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A B S T R A C T

The growing adoption of electric vehicles (EVs) presents an opportunity for repurposing end-of-life batteries for 
second life (SL) applications, such as energy storage systems. However, accurate estimation of the state of charge 
(SOC) remains critical for optimizing battery performance and extending operational life in these applications. 
This paper presents an in-depth investigation into the impact of advanced SOC estimation on the degradation and 
profitability of second-life EV batteries, utilising a Cluster-Based Learning Model (CBLM). An empirical degra
dation model is adapted to quantify how SOC estimation errors influence key battery health metrics, including 
capacity loss, State of Health (SOH), and energy retention. The study proposes the “energy advantage metric,” 
which quantifies the usable energy retained in SL batteries based on SOC estimation accuracy. Capacity loss 
analysis across various SL applications demonstrates that the CBLM model significantly reduces battery degra
dation compared to the Standard Long Short-Term Memory (S. LSTM) model, particularly under deep discharge 
cycles. These improvements in capacity retention are then translated into economic impact, revealing cost 
savings ranging from £339 in residential PV systems to over €200,000 in grid-scale energy arbitrage. t-Test 
confirmed significant differences in degradation performance between CBLM and S. LSTM models, with Cohen’s 
d effect size showing a small but meaningful effect size for Loss of Lithium Inventory (LLI) (d = 0.24).

1. Introduction

The global transition toward sustainable energy sources and the 
electrification of transportation are crucial in the fight against climate 
change. Governments worldwide, including the United Kingdom (UK), 
have implemented policies aimed at accelerating the adoption of electric 
vehicles (EVs) to reduce greenhouse gas emissions and meet climate 
targets [1]. To accelerate the adoption of electric vehicles (EVs) and 
phase out internal combustion engine (ICE) vehicles, the UK government 
has introduced a series of regulations and funding schemes. Notably, the 
UK’s Zero Emission Vehicle (ZEV) mandate has set ambitious targets for 
the automotive industry. This initiative has led to a significant rise in EV 
registrations and the development of an extensive EV infrastructure.

While the surge in EV adoption is crucial for reducing carbon emis
sions, it presents challenges in managing the lifecycle of EV batteries [2]. 
Lithium-ion batteries (LIBs), the primary energy storage technology in 
EVs, degrade over time, limiting their effectiveness in vehicular 

applications [3]. To address this issue, second-life (SL) applications for 
EV batteries have emerged as a promising solution, extending battery 
utility and offering economic and environmental benefits [4–7]. SLBs 
can be repurposed for various energy storage applications, such as grid 
services, residential and commercial photovoltaic (PV) integration, and 
fast EV charging stations [8]. These applications help stabilise the en
ergy grid while reducing the environmental footprint associated with 
battery production and disposal.

A key challenge in utilising SL batteries effectively is accurate State 
of Charge (SOC) estimation, which is critical for maximising perfor
mance and extending battery life. SOC estimation provides crucial in
formation on the available capacity of a battery, ensuring its safe and 
efficient operation by preventing overcharging and deep discharging. 
Poor SOC estimation can lead to premature battery degradation, nega
tively affecting both battery health and economic viability. Although 
extensive research has focused on improving SOC estimation, there re
mains a significant gap in understanding the direct impact of SOC 
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estimation errors on SL batteries.
Our previous work addressed the challenge of SOC estimation under 

diverse working conditions by introducing the Cluster-Based Learning 
Model (CBLM) [9]. The CBLM integrates clustering techniques with 
Long Short-Term Memory (LSTM) networks to improve the accuracy and 
adaptability of SOC estimation across various operational scenarios. 
However, while SOC estimation accuracy has been enhanced, there is 
still a lack of comprehensive framework that allows to quantify the 
tangible benefits of improved SOC estimation for second-life battery 
applications, particularly concerning long-term degradation and 
profitability.

By addressing the gaps identified in the literature, this study aims to 
provide a comprehensive assessment of how improved SOC estimation 
influences battery health and economic viability in SL applications.

The main contributions of this paper are that we: 

1. Adapted an empirical SL battery degradation model to incorporate 
SOC estimation errors, providing a novel framework for assessing the 
impact of estimation accuracy on battery health.

2. Proposed an “energy advantage metric” to quantify the impact of 
SOC estimation errors on battery performance. This metric enables a 
clear comparison of the usable energy retained across different SOC 
estimation methods, offering insights into their influence on long- 
term battery degradation in various SL applications.

3. Conducted a comprehensive economic impact assessment of 
enhanced SOC estimation accuracy in second-life battery scenarios, 
demonstrating substantial cost savings and improved profitability 
across various energy storage use cases.

