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ABSTRACT 

Individuals from different social groups interpret the world in different ways.  This study 

explores the neural basis of these group differences using a paradigm that simulates natural 

viewing conditions. Our aim was to determine if group differences could be found in sensory 

regions involved in the perception of the world or were evident in higher-level regions that 

are important for the interpretation of sensory information. We measured brain responses 

from two groups of football supporters, while they watched a video of matches between 

their teams. The time-course of response was then compared between individuals 

supporting the same (within-group) or the different (between-group) team.  We found high 

inter-subject correlations in low-level and high-level regions of the visual brain.  However, 

these regions of the brain did not show any group differences.  Regions that showed higher 

correlations for individuals from the same group were found in a network of frontal and 

subcortical brain regions.  The interplay between these regions suggests a range of cognitive 

processes from motor control to social cognition and reward are important in the 

establishment of social groups.  These results suggest that group differences are primarily 

reflected in regions involved in the evaluation and interpretation of the sensory input. 
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INTRODUCTION 

Our perception of the world is influenced by the presence of others (Allport, 1954; Asch, 1955; 

Cialdini & Goldstein, 2004; Milgram, 1974). We are particularly influenced by membership of 

social groups, which play a significant role in guiding our interpretation of events and our 

opinions of others (Sherif, Harvey, White, Hood, & Sherif, 1961; Amodio, 2014; Xiao, Coppin, 

& Van Bavel, 2016). The value humans place on social groups is illustrated by the ease and 

rapidity with which humans form groups and the psychological benefits gained by being a 

member of a group (Tajfel, 1982; Turner, Hogg, Oakes, Reicher, & Wetherell, 1987).  A 

challenge to understanding group bias is revealing the specific cognitive and neural processes 

that give rise to differences in behaviour.  A key question in this regard is whether group 

differences in neural processing occur at early stages of processing when sensory information 

is encoded or whether they are evident at later stages of processing, which are more involved 

in interpreting the input (Molenberghs, 2013; Cikara and Van Bavel, 2014).  

Evidence for group differences in neural response at early stages of processing is 

shown by the response to own-race and other-race faces in regions of visual cortex, such as 

the fusiform gyrus (Golby, Gabrieli, Chiao, & Eberhardt, 2001; Lieberman, Hariri, Jarcho, 

Eisenberger, & Bookheimer, 2005). In these studies, there is a higher response to own-race 

faces, which is interpreted as showing a bias to perceive individuals from the in-group.  A 

complementary pattern of results is evident in the amygdala, which responds more to other-

race faces (Cunningham et al., 2004; Hart et al., 2000). These differences correlate with 

implicit measures of in-group bias and have led researchers to interpret this as evidence of 

negativity toward out-group members (Phelps et al., 2000; Wheeler & Fiske, 2005). 

Interestingly, these group effects in the fusiform gyrus and the amygdala are evident with 
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minimal group paradigms and can be influenced by both task and context (Van Bavel et al., 

2008; 2011; Freeman et al., 2010; Amodio et al., 2014). Further evidence for a neural correlate 

of group differences at early stages of processing is evident in regions involved in the 

perception of action in response to the actions of in-group and out-group members 

(Molenberghs, Halasz, Mattingley, Vanman, & Cunnington, 2013). 

It remains unclear, however, whether group differences in behaviour are more 

associated with the way information is interpreted (Molenberghs, 2013).  For example, Cikara 

and colleagues found that positive in-group outcomes for baseball fans (success of the 

favoured team or failure of the rival team) were correlated with activity in the ventral striatum 

(Cikara, Botvinick, & Fiske, 2011). Other regions associated with the evaluation of social value 

such as the insula, cingulate gyrus, the temporal-parietal junction (TPJ) and medial prefrontal 

cortex have also been shown to discriminate between in-group and out-group members 

(Cheon et al., 2011; Hein, Silani, Preuschoff, Batson, & Singer, 2010; Mathur, Harada, Lipke, & 

Chiao, 2010; Freeman et al., 2010; Xu et al., 2009; Cheon et al., 2011; Richeson et al., 2003).  

The flexibility of these regions is demonstrated by similar in-group bias when the groups are 

defined by the minimal group paradigm (Morrison, Decety, & Molenberghs, 2012; Van Bavel, 

Packer, & Cunningham, 2008; Volz, Kessler, & von Cramon, 2009).  

