10):2200111.

[47] Shahali S, Murshed M, Spencer L, Tunc O, Pisarevski L, Conceicao J, et al. 
Morphology classification of live unstained human sperm using ensemble deep 
learning. Adv Intell Syst 2024:2400141.

[48] Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: 
integrated nuclear and cytoplasmic events. Hum Reprod Update 2018;24(3): 
245–66.

[49] Lemseffer Y, Terret ME, Campillo C, Labrune E. Methods for assessing oocyte 
quality: a review of literature. Biomedicines 2022;10(9):2184.

[50] Balaban B, Keles I, Ebner T. Morphological assessment of oocyte quality. Man 
Oocyte Retr Prep Hum Assist Reprod 2022:85.

[51] Si K, Huang B, Jin L. Application of artificial intelligence in gametes and embryos 
selection. Hum Fertil 2023;26(4):757–77.

[52] Bhide P, Chan DY, Lanz D, Alqawasmeh O, Barry E, Baxter D, et al. Clinical 
effectiveness and safety of time-lapse imaging systems for embryo incubation and 
selection in in-vitro fertilisation treatment (TILT): a multicentre, three-parallel- 
group, double-blind, randomised controlled trial. Lancet 2024;404(10449): 
256–65.

[53] Buldo-Licciardi J, Large MJ, McCulloh DH, McCaffrey C, Grifo JA. Utilization of 
standardized preimplantation genetic testing for aneuploidy (PGT-A) via artificial 
intelligence (AI) technology is correlated with improved pregnancy outcomes in 
single thawed euploid embryo transfer (STEET) cycles. J Assist Reprod Genet 
2023;40(2):289–99.

[54] Aydin B, Hudkova D, Halicigil C. Maximizing donor egg efficiency: artificial 
intelligence and genetically certified oocytes. Cryopreservation. In: Nagy ZP, 
Varghese AC, Agarwal A, editors. Assisted reproduction: a practitioner’s guide to 

D.B. Olawade et al.                                                                                                                                                                                                                             Journal of Gynecology Obstetrics and Human Reproduction 54 (2025) 102903 

9 

http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0001
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0001
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0002
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0002
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0002
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0003
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0003
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0004
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0005
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0005
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0006
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0006
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0006
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0006
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0007
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0007
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0007
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0008
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0008
https://www.nature.com/articles/s41598-024-69165-1
https://www.sciencedirect.com/science/article/pii/S0015028222002448
https://www.sciencedirect.com/science/article/pii/S0015028222002448
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0011
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0011
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0011
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0012
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0012
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0012
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0013
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0013
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0013
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0014
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0014
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0015
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0015
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0016
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0016
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0017
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0017
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0018
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0018
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0019
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0019
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0020
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0020
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0020
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0021
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0021
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0021
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0022
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0022
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0022
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0022
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0023
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0023
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0024
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0024
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0025
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0025
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0026
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0026
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0027
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0028
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0028
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0028
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0029
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0029
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0029
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0029
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0030
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0030
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0030
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0030
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0031
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0031
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0032
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0032
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0032
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0033
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0033
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0033
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0034
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0034
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0034
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0035
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0035
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0036
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0036
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0036
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0036
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0037
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0037
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0037
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0038
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0038
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0038
https://www.fertstert.org/article/S0015-0282(23)00909-3/abstract
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0040
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0040
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0041
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0041
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0041
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0043
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0043
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0043
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0044
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0044
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0045
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0045
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0045
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0046
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0046
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0046
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0047
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0047
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0047
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0048
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0048
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0048
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0049
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0049
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0050
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0050
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0051
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0051
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0052
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0052
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0052
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0052
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0052
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0053
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0053
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0053
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0053
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0053


methods, management and organization [Internet]. Cham: Springer International 
Publishing; 2024. p. 471–90. https://doi.org/10.1007/978-3-031-58214-1_48 
[cited 2024 Nov 27]Available from.