4. Implemented a simulation-based investigation of the effect of esti
mation errors on battery degradation mechanisms under the Multi- 
Stage Constant Current (MSCC) charging protocol using the Python 
Battery Mathematical Modelling (PyBaMM) tool, providing insights 
into the electrochemical processes affected by SOC estimation 
inaccuracies.

2. Literature review

The repurposing of EV batteries for second-life applications has 
emerged as a promising strategy to enhance resource efficiency and 
promote environmental sustainability. SL batteries, derived LIBs that 
have reached the end of their automotive use, can still retain up to 80 % 
of their original capacity, making them suitable for less demanding 
energy storage applications [6]. These applications include grid ser
vices, renewable energy integration, residential and commercial Sys
tems, and fast EV charging stations [8,10,11].

Despite the potential benefits, several challenges hinder the wide
spread adoption of SLBs. Key among these are concerns regarding the 
lifespan, reliability, and profitability of SLBs in secondary applications 
[12,13]. Stakeholders are particularly apprehensive about the un
certainties associated with battery performance after varied first-life 
usage patterns, which can affect the predictability of SLBs in terms of 
degradation and economic returns.

Accurate SOC estimation is critical for both first-life and second-life 
batteries to ensure safe and efficient operation. However, in second-life 
applications, SOC estimation becomes an absolute necessity due to the 
increased variability in battery performance resulting from diverse 
usage histories and degradation states and reduced lifespan compared to 
first-life batteries [14]. This variability poses significant challenges to 
traditional SOC estimation methods, necessitating the development of 
techniques tailored to handle the complexities of SLBs.

Stakeholders’ concerns about the lifespan and profitability of SLBs 
are closely linked to SOC estimation accuracy. Inaccurate SOC estimates 
can lead to suboptimal battery utilization, increased degradation rates, 
and reduced overall efficiency. These issues can diminish the economic 
viability of SLBs, as premature battery failure or reduced performance 
can result in higher operational costs and lower returns on investment 

[15].

2.1. Importance of accurate SOC estimation

SOC estimation is vital for BMS as it provides real-time information 
on the available capacity, ensuring safe and efficient operation by pre
venting overcharging and deep discharging. While BMS systems tradi
tionally rely on voltage-based methods to estimate SOC to prevent 
overcharging or deep discharging, these methods have limitations. 
Voltage-based SOC estimation does not account for varying operational 
conditions or temperature fluctuations, both of which significantly in
fluence battery performance. This often results in inaccurate SOC pre
dictions, leading to suboptimal management decisions by the BMS to 
manage overcharging or excessive discharging, which can lead to 
accelerated degradation, reduced lifespan, and safety hazards [16].

Unlike battery parameters like voltage, current and temperature, 
measuring the current charge of the battery while its operating is chal
lenging, which necessitates utilising estimation methods instead [17]. 
Measurable battery parameters are of great help in terms of estimating 
SOC; yet understanding the relationship among battery parameters, 
including current, voltage, temperature, and SOC becomes a complex 
task due to the uncertainties in electrochemical and thermodynamic 
reactions lithium-ion batteries and their nonlinear dynamics [18]. M. A. 
Hannan et al. have discussed the challenges of SOC estimation in terms 
of operational conditions and states that since batteries in various ap
plications are not always performing in the same charge/discharge rate 
which significantly affects SOC estimation [19]. Batteries are signifi
cantly influenced by varying operational conditions such as charge/ 
discharge rates (C-rates) and ambient temperature. As previously re
ported in [20], at lower discharge rates, the impact of environmental 
temperature on battery performance is relatively minor. However, as 
discharge rates increase, the effects of temperature become more pro
nounced, with lower temperatures leading to diminished performance 
and higher temperatures enhancing it. This interplay between opera
tional conditions and environmental factors drastically varies battery 
behaviour adding further complexity to SOC estimation. Such variability 
highlights the need for adaptive SOC estimation methods capable of 
handling these dynamic conditions.

A wide range of SOC estimation methodologies have been explored, 
including Coulomb counting, model-based approaches, and data-driven 
models. Coulomb counting is the most straightforward method, inte
grating the current flow to estimate SOC [21]. Despite its simplicity, it 
accumulates substantial errors due to inaccuracies in sensor readings 
and initial SOC misestimations, particularly in long-term or varied 
operational conditions [22]. Model-based approaches, such as equiva
lent circuit models (ECMs) and the Extended Kalman Filter (EKF), 
leverage detailed mathematical models to simulate battery behaviour 
[16,23]. However, these methods depend heavily on accurate parameter 
identification and tend to falter under real-world conditions, where 
noise, non-linearities, and temperature variations undermine their per
formance. For example, EKF-based approaches assume Gaussian noise, 
which oversimplifies the complexity of real-world environments, lead
ing to estimation errors [24].