Although these previous studies have provided important insights into the neural basis 

of group differences, the world seen in the controlled experimental setting used in many 

neuroimaging experiments bears a limited resemblance to our experience in real life, which 

is typically more complex and dynamic. To overcome this limitation, Hasson and colleagues 

(Hasson, Nir, Levy, Fuhrmann, & Malach, 2004) developed a novel neuroimaging approach in 

which natural viewing conditions are simulated by presenting participants with movies.  The 
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data is analysed by comparing the time-courses of response in corresponding regions across 

subjects.  This approach has been used to show that there are significant inter-subject 

correlations or similarities in the neural response, particularly in sensory regions of the 

occipital and temporal lobe (Hasson et al., 2004; Hasson, Malach & Heeger, 2010). 

Here, we use the inter-subject correlation paradigm to explore differences in the 

neural response for individuals from different social groups.  Our study was motivated by a 

classic paper by Hastorf and Cantril (1954), who asked Princeton and Dartmouth students to 

describe what happened in a contentious football match played between their teams. The 

majority of Princeton students blamed Dartmouth players for the rough play, whereas the 

Dartmouth students argued that the number of infractions was the same for both teams. The 

marked differences in the reports from the different student groups led them to conclude 

that they had seen a different game.  In our study, we compared the time-course of response 

from individuals who were supporters of different football teams, while they watched a movie 

of matches between the two sides.  Our hypothesis was that brain regions that showed larger 

within-group compared to between-group inter-subject correlations are associated with the 

cognitive processes evident in group bias.   
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METHODS 

Participants 

18 male participants (mean age: 20.9) took part in this study.  All participants were 

neurologically healthy, right-handed, and had normal or corrected-to-normal vision. 9 

participants were supporters of Chelsea Football Club and 9 participants were supporters of 

Manchester United Football Club.  Similar numbers of participants have been used in previous 

studies using an inter-subject correlation paradigm (Hasson et al., 2004; 2008ab).  To ensure 

that strong group biases were evident, we recruited participants who had on average 

supported their team for over 15 years (mean + SEM: 15.2 + 1.2) and had attended over 25 

games (mean + SEM: 25.6 + 14.0).  Written consent was obtained for all participants and the 

study was approved by the York Neuroimaging Centre Ethics Committee. 

Stimulus 

A movie was constructed by taking audio-visual segments from matches between Chelsea 

(https://www.chelseafc.com/) and Manchester United (http://www.manutd.com/).  There 

were a total of 33 segments.  Each segment showed a significant moment (e.g. a goal, missed 

penalty, receiving a trophy) and was designed to convey either a positive or negative reaction 

among the supporters of the rival teams. The mean duration of each clip was 23 seconds 

(range: 9 – 39 sec).  There were a similar number of positive clips for both teams.  The movie 

was back-projected onto a custom in-bore acrylic screen at a distance of approximately 57 cm 

from the participant with all images subtending approximately 15° of visual angle.   

fMRI acquisition 

All scanning was conducted at the York Neuroimaging Centre (YNiC) using a GE 3 Tesla HDx 

Excite MRI scanner.  A Magnex head-dedicated gradient insert coil was used in conjunction 
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with a birdcage, radiofrequency coil tuned to 127.7MHz.  Data were collected from 38 

contiguous axial slices via a gradient-echo EPI sequence (TR = 3s, TE = 32.5 ms, FOV = 288 x 

288 mm, matrix size = 128x128, voxel dimensions = 2.25 x 2.25 mm, slice thickness = 3 mm, 

flip angle = 90°).  T1-weighted in-plane FLAIR images were acquired (TR = 2.5 s, TE = 9.98 ms, 

FOV = 288 x 288 mm, matrix size = 512 x 512, voxel dimensions = 0.56 x 0.56 mm, slice 

thickness = 3 mm, flip angle = 90). Finally, high-resolution T1-weighted structural images were 

acquired (TR = 7.96 ms, TE = 3.05 ms, FOV = 290 x 290 mm, matrix size = 256 x 256, voxel 

dimensions = 1.13 x 1.13 mm, slice thickness = 1 mm, flip angle = 20).  