[55] Celebi D, Omur AD, Akarsu SA. Celbis SC, Baser S. Artificial intelligence in 
gamete cell selection and semen microbiologic analysis. J Clin Vet Res 2022;2(2).

[56] Farías AFS, Sakkas D, Chavez-Badiola A, Ocali O, Mendizabal G, Valencia R, et al. 
Single-sperm motility analysis during ICSI using an artificial intelligence sperm 
identification software (SID) and correlation with morphology. Fertil Steril 2022; 
118(4):e56–7.

[57] Letterie G. Artificial intelligence and assisted reproductive technologies: 2023. 
Ready for prime time? Or not. Fertil Steril 2023;120(1):32–7.

[58] Young ST, Tzeng WL, Kuo YL, Hsiao ML, Chiang SR. Real-time tracing of 
spermatozoa. IEEE Eng Med Biol Mag 1996;15(6):117–20 [Internet][cited 2024 
Oct 20]Available from https://ieeexplore.ieee.org/abstract/document/544519/? 
casa_token=GpP9AUPYZ_IAAAAA: 
86t9dMCGNa5M003wdfi5aUrK28h06ylMzH2bqZ3J0z3jOcaP-bzEKv23- 
sMqpvYn1TznvcmW.

[59] Itoi F, Miyamoto T, Himaki T, Honnma H, Sano M, Ueda J. Importance of real- 
time measurement of sperm head morphology in intracytoplasmic sperm 
injection. Zygote 2022;30(1):9–16 [Internet][cited 2024 Oct 20]Available from 
https://www.cambridge.org/core/journals/zygote/article/importance-of- 
realtime-measurement-of-sperm-head-morphology-in-intracytoplasmic-sperm- 
injection/7C10CF2237C9970EFC132D38ECAAC11E.

[60] Feyeux M, Reignier A, Mocaer M, Lammers J, Meistermann D, Barrière P, et al. 
Development of automated annotation software for human embryo 
morphokinetics. Hum Reprod 2020;35(3):557–64.

[61] Berntsen J, Rimestad J, Lassen JT, Tran D, Kragh MF. Robust and generalizable 
embryo selection based on artificial intelligence and time-lapse image sequences. 
PLoS One 2022;17(2):e0262661.

[62] Harris BS, Bishop KC, Kuller JA, Alkilany S, Price TM. Preimplantation genetic 
testing: a review of current modalities. F S Rev 2021;2(1):43–56.

[63] Stankewicz T. Optimizing ivf by controlling for both embryonic aneuploidy and 
endometrial receptivity using genetic testing. University of Kent (United 
Kingdom; 2021.

[64] Kort J., Behr B. Traditional embryo morphology evaluation: from the zygote to 
the blastocyst stage. In vitro fertilization: a textbook of current and emerging 
methods and devices. 2019;493–504.

[65] Sciorio R, Meseguer M. Focus on time-lapse analysis: blastocyst collapse and 
morphometric assessment as new features of embryo viability. Reprod Biomed 
Online 2021;43(5):821–32.

[66] Rosenwaks Z, Handyside AH. Is preimplantation genetic testing for aneuploidy an 
essential tool for embryo selection or a costly ‘add-on’of no clinical benefit? Fertil 
Steril 2018;110(3):351–2.

[67] Berntsen J, Rimestad J, Lassen JT, Tran D, Kragh MF. Robust and generalizable 
embryo selection based on artificial intelligence and time-lapse image sequences. 
PLoS One 2022;17(2):e0262661 [Internet][cited 2024 Nov 27]Available from, 
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262661.

[68] e Z ul Ishaq M, Raza S, Rehar H, Abadeen S, Hussain D, Naqvi RA, et al. Assisting 
the human embryo viability assessment by deep learning for in vitro fertilization. 
Mathematics 2023;11(9):2023.

[69] Dimitriadis I, Zaninovic N, Badiola AC, Bormann CL. Artificial intelligence in the 
embryology laboratory: a review. Reprod Biomed Online 2022;44(3):435–48.