Data-driven models have earned significant attention for their 
adaptability and ability to capture non-linear battery behaviour [25]. 
Among these, neural networks, particularly Long Short-Term Memory 
(LSTM) networks, have emerged as highly effective for SOC estimation 
[25,26]. LSTM networks can model long-term dependencies and dy
namic battery behaviours without the need for complex feature engi
neering. Cui et al. [18,27] have emphasised the limitations of existing 
approaches that often rely on fixed charging and discharging currents, 
which do not accurately reflect actual battery usage. These observations 
suggest the need for models that can account for time-varying currents 
to enhance the applicability and accuracy of neural network methods in 
SOC estimation.

In response to the limitations of traditional SOC estimation models, 
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clustering-based learning approaches have emerged as a promising 
alternative. Our previous work introduced the Cluster-Based Learning 
Model (CBLM) [9], which leverages the strengths of LSTM networks and 
clustering techniques to enhance SOC estimation accuracy under diverse 
operational conditions. CBLM addresses the limitations of conventional 
models by segmenting the battery’s operational states into clusters, 
allowing for more targeted learning and improved prediction accuracy. 
However, while clustering-based models have demonstrated superior 
performance in reducing SOC estimation errors, their impact on battery 
degradation and economic outcomes in second-life applications has yet 
to be thoroughly explored.

2.2. Impact of SOC estimation errors

The relationship between SOC estimation accuracy and battery 
health, particularly capacity loss and degradation, is underrepresented 
in existing research. Many studies have suggested that accurate SOC 
estimation can significantly prolong battery life. For instance, [28] 
compares various ML algorithms for SOC estimation and mentions that 
accurate SOC estimation is essential for maximising the lifespan of LIB; 
however, the study does not show the impact of enhanced SOC on bat
tery life. Similarly, [29] states that SOC is an important indicator for 
evaluating a battery management system (BMS), which is crucial for the 
reliability, performance, and life management of a battery; however the 
paper solely explores the estimation errors reduction for the proposed 
Suboptimal Multiple Fading Factor Extended Kalman Filter (SMFEKF) 
algorithm without assessing the effect of enhanced SOC estimation on 
the performance and life management of the battery. Many of these 
studies often emphasise the potential benefits of enhanced SOC esti
mation techniques, including optimised charge cycles and reduced 
overcharging or deep discharging events [30–35]. However, despite the 
recognised importance of SOC estimation accuracy, there is a notable 
gap in the literature regarding the evaluation of SOC estimation errors 
on battery degradation. No study has comprehensively assessed how 
SOC estimation inaccuracies directly impact the lifespan of batteries.

Existing degradation models for LIBs typically focus on stress factors 
such as cycle depth, temperature, and charging rate, but they do not 
account for the role of SOC estimation errors in accelerating degradation 
[11,36–38]. To date, no comprehensive model integrates SOC estima
tion errors into degradation predictions, leaving a critical gap in un
derstanding how inaccuracies in SOC estimation contribute to capacity 
loss and other degradation mechanisms over extended cycles. This study 
addresses this gap by modifying an existing empirical degradation 
model to incorporate the effects of SOC estimation errors, providing a 
novel framework for evaluating their impact on SL health and 
performance.

While much of the existing research on SLB focuses on technical 
challenges like battery degradation and performance, there has been 
little attention paid to the economic implications of SOC estimation 
errors. Accurate SOC estimation plays a pivotal role in ensuring the 
economic viability of second-life applications, particularly in cost- 
sensitive sectors such as grid storage and residential PV integration. 
Inaccurate SOC predictions can lead to increased degradation, higher 
replacement costs, and reduced operational efficiency, all of which 
negatively impact profitability. However, no studies to date have thor
oughly explored the financial consequences of SOC estimation errors, a 
gap that this research aims to fill by conducting a comprehensive eco
nomic analysis alongside technical assessments.

3. Methodology

This section outlines the approach taken to assess the impact of SOC 
estimation errors on the degradation and profitability of SL EV batteries. 
The methodology comprises two primary sub-sections. In Section 3.1, 
we describe the adaptation of an empirical degradation model to 
incorporate SOC estimation errors and evaluate their influence on 

battery health and profitability. Section 3.2 investigates the degradation 
mechanisms associated with SOC estimation errors using PyBaMM [39].