The fMRI data was analysed with FEAT v5.98 (http://www.fmrib.ox.ac.uk/fsl).  In all 

scans the initial 9s of data were removed to reduce the effects of magnetic stimulation.  

Motion correction (MCFLIRT, FSL) was applied followed by temporal high-pass filtering 

(Gaussian-weighted least-squared straight line fittings, sigma=50s).  Spatial smoothing 

(Gaussian) was applied at 6mm FWHM.  Functional data were first registered to a high-

resolution T1-anatomical image and then onto the standard MNI brain (ICBM152). 

fMRI Analysis 

To analyse the data from the experimental scan, the time-course of response from each voxel 

was converted from units of image intensity to percentage signal change. We measured 

regions of interest using three different methods.  First, we compared responses in early 

visual areas using the probabilistic masks based on visual field maps developed by Wang and 

colleagues (Wang et al., 2015).  The maps used included V1, V2, V3, V4, LO1, LO2, PHC1, PHC2, 

V3a, V3b, LO1, LO2, MT and MST.  Next, we compared responses in high-level, category-

selective regions of visual cortex.  These regions were defined by a localizer scan that involved 

5 stimulus conditions: faces, bodies, inanimate objects, places and scrambled images (see 
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Davies-Thompson et al., 2012). Images from each condition were presented in a blocked-

design.  10 images (each image was presented for 700 msec with a 200 msec ISI) were 

presented in each block and a 9 s grey fixation screen was presented between blocks.  Each 

condition was presented 4 times in a pseudo-randomized order.  Boxcar models of each 

stimulus block were convolved with a gamma haemodynamic response function to generate 

regressors for each condition.  Face-, place-, object- and body-selective regions were defined 

using the contrast of the response to each condition compared to each of the other 

conditions.  For example, face-selective contrasts included: face>place, face>object, 

face>body, face>scrambled. Individual participant data were then entered into a higher-level 

group analysis using a mixed-effects design (FLAME, http://www.fmrib.ox.ac.uk/). Regions of 

interest were then created by averaging the statistical maps for each condition separately and 

then thresholding at Z>2.3 (S Figure 1).  This generated face-selective (fusiform face area: FFA, 

occipital face area: OFA, superior temporal sulcus: STS, anterior temporal lobe: ATL, 

amygdala: AMG), place-selective (parahippocampal place area: PPA, retrosplenial cortex: 

RSC, occipital place area: OPA), object-selective (lateral occipital complex: LOC) and body-

selective (extrastriate body area: EBA, fusiform body area: FBA) masks (Malach et al., 1995; 

Kanwisher et al., 1997; Epstein & Kanwisher, 1998; Downing et al., 2001).  Finally, we 

performed a whole brain analysis using the 55 anatomical regions (48 cortical and 7 sub-

cortical) defined by the Harvard Oxford Atlas.  The probabilistic atlas was thresholded to 

generate masks in which each voxel was assigned to the region with the highest probability. 

 

 

http://www.fmrib.ox.ac.uk/
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S Figure 1   Category-selective regions of interest from the localizer scan.  Face-selective 

regions (fusiform face area: FFA, occipital face area: OFA, superior temporal sulcus: STS, 

anterior temporal lobe: ATL, amygdala: AMG) are shown in red. Place-selective regions 

(parahippocampal place area: PPA, retrosplenial cortex: RSC, occipital place area: OPA) are 

shown in blue. Object-selective (lateral occipital complex: LOC) regions are show in yellow.  

Body-selective (extrastriate body area: EBA, fusiform body area: FBA) regions are shown in 

yellow. 

Voxels within each region were averaged to give a single time series for each ROI in each 

participant. Figure 1 shows the way that the data were analysed to determine relative 

differences in the neural response of participants from the same group or from different 

groups. For each region, the time-course of response for each participant was correlated 

(Pearson r) with participants from their own supporter group (rw – within-group correlations) 

or with participants of the other group (rb – between-group correlations).  A Fisher’s z-

transform was applied to the correlations, prior to further statistical analysis.  A repeated-

measures ANOVA with Region and Group (within, between) was then used to analyse the 

data.  Post-hoc t-tests were then used to determine which regions showed significantly higher 

within-group compared to between-group correlations. 
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Figure 1 Within-group and between-group inter-subject correlations (ISC) from one brain 

region. (A) ISC were measured by taking the time-course of neural response from one 

individual and correlating this with the corresponding time-course from a different 

individual from the same group (within-group, rw) or with an individual from a different 

group (between-group, rb).  Individuals were supporters of Chelsea Football Club (CFC) or 

Manchester United Football Club (MUFC). (B) Within-group and between-group correlations 

were calculated for each combination of individuals.  This process was repeated for all 

regions.  