[70] Stegmaier J, Amat F, Lemon WC, McDole K, Wan Y, Teodoro G, et al. Real-time 
three-dimensional cell segmentation in large-scale microscopy data of developing 
embryos. Dev Cell 2016;36(2):225–40 [Internet][cited 2024 Oct 20]Available 
from, https://www.cell.com/developmental-cell/fulltext/S1534-5807(15) 
00837-0.

[71] Lundin K, Park H. Time-lapse technology for embryo culture and selection. Ups J 
Med Sci 2020;125(2):77–84 [Internet][cited 2024 Oct 20]Available from, 
https://ujms.net/index.php/ujms/article/view/5629.

[72] Chavez-Badiola A, Flores-Saiffe-Farías A, Mendizabal-Ruiz G, Drakeley AJ, 
Cohen J. Embryo ranking intelligent classification algorithm (ERICA): artificial 
intelligence clinical assistant predicting embryo ploidy and implantation. Reprod 
Biomed Online 2020;41(4):585–93 [Internet][cited 2024 Oct 20]Available from 
https://www.sciencedirect.com/science/article/pii/S1472648320303734?casa_ 
token=jM2SA9P-Ji8AAAAA:C8UFa-LeFSxiUZ37Ly1owL_ZAjDoQ5Jih_goblqsJq_ 
NKiOe7MH5BSbWgMObLU6mYdhMNWaf.

[73] Ueno S, Berntsen J, Ito M, Okimura T, Kato K. Correlation between an annotation- 
free embryo scoring system based on deep learning and live birth/neonatal 
outcomes after single vitrified-warmed blastocyst transfer: a single-centre, large- 
cohort retrospective study. J Assist Reprod Genet 2022;39(9):2089–99 [Internet] 
[cited 2024 Oct 20]Available from, https://link.springer.com/10.1007 
/s10815-022-02562-5.

[74] De Gheselle S, Jacques C, Chambost J, Blank C, Declerck K, De Croo I, et al. 
Machine learning for prediction of euploidy in human embryos: in search of the 
best-performing model and predictive features. Fertil Steril 2022;117(4):738–46 
[Internet][cited 2024 Oct 20]Available from, https://www.sciencedirect.com/sci 
ence/article/pii/S001502822102238X.

[75] Durai P. Quality control in the assisted reproductive technology laboratory. CRC 
Press; 2024.

[76] Fabozzi G, Cimadomo D, Maggiulli R, Vaiarelli A, Ubaldi FM, Rienzi L. Which key 
performance indicators are most effective in evaluating and managing an in vitro 
fertilization laboratory? Fertil Steril 2020;114(1):9–15.

[77] Ain QU, Nazir R, Nawaz A, Shahbaz H, Dilshad A, Mufti IU, et al. Machine 
Learning Approach towards Quality Assurance, Challenges and Possible 
Strategies in Laboratory Medicine. J Clin Transl Pathol 2024;4(2):76–87.

[78] Rahmani AM, Yousefpoor E, Yousefpoor MS, Mehmood Z, Haider A, 
Hosseinzadeh M, et al. Machine learning (ML) in medicine: review, applications, 
and challenges. Mathematics 2021;9(22):2970.

[79] Bormann CL, Curchoe CL, Thirumalaraju P, Kanakasabapathy MK, Gupta R, 
Pooniwala R, et al. Deep learning early warning system for embryo culture 
conditions and embryologist performance in the ART laboratory. J Assist Reprod 
Genet 2021;38(7):1641–6.

[80] Tamir S. Artificial intelligence in human reproduction: charting the ethical debate 
over AI in IVF. AI Ethics 2023;3(3):947–61.

[81] Medenica S, Zivanovic D, Batkoska L, Marinelli S, Basile G, Perino A, et al. The 
future is coming: artificial intelligence in the treatment of infertility could 
improve assisted reproduction outcomes—The value of regulatory frameworks. 
Diagnostics 2022;12(12):2979.