3.1. Impact of SOC estimation on SL battery health and profitability

The empirical degradation model employed in this study is based on 
the work of [40] which models cyclic aging in SL batteries using three 
primary stress factors: cycle depth ΔSOC, mean charge level (SOCm) and 
charging rate (Crate). In this study, the model is further modified to 
incorporate the effects of SOC estimation errors. The modifications 
enable us to quantify the impacts of SOC inaccuracies on both battery 
health and economic viability. The following sections detail the model’s 
modifications and the simulation setup for various second-life battery 
applications.

3.1.1. Empirical degradation model
The cells used for the experiments are second life Li-NMC 18650 

format cells, with specifications listed in Table 1. The experimental 
setup involved cycling these cells under controlled conditions, 
measuring capacity loss over time to gather comprehensive aging data.

The derived empirical model is defined by the following equations: 

Qloss = aeσbQc (1) 

where, Qloss represents the capacity loss, a and b are empirically derived 
parameters from experimental data, Qc is the cumulative charge 
throughput and σ is aging effect due to stress factors and calculated as: 

σ = γ • δ (2) 

where, γ is a function of cycle depth and mean SOC and δ is a function of 
charging rate; these terms are calculated using Eq. (3) and Eq. (4)
respectively: 

γ =

(

r1(SOCm)
2
+ r2SOCm + r3 +

ΔSOC
100

)

(3) 

δ = α eβ|Crate | (4) 

where, r1, r2, r3, α and β are obtained by fitting the function to the 
experimental battery data.

The values of the derived parameters from data fitting are listed in 
Table 2.

3.1.2. Incorporation of SOC estimation errors
In real-world applications, SOC estimation errors have varying ef

fects on different operational aspects of LIBs. Therefore, the above
mentioned empirical model is modified to allow the assessment of 
impact of estimation models on battery degradation under varied 
operational conditions.

This study builds upon our two prior works that developed and 
evaluated the Cluster-Based Learning Model (CBLM) for enhanced SOC 
estimation. The first study introduced the CBLM, which combines k- 
means clustering with LSTM networks to enhance SOC estimation ac
curacy [9]. The clustering process groups battery operational data 
including current, voltage, temperature, and C-rate into clusters with 
homogeneous characteristics. Each cluster is assigned a dedicated LSTM 
model to capture the non-linear relationships among battery parameters 

Table 1 
SL battery cell specifications [41].

Battery specification Value

Cell format 18,650
Chemistry NMC/LMO
Nominal capacity (Qnom) 2.1 Ah
Maximum Crate 4.8
Cell nominal voltage (Vnom) 3.65 V
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more effectively. A real-time cluster assignment mechanism was intro
duced using the cluster proximity technique to assign the most appro
priate model in real time. Results demonstrated the superior 
performance of the CBLM compared to S. LSTM models in reducing SOC 
estimation errors [9]. To ensure a fair evaluation, we previously 
compared the CBLM with other clustering-integrated neural network 
methods, such as fuzzy c-means (FCM) clustering combined with LSTM 
networks. The results showed that the k-means CBLM provided more 
stable and accurate SOC estimation across various conditions, justifying 
its selection for this study. Specifically, when evaluating SOC estimation 
errors at 0 ◦C across different cluster sizes, k-means CBLM exhibited 
consistent performance with RMSE values remaining below 1 %, even at 
a higher cluster count (k = 6). In contrast, FCM CBLM demonstrated 
significant instability as cluster size increased, with RMSE increasing 
from approximately 0.66 % at k = 2 to over 4.7 % at k = 6. The second 
paper extended this evaluation by comparing the performance of the 
CBLM and S. LSTM model under varied ambient temperature conditions, 
providing insights into their robustness across diverse thermal envi
ronments [42]. Based on the previously demonstrated superiority of k- 
means CBLM over FCM CBLM, this study adopts k-means clustering for 
SOC estimation at 10 ◦C and 40 ◦C to evaluate its impact on degradation 
and profitability in second-life battery applications. In developing the 
CBLM, the dataset was partitioned into training (80 %) and testing (20 
%) sets, ensuring the 20 % test data includes varied operational battery 
conditions. We conducted ablation study to evaluate the importance of 
the features by removing one feature at a time to highlight the critical 
importance of each feature in the estimation outcome. Additionally, we 
conducted hyperparameters tuning and revealed the optimal configu
ration for the CBLM model are learning rate of 0.001, Adam optimiser, 
20 epochs, 1 LSTM layer and 50 neurons. Further details on the devel
opment of CBLM model can be found in [9,42].

The focus of this paper is different from these earlier studies [9,42]. 
Here, we quantify the impact of improved SOC estimation, achieved by 
the CBLM, on SLB degradation and lifespan. Specifically, we investigate 
how reducing SOC estimation errors affects battery health, performance, 
and economic feasibility.