 

 Finally, we performed an orthogonal analysis by comparing the spatial pattern of 

response at each time-point for participants from the same (within) or different (between) 

groups.  At each time point, the signal from each of the 55 regions from the Harvard-Oxford 

masks was measured for each participant.  This vector of 55 numbers was then correlated 
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with the corresponding vector from a different participant who was either from the same 

group or from a different group.  This generated a t-value for each time-point that reflected 

the difference between the within-group spatial pattern and the between-group spatial 

pattern. The group difference in the spatial pattern was calculated for each group separately.  

This allowed us to determine how within-group and between-group differences in  the spatial 

pattern of response varied over time. 
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RESULTS 

Visual field regions 

First, we compared within-group and between-group correlations in the time-courses from 

the visual field regions (Fig. 2A).  Despite the free viewing and complex nature of the movie, 

we found significant inter-subject correlations (ISC). The magnitude of the ISC varied across 

regions (Region: F(13, 221) = 96.0, p<0.0001).  The highest correlations were evident in early 

visual regions: V1 (0.57 + 0.01) and V2 (0.46 + 0.01). However, there was no difference 

between the within-group and between-group correlations (Group: F(1, 17) = 0.001, p=0.97, 

Region * Group: F(13,221) = 0.57, p = 0.87).  

To determine the connectivity between regions, we compared the time-series of 

responses within participants (Fig. 2B).  There was significant variation in the magnitude of 

the intra-subject correlations between regions (range: 0.11 – 0.92) suggesting distinct 

differences in processing.  To determine how the regions were inter-connected a hierarchical 

clustering analysis was performed (https://www.mathworks.com) using an unweighted 

average distance method for computing the distance between clusters  and 1 – correlation 

value as the distance metric (Fig. 2C).  This shows distinct groups that correspond to early 

visual (V1-V3), ventral-occipital (V4, VO1-2, PHC1-2) and lateral-occipital regions (V3a, V3b, 

LO1-2, MT, MST). Taken together, these results show that, despite marked differences in the 

time-courses of response between these visual field regions revealed by the intra-subject 

correlations, there were no significant group differences in the inter-subject correlations. 

https://www.mathworks.com/help/stats/hierarchical-clustering.html
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Figure 2 (A) Within-group and between group inter-subject correlations in visual field 

regions.  There was no effect of group in any region.  (B) Intra-subject correlations in the 

time-courses of response across all visual field regions. (C) Hierarchical clustering of the data 

revealed groups of regions that correspond to early visual, ventral-occipital and lateral 

occipital regions. 
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Category-selective regions 

Next, we compared ISCs in the category-selective regions (Fig. 3A).  The magnitude of the ISC 

varied across regions (Region: F(10, 170) = 108, p<0.0001).  The highest correlations were 

evident in the place-selective OPA (0.61 + 0.02) and body-selective EBA (0.40 + 0.01), perhaps 

reflecting the dominance of these object categories in the movie.  However, again there was 

no difference between the within-group and between-group correlations (Group: F(1, 17) = 

0.0001, p=0.99, Region * Group: F(10,170) = 0.53, p = 0.87).  

To determine the connectivity between regions, we compared the time-series of 

response within participants (Fig. 3B). There was significant variation in the magnitude of the 

intra-subject correlations between regions (range: 0.18 – 0.76) suggesting distinct differences 

in processing.  To determine how the regions were inter-connected a hierarchical clustering 

analysis was performed on the correlation matrix (Fig. 3C).  This shows the relative similarity 

in the time-course of response across regions.  There were similar neural responses among 

the face-selective (FFA, OFA) or the place-selective (PPA, RSC) regions. These intra-subject 

correlations show that category-selective networks have distinct time-courses of response.  

Nevertheless, the inter-subject correlations show that there were no group differences. 