[82] Hammond ER, Morbeck DE. Tracking quality: can embryology key performance 
indicators be used to identify clinically relevant shifts in pregnancy rate? Hum 
Reprod 2019;34(1):37–43.

[83] tian Wang H, ping Hong P, yang Li H, Zhou W, Li T. Use of a new set of key 
performance indicators for evaluating the performance of an in vitro fertilization 
laboratory in which blastocyst culture and the freeze-all strategy are the primary 
treatment in patients with in vitro fertilization. J Int Med Res 2021;49(9): 
03000605211044364.

[84] Di Paola R, Cuccarollo A, Garzon S. Risk, safety, and outcome monitoring in the 
IVF clinic. Management of infertility. Elsevier; 2023. p. 397–404 [Internet][cited 
2024 Oct 20]Available from, https://www.sciencedirect.com/science/article/pii 
/B9780323899079000089.

[85] Zaca C., Borini A., Coticchio G. Laboratory monitoring for embryo culture. 
Manual of embryo culture in human assisted reproduction [Internet]. 2021 [cited 
2024];84. Available from: https://books.google.com/books? 
hl=en&lr=&id=a3IqEAAAQBAJ&oi=fnd&pg=PA84&dq=Quality+Control+and 
+Key+Performance+Indicators+Monitoring+in+IVF+Embryo+Culture+
Conditions&ots=ShuiWM_MtI&sig=BhuV6RgiQBuLNmAjs5bheNbBDKA.

[86] Franco Jr JG, Petersen CG, Mauri AL, Vagnini LD, Renzi A, Petersen B, et al. Key 
performance indicators score (KPIs-score) based on clinical and laboratorial 
parameters can establish benchmarks for internal quality control in an ART 
program. JBRA Assist Reprod 2017;21(2):61 [Internet][cited 2024 Oct 20] 
Available from, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473694/.

[87] Li D, Gao Y. Introduction of quality control and risk management in IVF 
laboratory. Qual Manag Assist Reprod Lab 2024:1–17.

[88] Doody K., Calhaz-Jorge C., Smeenk J. Quality data to assurance improve clinical 
of ART care practice: using. Assisted reproductive technology surveillance 
[Internet]. 2019 [cited 2024 Oct 20];4:69. Available from: https://books.google. 
com/books?hl=en&lr=&id=dIOWDwAAQBAJ&oi=fnd&pg=PA69&dq=Quality 
+Control+and+Key+Performance+Indicators+Monitoring+in+IVF+
Continuous+
Improvement&ots=8ocSTxGw2H&sig=gw71OQflBBkJw16WtFg6V82Vqqs.

[89] Cohen J, Alikani M, Gilligan A. Updated guidelines for setting up an assisted 
reproductive technology laboratory. Textbook of assisted reproductive 
techniques. CRC Press; 2023. p. 1–8.

[90] Passet-Wittig J, Bujard M. Medically assisted reproduction in developed 
countries: overview and societal challenges. Res Handb Sociol Fam 2021:417–38.

[91] Pavlovic ZJ, Jiang VS, Hariton E. Current applications of artificial intelligence in 
assisted reproductive technologies through the perspective of a patient’s journey. 
Curr Opin Obstet Gynecol 2024;36(4):211–7.

[92] Zaninovic N, Elemento O, Rosenwaks Z. Artificial intelligence: its applications in 
reproductive medicine and the assisted reproductive technologies. Fertil Steril 
2019;112(1):28–30.

[93] Chow DJX, Wijesinghe P, Dholakia K, Dunning KR. Does artificial intelligence 
have a role in the IVF clinic? Reprod Fertil 2021;2(3):C29–34.

[94] Health TLD. Enhancing the success of IVF with artificial intelligence. Lancet 
2023;5. Digital health.

[95] Liang W, Tadesse GA, Ho D, Fei-Fei L, Zaharia M, Zhang C, et al. Advances, 
challenges and opportunities in creating data for trustworthy AI. Nat Mach Intell 
2022;4(8):669–77 [Internet][cited 2024 Oct 20]Available from, https://www. 
nature.com/articles/s42256-022-00516-1.