For the current analysis, we utilise the root mean square error 
(RMSE) values of the models derived from this earlier research for 10 ◦C 
and 40 ◦C which are optimal ambient operating temperatures for LIBs. 
The RMSE values for the CBLM and the S. LSTM models are as presented 
in Table 3:

These RMSE values are incorporated into the degradation model to 
simulate the impact of SOC estimation errors on battery health and 
performance as follows: 

1. Adjusted cycle depth 
(
ΔSOCadj

)
(direct impact): SOC estimation er

rors directly influence the cycle depth, potentially leading to deeper 
charge-discharge cycles in practice. We account for this effect by 
adjusting the cycle depth with the root mean square error (RMSE) of 
the SOC estimation model

ΔSOCadj = ΔSOC+

(

ΔSOC •
RMSE
100

)

(5) 

This adjustment simulates the direct impact of SOC estimation 
inaccuracies on the battery’s charging protocol. 

2. Fluctuated mean SOC (SOC{f ,m}) (indirect impact): In this empirical 
model, SOCm represents the battery’s charge level during operation. 
This metric indicates whether the battery is operating near the top, 
bottom, or middle range of its charge capacity. The charge level is 
important because degradation rates vary depending on the SOC, 
with higher degradation typically occurring at the extreme high or 
low ends of the charge spectrum. Model the real-world implications 
of SOC estimation errors: The SOC estimation errors are modelled as 
a stochastic process, capturing the randomness and variability of 
real-time SOC estimation inaccuracies

SOC{f ,m} = SOCm +

(
RMSE
100

)

• N(0, 1) (6) 

Based on the integrated SOC estimation errors, the final aging effect 
equation is updated as shown below: 

σ =

(

r1
(
SOC{f ,m}

)2
+ r2SOC{f ,m} + r3 +

ΔSOCadj

100

)

•
(
α eβ|Crate |

)
(7) 

This modified model captures the long-term impact of SOC estima
tion errors on battery degradation and lifetime performance.

3.1.3. Case study: simulation setup
To evaluate the effects of SOC estimation errors, we simulate four 

different second-life application scenarios under specific operational 
conditions. These scenarios are detailed in Table 4 and include: 

– S0: This scenario simulates the second life battery cell providing 
ancillary services to the electrical grid, such as frequency regulation 
and load balancing. Batteries need to respond quickly to changes in 
grid demand, which requires high power output and frequent, 
shallow discharge cycles. These services help maintain grid stability.

Table 2 
Degradation model parameters [40].

Model parameter Setting

a 0.0190
b 0.0090
r1 1.5365 × 10− 4

r2 − 1.5365 × 10− 2

r3 0.3841
α 0.8277
β 0.3904

Table 3 
RMSE for CBLM and S. LSTM models at different ambient temperatures.

Ambient temperature. Model RMSE (%)

40 ◦C CBLM 3.22
S. LSTM 6.21

10 ◦C CBLM 0.95
S. LSTM 3.62

Table 4 
Scenarios of SL applications under investigation.

Scenario Application Crate ΔSOC 
(%)

Daily 
operation/ 
years

Description

S0 Grid services 4 30 20/1.5

S1 Commercial and 
residential PV 
integration

2 60 3/7

S2 Fast EV charging 
stations

4 80 2/3

S3 Grid scale energy 
arbitrage

2 80 2/7

* is representative of power demand, is representative of depth of cycle.
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– S1: This scenario represents the integration of second-life EV batte
ries with PV systems in commercial and residential settings. The 
batteries store excess solar energy generated during the day and 
discharge it during peak demand periods. This scenario involves 
moderate power output and relatively deep discharge cycles to 
maximise the use of stored solar energy.

– S2: This scenario focuses on the use of second-life batteries in fast 
charging stations for EVs. The batteries provide high power output to 
charge EVs quickly, supporting rapid charging protocols. This in
volves high C-rates and deep discharge cycles to meet the fast- 

changing requirements, which are essential for reducing EV 
charging times and improving user convenience.

– S3: This scenario simulates using second-life EV batteries for grid- 
scale energy arbitrage, where batteries charge during periods of 
low electricity prices (off-peak) and discharge during periods of high 
electricity prices (peak) in the wholesale market. This involves 
moderate power output and deep discharge cycles to maximise 
economic returns by leveraging price differentials in the electricity 
market.