It is interesting to note that all the inter-regional correlations in the visual field and 

category-selective regions were positive.  It is conceivable that significant negative 

correlations may have emerged, particularly between higher visual areas that are selective 

for different aspects of the visual scene.  For example, the FFA responds more to faces than 

places, whereas the PPA responds more to places than faces.  There are two possible reasons 

why we might not have found negative correlations.  The first is that category-selective 

regions such as the FFA and PPA also respond positively to images from non-preferred object 
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categories (Ishai et al., 1999, Andrews, 2005, Ewbank et al., 2005).  The second is that, in 

contrast to conventional neuroimaging paradigms, changes during a movie are likely to affect 

many properties of the image. 
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Figure 3 (A) Within-group and between group inter-subject correlations in category-

selective (face, place, object, body) regions of visual cortex.  There was no effect of group in 

any region.  (B) Intra-subject correlations in the time-courses of response across all 

category-selective regions. (C) Hierarchical clustering of the data showing regions that have 

similar time-courses of response. 

 

Whole Brain Analysis 

Finally, we performed a whole-brain analysis using the 55 regions from the Harvard-Oxford 

atlas.  The magnitude of the ISC varied across regions (Region: F(54, 917) = 148, p<0.0001). 

Consistent with the previous analyses, the highest correlations were evident in regions of the 

occipital (lingual: r = 0.39 + 0.01, intracalcarine: r = 0.33 + 0.01) and temporal (posterior 

superior temporal: r = 0.47 + 0.01, occipital fusiform: r = 0.37 + 0.01, anterior superior 

temporal: r = 0.35 + 0.01) lobes. 

Next, we asked whether there were group differences in the ISC.  We found 

significantly higher ISC between individuals of the same group compared to individuals from 

different groups (Group: (F(1, 16) = 7.3, p<0.05). We also found that the difference between 

within-group and between-group correlations was greater in some regions compared to other 

regions (Region * Group interaction: F(54, 918) = 2.8, p<0.0001). To determine which regions 

showed greater within-group correlations, we performed post-hoc t-tests in each of the 55 

regions.   14 regions showed significantly higher within-group compared to between-group 

ISC (Fig. 4A): nucleus accumbens (t(17)= 4.83, p<0.0001), pallidum (t(17)= 4.39, p<0.0005), 

juxtapositional lobule (t(17)= 4.28, p<0.0005), anterior cingulate (t(17)= 3.66, p<0.001), 

putamen (t(17)= 3.41, p<0.005), hippocampus (t(17)= 3.03, p<0.005), insula (t(17)= 2.90, 

p<0.005), anterior temporal fusiform (t(17)= 2.89, p<0.01), frontal medial (t(17)= 2.75, 

p<0.01), precentral gyrus (t(17)= 2.63, p<0.01), posterior cingulate (t(17)= 2.63, p<0.01), 
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frontal operculum (t(17)= 2.40, p<0.05), thalamus (t(17)= 2.08, p<0.05), paracingulate (t(17)= 

2.05, p<0.05).  When the Bonferroni-Holm method was applied to correct for multiple 

comparisons,  4 regions: nucleus accumbens (p<0.005), pallidum (p<0.05), juxtapositional 

lobule (p<0.05)  and anterior cingulate (p<0.05) showed significant group differences.   

 To determine the connectivity between regions that showed a group bias, we 

compared the time-series of response between these regions within participants (Fig. 4B).  

These intra-subject correlations showed significant variation (range: 0.001 – 0.824).   To 

determine the similarity between regions, hierarchical clustering was performed on the data 

(Fig. 4C).  This shows that some regions showed more similar patterns of response than 

others.  For example, regions in the basal ganglia (accumbens, putamen and pallidum) were 

highly correlated with each other (r = 0.71 + 0.06).  Similarly, regions in cingulate cortex 

(anterior cingulate, posterior cingulate, paracingulate) also showed high correlations (r = 0.74 

+ 0.03).  However, much lower correlations were evident between these two groups of 

regions (r = 0.44 + 0.03). 

The strength of the correlations between regions did not always follow anatomical 

proximity.  For example, the correlation between the juxtapositional lobule and precentral 

gyrus (r = 0.73) was higher than the correlation between these regions and the neighbouring 

regions in the cingulate cortex (0.52 + 0.04). Similarly, the paracingulate and fronto-medial 

regions are anatomically proximal and also show group differences.   Nonetheless, the inter-

regional correlation between the paracingulate and the fronto-medial region was much lower 

(r=0.33) than between the more anatomically distant putamen (0.47) or insula (r = 0.52). 