[96] Afnan MAM, Rudin C, Conitzer V, Savulescu J, Mishra A, Liu Y, et al. Ethical 
implementation of artificial intelligence to select embryos in in vitro fertilization. 
In: Proceedings of the 2021 AAAI/ACM conference on AI, ethics, and society. 
ACM; 2021. p. 316–26 [Internet]. Virtual Event USA[cited 2024 Oct 20]Available 
from, https://dl.acm.org/doi/10.1145/3461702.3462589.

[97] Silva I, Soto M. Privacy-preserving data sharing in healthcare: an in-depth 
analysis of big data solutions and regulatory compliance. Int J Appl Health Care 
Anal 2022;7(1):14–23 [Internet][cited 2024 Oct 20]Available from, http://norisl 
ab.com/index.php/IJAHA/article/view/39.

[98] Panesar A. Precision health and artificial intelligence: with privacy, ethics, bias, 
health equity, best practices, and case studies [Internet]. Berkeley, CA: Apress; 
2023 [cited 2024 Oct 20]. Available from, https://link.springer.com/10.100 
7/978-1-4842-9162-7.

[99] Frank E., Olaoye G. Privacy and data protection in AI-enabled healthcare systems. 
2024 [cited 2024 Oct 20]; Available from: https://www.researchgate.net/profi 
le/Edwin-Frank/publication/378287462_Privacy_and_data_protection_in_AI-ena 
bled_healthcare_systems/links/65d0dc54476dd15fb343ff84/Privacy-and-data-pr 
otection-in-AI-enabled-healthcare-systems.pdf.

[100] GhoshRoy D, Alvi PA, Santosh KC. AI tools for assessing human fertility using risk 
factors: a state-of-the-art review. J Med Syst 2023;47(1):91 [Internet][cited 2024 
Oct 20]Available from: https://idp.springer.com/authorize/casa?redirect_uri=
https://link.springer.com/article/10.1007/s10916-023-01983-8&casa_ 

D.B. Olawade et al.                                                                                                                                                                                                                             Journal of Gynecology Obstetrics and Human Reproduction 54 (2025) 102903 

10 

https://doi.org/10.1007/978-3-031-58214-1_48
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0055
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0055
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0056
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0056
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0056
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0056
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0057
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0057
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0058
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0058
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0058
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0058
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0058
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0058
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0059
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0059
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0059
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0059
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0059
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0059
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0060
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0060
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0060
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0061
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0061
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0061
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0062
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0062
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0063
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0063
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0063
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0065
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0065
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0065
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0066
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0066
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0066
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262661
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0068
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0068
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0068
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0069
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0069
https://www.cell.com/developmental-cell/fulltext/S1534-5807(15)00837-0
https://www.cell.com/developmental-cell/fulltext/S1534-5807(15)00837-0
https://ujms.net/index.php/ujms/article/view/5629
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0072
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0072
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0072
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0072
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0072
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0072
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0072
https://link.springer.com/10.1007/s10815-022-02562-5
https://link.springer.com/10.1007/s10815-022-02562-5
https://www.sciencedirect.com/science/article/pii/S001502822102238X
https://www.sciencedirect.com/science/article/pii/S001502822102238X
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0075
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0075
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0076
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0076
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0076
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0077
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0077
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0077
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0078
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0078
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0078
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0079
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0079
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0079
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0079
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0080
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0080
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0081
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0081
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0081
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0081
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0082
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0082
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0082
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0083
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0083
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0083
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0083
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0083
https://www.sciencedirect.com/science/article/pii/B9780323899079000089
https://www.sciencedirect.com/science/article/pii/B9780323899079000089
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473694/
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0087
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0087
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0089
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0089
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0089
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0090
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0090
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0091
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0091
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0091
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0092
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0092
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0092
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0093
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0093
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0094
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0094
https://www.nature.com/articles/s42256-022-00516-1
https://www.nature.com/articles/s42256-022-00516-1
https://dl.acm.org/doi/10.1145/3461702.3462589
http://norislab.com/index.php/IJAHA/article/view/39
http://norislab.com/index.php/IJAHA/article/view/39
https://link.springer.com/10.1007/978-1-4842-9162-7
https://link.springer.com/10.1007/978-1-4842-9162-7
https://www.researchgate.net/profile/Edwin-Frank/publication/378287462_Privacy_and_data_protection_in_AI-enabled_healthcare_systems/links/65d0dc54476dd15fb343ff84/Privacy-and-data-protection-in-AI-enabled-healthcare-systems.pdf
https://www.researchgate.net/profile/Edwin-Frank/publication/378287462_Privacy_and_data_protection_in_AI-enabled_healthcare_systems/links/65d0dc54476dd15fb343ff84/Privacy-and-data-protection-in-AI-enabled-healthcare-systems.pdf
https://www.researchgate.net/profile/Edwin-Frank/publication/378287462_Privacy_and_data_protection_in_AI-enabled_healthcare_systems/links/65d0dc54476dd15fb343ff84/Privacy-and-data-protection-in-AI-enabled-healthcare-systems.pdf
https://www.researchgate.net/profile/Edwin-Frank/publication/378287462_Privacy_and_data_protection_in_AI-enabled_healthcare_systems/links/65d0dc54476dd15fb343ff84/Privacy-and-data-protection-in-AI-enabled-healthcare-systems.pdf
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0100
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0100
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0100
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0100