An algorithm was developed to simulate the effect of SOC estimation 
errors on battery degradation over a long term under different opera
tional scenarios with the steps involved in the simulation are presented 
in the pseudocode as Algorithm 1. The algorithm begins by initialising 
the model parameters, including those derived from experimental data, 
as outlined in Section 3.1.1. It then iterates over various models (CBLM 
and S. LSTM in this case) and application scenarios (described in 
Table 4) to simulate the battery’s operational life. The analysis considers 
two ambient temperature conditions: 40 ◦C and 10 ◦C, as these fall 

within the optimal performance range for lithium-ion batteries. For each 
scenario, the algorithm adjusts the SOC and other stress factors based on 
SOC estimation errors, following the modified equations introduced 
earlier (Eqs. 5–7). The simulation proceeds by calculating the degrada
tion effects over the battery’s lifespan, updating the SOH and Qc 
accordingly. 

Algorithm 1. Pseudocode for the simulation of battery degradation in 
the context of SOC estimation models.  

3.1.4. Energy advantage metric and economic analysis
The energy advantage represents the additional usable energy pre

served by the CBLM model compared to the S. LSTM model over the 
battery’s lifetime. It is calculated by first converting the advantage in 
ampere-hours (Ah) to kilowatt-hours (kWh) as follows: 

Energyadv (kWh) = Energyadv (Ah)×Vnom ×10− 3 (8) 

This conversion allows the energy advantage to be expressed in 
practical terms, suitable for evaluating its economic impact across bat
tery energy storage systems (BESS) applications.

For the economic analysis, the energy advantage is scaled to repre
sent realistic BESS capacities for each application scenario, ranging from 
residential PV systems (30 kWh) to grid-scale energy arbitrage (20 
MWh). The number of battery cells required to meet the target BESS 
capacity is determined by: 

Cellscount =
BESStarget (kWh)
Energyadv (kWh)

(9) 

This scaling approach allows us to estimate the total energy savings 
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and the subsequent economic impact across different BESS configura
tions in various applications.

The economic analysis was conducted specifically for scenarios S1 to 
S3, where the market dynamics are well-defined. S0, which involves grid 
services, was excluded from the economic simulation due to the 
complexity of modelling the economic returns, which heavily depend on 
contractual agreements between BESS owners and the grid operators.

3.2. Impact of SOC estimation on degradation mechanisms

This section details the methodology used to simulate the effects of 
SOC estimation errors on key degradation mechanisms in lithium-ion 
batteries. The simulation was carried out using the Python PyBaMM 
tool, employing the Doyle-Fuller-Newman (DFN) model, which is widely 
accepted for simulating detailed electrochemical processes in batteries 
[43–45]. The degradation model parameters were drawn from [37] to 
ensure accurate representation of electrochemical dynamics in lithium- 
ion batteries. The simulation investigates three primary degradation 
metrics: Loss of Lithium Inventory (LLI), Negative Electrode Porosity 
(NEP), and Loss of Active Material (LAM). These degradation mecha
nisms were chosen because they are critical to understanding long-term 
battery health and performance. LLI and LAM directly affect capacity 
fade and performance decline, as highlighted in [38]. Additionally, ac
cording to [46] NEP plays a major role in aging processes at electrode 
interfaces, significantly influencing ion transport and internal resistance 
which is often overlooked in traditional aging models but essential for a 
comprehensive understanding of degradation.

3.2.1. Incorporating SOC estimation errors into the DFN model
To evaluate the impact of SOC estimation errors on battery degra

dation, the DFN model was modified to account for deviations in SOC 
caused by estimation inaccuracies. These deviations influence the bat
tery’s charge-discharge voltage cutoffs, leading to either overcharging 
or deeper discharging, both of which accelerate battery degradation. 
SOC errors were incorporated into the model by adjusting the voltage 
thresholds which define the transitions between different SOC levels 
during charging and discharging cycles: 

Vadj = Vthreshold ±

(

ΔV •
RMSE
100

)

(10) 

Where, Vadj is the adjusted voltage cutoff for SOC transitions, Vthreshold 

is the voltage associated with a specific SOC transition (e.g., moving 
from 25 % SOC to 50 % SOC), ΔV is the nominal voltage range for the 
battery under study — 1.7 V and RMSE is the SOC estimation error of the 
models. The voltage adjustment reflects the magnitude of SOC estima
tion errors, leading to deviations in the charging or discharging cycles. 
For instance, if the SOC is inaccurately estimated, the battery might 
discharge to a lower SOC than intended or overcharge beyond its 
optimal SOC, which accelerates degradation.

3.2.2. MSCC protocol
The charging process was simulated using an SOC-based MSCC 

protocol, designed to represent advanced charging patterns that has 
shorter charging time than traditional charging methods. The MSCC 
protocol divides the charging process into stages with different C-rates 

and SOC thresholds. To incorporate SOC estimation errors, the SOC 
transition points were adjusted based on the SOC errors from the CBLM 
and S. LSTM. The c-rate for each stage and the respective SOC transition 
is based on [47] and described in Table 5.