Interestingly, not all regions showing a group bias showed strong interconnectivity.  For 
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example, the frontal medial region showed very low correlations with the other 13 regions 

(0.12 + 0.03). 

 

 

Figure 4 (A) Regions that showed higher within-group compared to between-group 

correlations.  (B) Intra-subject correlations in the time-courses of response for all regions 

that showed a higher within-group correlations. (C) Hierarchical clustering of the data 

showing regions that have similar time-courses of response. 
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Our final analysis compared the similarity of the spatial pattern of response across the 

55 regions at each time point.  For each participant, we correlated the spatial pattern of 

response across the 55 regions at each time-point with the corresponding spatial pattern of 

response in a different participant (Fig. 5A).  We then calculated a t-value for the within-group 

and between-group correlations across all time points for each group separately (Fig. 5B).  We 

then asked whether the pattern of t-values across time from the two groups was different.  

There was a significant negative correlation (r = -0.29, p<0.00001) showing that higher t-

values for one group coincided with lower t-values in the other group.  This demonstrates 

group differences in the spatial pattern of response across time. 

 

 

Figure 5 (A) Spatial patterns of response were compared by taking the response at each 

Region (55 regions of the Harvard-Oxford atlas) at one time-point from one individual and 

correlating this with the corresponding spatial pattern from a different individual from 
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either the same group (within-group, rw) or with an individual from a different group 

(between-group, rb). This process was repeated across all combinations of within- and 

between-group comparisons and a t-value calculated at each time-point. (B) The difference 

between the within-group and between-group comparisons in the spatial pattern at each 

time-point calculated independently for supporters of Manchester United (MUFC) and 

Chelsea (CFC). There was a significant negative correlation (r = -0.29, p<0.00001) between 

the time-course of t-values from the two groups, demonstrating a group difference in the 

spatial pattern of response across time. 
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DISCUSSION 

The aim of this study was to explore the neural correlates of social group bias during natural 

viewing.  Participants in each social group were supporters of rival football teams and the 

natural viewing scenario involved watching a movie of games between the two teams.  To 

determine group bias, we correlated the time-course of the neural response across 

participants.  High inter-subject correlations (ISC) were evident in sensory regions of the 

occipital and temporal lobe, but these ISC did not vary as a function of group membership.  In 

contrast, a number of frontal and subcortical regions showed significant group bias.  That is, 

the ISC in these regions were higher for participants from the same group compared to 

participants from different groups. 

 The central question in this study is whether the neural correlates of group bias occur 

at an early or late stage of processing.  In Hastorf and Cantril’s study (1954), they concluded 

that individuals from both groups had watched a totally different game.  However, it is not 

clear whether this difference was reflected in the way sensory information was represented 

or whether it reflected differences in the way the same sensory information was interpreted.  

We found the highest ISC in low-level and high-level visual areas in the occipital and temporal 

lobe.  The strong ISC shows that, despite the completely free viewing of dynamic and complex 

stimulus, individual brains responded in a similar way. These findings are consistent with 

previous studies using these methods, which have shown that the highest ISC occur in these 

regions (Hasson et al., 2004; Hasson et al., 2010).  However, in our study these regions did 

not show any within-group compared to between-group differences. This suggests that the 

sensory encoding of the stimulus was similar for both groups of participants.  In other words, 

they saw the same game.   
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 Regions that showed the greatest differences between groups were found in frontal 

and subcortical regions of the brain.  Presumably, these differences reflect the differences in 

the interpretation of the movie in the two groups. For example, positive parts of the movie 

for one group are interpreted as negative by the other group. The idea that group differences 

are reflected in regions of the brain involved in the interpretation and understanding of the 

movie is consistent with previous studies that compared ISC for movies that vary in their 

narrative structure.  For example, an unedited video of a concert, taken from a fixed viewpoint 

resulted in significant ISC in early visual and auditory areas, but little ISC in non-sensory 

regions of the brain (Hasson, Malach, & Heeger, 2010).  However, more wide-spread ISC are 

evident in frontal regions with stronger narrative structures (Golland et al., 2007; Hasson et 

al., 2010; Jaaskelainen et al., 2008).  The strong narrative structures presumably guide the 

interpretation of the movie in a way that is consistent across individuals. 