token=NrqwKnfxLzkAAAAA: 
2cONbCFL6tXtn8EpGZ6GT37AIJEowqtRvKaynQJQ–MQPaQjiWaf29 
XmGJ37xoYViYZIXPI_TK4OHHo.

[101] De A, Saraf S, Mishra TK, Tripathy BK. Interpretation and visualization techniques 
in AI systems and applications. Explainable, interpretable, and transparent ai 
systems. CRC Press; 2024. p. 279–301 [Internet][citedOct 20]Available from 
https://w.w.w.taylorfrancis.com/chapters/edit/10.1201/9781003442509-16/ 

interpretation-visualization-techniques-ai-systems-applications-arka-de- 
sameeksha-saraf-tusar-kanti-mishra-tripathy.

[102] Alolabi H, Aarthy CCJ. Ethical challenges presented by advanced artificial 
intelligence in diagnostics and treatment recommendations. J Empir Soc Sci Stud 
2021;5(1):30–47 [Internet][cited 2024 Oct 20]Available from, https://publica 
tions.dlpress.org/index.php/jesss/article/view/31.

D.B. Olawade et al.                                                                                                                                                                                                                             Journal of Gynecology Obstetrics and Human Reproduction 54 (2025) 102903 

11 

http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0100
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0100
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0100
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0101
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0101
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0101
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0101
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0101
http://refhub.elsevier.com/S2468-7847(24)00182-X/sbref0101
https://publications.dlpress.org/index.php/jesss/article/view/31
https://publications.dlpress.org/index.php/jesss/article/view/31

	Artificial intelligence in in-vitro fertilization (IVF): A new era of precision and personalization in fertility treatments
	1 Introduction
	2 Methods
	2.1 Literature search
	2.2 Inclusion and exclusion criteria
	2.3 Risk of bias evaluation
	2.4 Synthesis of results

	3 Personalization of ovarian stimulation protocols
	4 Gamete selection
	4.1 Sperm classification and selection
	4.2 Oocyte quality assessment
	4.3 Integration of genetic data

	5 Embryo annotation and selection
	5.1 Traditional methods
	5.2 AI in embryo selection

	6 Quality control and key performance indicators monitoring
	7 Procedural scheduling and workflow optimization
	8 Challenges of AI application in IVF
	9 Conclusion
	Declaration of competing interest
	References