This protocol was executed for 800 cycles to observe the impact of 
SOC estimation errors on battery degradation over an extended period.

3.2.3. Degradation metrics and statistical analysis
To capture the effects of SOC estimation errors on battery health, we 

tracked three key degradation metrics LLI, NEP and LAM.
LLI: This metric quantifies the percentage of lithium lost relative to 

the initial lithium inventory. Higher lithium loss indicates increased 
degradation, leading to reduced capacity and efficiency of the battery.

NEP: This metric measures the porosity of the negative electrode, 
indicating the fraction of the electrode volume occupied by pores. 
Porosity affects ion transport within the battery. Lower porosity values 
suggest higher degradation, resulting in poorer ion transport.

LAM: This metric represents the percentage loss of active material in 
the electrode, which participates in electrochemical reactions during 
charging and discharging. Loss of active material is a direct indicator of 
degradation, reducing the battery’s capacity and lifespan.

To further analyse the effect of SOC estimation errors on battery 
degradation, detailed statistical analysis was conducted to confirm the 
significance of differences observed across the degradation metrics and 
quantify the practical implications of these findings. The following were 
the steps taken to conduct the statistical analysis: 

1. We resampled the degradation data 1000 times to generate distri
butions of the means for both CBLM and S. LSTM models. This was 
conducted due to the complex, non-linear nature of physics-based 
PyBaMM models, which involve stochastic processes and sensitive 
parameters, making the underlying data distribution difficult to 
predict. Bootstrapping allows robust statistical inferences without 
assuming a known distribution, ensuring reliability in this context.

2. To determine the appropriate statistical test to use for this analysis, 
the Shapiro-Wilk (SW) test was used to assess the normality of the 
bootstrap distributions for each metric. The Null Hypothesis (H0): 
The data follows a normal distribution. If the p-value of computed 
SW test is <0.01, the null hypothesis is rejected, meaning that the 
data does not follow a normal distribution and hence t-test cannot be 
used.

3. For metrics where the Shapiro-Wilk test indicated normal distribu
tion (p-value ≥ 0.01) for both CBLM and S. LSTM models, the inde
pendent two-sample t-test was employed. The t-test is a parametric 
test used to compare the means of two independent groups, assuming 
that the data is normally distributed. It assesses whether the means of 
two groups are statistically significantly different from each other. 
The Null Hypothesis (H0): There is no significant difference between 
the means of the degradation metric for CBLM and S. LSTM models.

4. To quantify the magnitude of the differences between the models, 
Cohen’s d effect size was calculated for each metric. This provides 
practical significance of the differences between the models [48], 
complementing the statistical significance determined by the hy
pothesis tests. According to [49], a commonly used interpretation of 
Cohen’s d values is 0.2 is small effect, 0.5 has medium effect and 0.8 
has large effect.

4. Results and discussion

This section presents the results of the simulations and analyses 
conducted to assess the impact of SOC estimation errors on the degra
dation and profitability of SL LIBs. The findings are organised into two 
main subsections: (Section 4.1) the impact of SOC estimation on SL 
battery health and profitability, and (Section 4.2) the impact of SOC 
estimation on degradation mechanisms.

Table 5 
SOC-based MSCC charging protocol implemented for simulation.

Stage. Protocol

Charge Stage 1 Charge at 1.4 C until 25 % + SOC error
Charge Stage 2 Charge at 1 C until 50 % + SOC error
Charge Stage 3 Charge at 0.7 C until 75 % + SOC error
Charge Stage 4 Charge at 0.4 C until 100 % + SOC error
Rest 1 Rest for 1 h
Discharge Discharge at 1 C until 0 % − SOC error
Rest 2 Rest for 1 h
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4.1. Impact of SOC estimation on SL battery health and profitability

4.1.1. Capacity loss across scenarios
The simulation results demonstrate that the CBLM consistently re

sults in lower capacity loss and higher final SOH compared to the S. 
LSTM model across all scenarios and temperatures. Table 6 summarises 
the energy advantage of the CBLM over the S. LSTM model in terms of 
additional ampere-hours (Ah) preserved and the corresponding SOH 
differences.

In Scenario S0, which simulates providing ancillary services to the 
electrical grid through frequent shallow cycling, the CBLM model 
demonstrated a significant reduction in capacity loss compared to the S. 
LSTM model as evident in Fig. 1. Specifically, the energy advantage, the 
additional capacity preserved by the CBLM model is: 

• At RMSE difference of 2.99 % (from 6.21 % to 3.22 % at 40 ◦C): 
energy advantage of 39.74 Ah, resulting in a final SOH difference of 
5.41 %.