 Many of the regions that showed group bias have been implicated with the reward 

system (Haber & Knutson, 2010; Olds & Milner, 1954; Schultz, 2000). Although several brain 

regions are part of this circuit, the nucleus accumbens appears to play a central role.  

Interestingly, the region with the greatest group differences in our study was the nucleus 

accumbens.  Our findings are consistent with other studies that have shown group differences 

in the neural response of the nucleus accumbens (Cikara et al., 2011; Hein et al., 2010).  The 

reward network also includes regions such as the cingulate cortex, medial prefrontal regions, 

pallidum, thalamus, insula and the hippocampus (Haber & Knutson, 2010).  Many of these 

regions also showed a group bias in the current study.  The link between group differences 

and the brain’s reward system may explain the ease and rapidity with which humans form 

groups and favour in-group members (Tajfel, 1982; Turner et al., 1987)  
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Not all regions that showed group bias are directly involved in the reward system.  For 

example, regions that are typically associated with motor control such as the juxtapositional 

lobule (supplementary motor cortex) and the precentral gyrus also showed higher within-

group correlations. This fits with differences in the neural response of motor areas that are 

evident when observing the movements of in-group and out-group members (Avenanti, 

Sirigu, & Aglioti, 2010; Gutsell & Inzlicht, 2010).  This suggests that we experience the actions 

of in-group and out-group members differently.  The activation of motor regions during the 

perception of movement has been suggested as a mechanism by which people understand 

the intentions and emotions of others (de Waal & Preston, 2017).  Together, these results 

suggest that this mechanism may play a role in-group differences in behaviour.  We also found 

group differences in the insula (see Hein et al., 2010), frontal operculum and the hippocampus 

suggesting importance of affective processing and memory in group differences. 

To investigate how the network of areas showing a group bias were interconnected, 

we compared the time course of response between regions within participants (intra-subject 

correlation).  We found highly correlated responses among subcortical regions (nucleus 

accumbens, palidum, putamen) or among regions in cingulate cortex (anterior cingulate, 

posterior cingulate, paracingulate), but lower correlations between these groups of regions.  

The frontal medial region showed the lowest correlations with the other regions showing 

group differences.  Midline structures in the cingulate and medial frontal cortex are thought 

to play an important role in social cognition, particularly in the ability to attribute mental 

states to others (Blakemore, 2008; Frith, 2007).  These results suggest a dissociation in the 

processing within these regions. 
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There were a few regions that did not show any group differences despite the fact that 

they have been implicated in previous studies of group differences.  For example, previous 

studies have found group differences in the amygdala and the TPJ  (Cunningham et al., 2004; 

Hart et al., 2000; Phelps et al., 2000; Wheeler & Fiske, 2005; Van Bavel et al., 2008; Cheon et 

al., 2011; Freeman et al., 2010).  It is not clear why we did not find any group differences in 

these regions.   This may reflect the differences in paradigms between studies.  These studies 

typically involve tasks that involve making explicit judgements in relation to in-group or out-

group members. They also measure the magnitude of the neural response within individuals.  

In contrast, our paradigm attempts to immerse participants into a natural viewing 

environment that simulates a group experience, but without having to make any explicit 

judgement of the events.  Moreover, our method of analysis compares similarity in the time-

course of response across individuals. 

The final analysis investigated the spatial pattern of response across the brain at each 

time point. This was calculated separately for the two groups to generate a time-course of t-

values showing group differences in the spatial pattern of response across time. We 

compared these time-courses and found that there was a significant negative correlation.  

This shows that group differences in the spatial patterns of response occurred at different 

times in the two groups, which again demonstrates differences in the way that different parts 

of the video were interpreted. 

In conclusion, this study investigated the neural correlates of group differences during 

natural viewing.  We found that sensory regions in the occipital and temporal regions of the 

brain showed high inter-subject correlations.  However, these regions did not show any group 

differences.  In contrast, frontal and subcortical regions showed significant group differences.  
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The interactions between these regions suggests that group bias does not reflect a single 

mechanism, but rather a range of cognitive processes from the control of movement to social 

cognition and reward. 
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