• At RMSE difference of 2.67 % (from 3.62 % to 0.95 % at 10 ◦C): 
energy advantage of 31.66 Ah, with a final SOH difference of 3.66 %.

The SOH difference represents the percentage point difference in the 
final SOH between the CBLM and S. LSTM models at the end of the 
simulation. The results indicate that even modest improvements in SOC 
estimation accuracy (reflected by the RMSE differences) can lead to 
substantial reductions in capacity loss in applications involving frequent 
shallow cycles.

In Scenario S1, involving moderate power output and deeper 
discharge cycles typical of PV integration, the energy advantage of the 
CBLM model is shown in Fig. 2: 

• At RMSE difference of 2.99 % (40 ◦C): 47.60 Ah, with an SOH dif
ference of 3.53 %.

• At RMSE difference of 2.67 % (10 ◦C): 37.68 Ah, with an SOH dif
ference of 3.22 %.

As shown in Fig. 2, the deeper discharge cycles amplified the effects 
of SOC estimation errors emphasised by the larger green area. The 
deeper discharge cycles amplify the effects of SOC estimation errors. 
Inaccurate SOC estimates can lead to over-discharge or overcharge, 
accelerating degradation. The CBLM model’s enhanced accuracy miti
gates these risks, preserving battery health more effectively than the S. 
LSTM model.

Fig. 3 demonstrates the performance of the battery under S2, char
acterised by high C-rates and deep discharge cycles associated with fast 
EV charging, the CBLM model achieves: 

• At RMSE difference of 2.99 % (40 ◦C): Energy advantage of 21.66 Ah, 
with an SOH difference of 4.35 %.

• At RMSE difference of 2.67 % (10 ◦C): Energy advantage of 17.04 Ah, 
with an SOH difference of 3.38 %.

Fast charging imposes significant stress on batteries. SOC estimation 
errors in this context can lead to operating the battery outside safe 
voltage limits, increasing the risk of thermal runaway and accelerated 
degradation. The CBLM model’s superior accuracy reduces these errors, 
enhancing safety and battery longevity.

In Scenario S3, involving extensive cycling to exploit electricity price 
differentials, the CBLM model exhibits the largest energy advantages 
across all scenarios as illustrated in Fig. 4: 

• At RMSE difference of 2.99 % (40 ◦C): 65.20 Ah, with an SOH dif
ference of 5.66 %.

• At RMSE difference of 2.67 % (10 ◦C): 50.87 Ah, with an SOH dif
ference of 4.50 %.

The results consistently demonstrate that the CBLM model out
performs the S. LSTM model in preserving battery capacity and SOH 
across all scenarios. The energy advantages and SOH differences corre
late with the RMSE differences between the models, highlighting the 
impact of SOC estimation accuracy on battery degradation.

The findings suggest that: 

• Higher RMSE differences lead to greater energy advantages: The 
larger the disparity in SOC estimation errors between the models, the 
more pronounced the benefits of the CBLM model.

• Applications involving deep discharge cycles are more sensitive to 
SOC estimation errors: Scenarios S1 and S3 show larger energy ad
vantages and SOH differences, emphasizing the importance of ac
curate SOC estimation in these contexts.

4.1.2. Impact of SOC estimation on SL profitability
The energy advantages obtained through improved SOC estimation 

were converted to kilowatt-hours (kWh) using Eq. (8) to assess the 

Table 6 
Energy advantage and final SOH difference between CBLM and S. LSTM models 
across various scenarios.

Scenario Temperature 
(◦C)

Energy advantage of CBLM 
over S. LSTM (Ah – cycles)

SOH difference 
(CBLM − S. LSTM) 
(%)

S0 40 ◦C 39.74 5.41
10 ◦C 31.66 3.66

S1 40 ◦C 47.60 3.53
10 ◦C 37.68 3.22

S2 40 ◦C 21.66 4.35
10 ◦C 17.04 3.38

S3 40 ◦C 65.20 5.66
10 ◦C 50.87 4.50

Fig. 1. Comparison of CBLM and S. LSTM estimation impact on second-life 
battery degradation under S0.
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economic implications across different application scenarios. The anal
ysis focuses on scenarios S1 to S3, where market dynamics allow for 
quantifiable financial impacts. The economic savings achieved by using 
the CBLM model over the S. LSTM model are summarised in Table 7 for 
scenarios S1 and S2, and in Table 8 for S3 across different countries.

In scenario S1, second-life batteries are integrated with residential 
and commercial photovoltaic (PV) systems to store excess solar energy 
generated during periods of high irradiance. This stored energy is used 
during low or no sunlight periods, reducing reliance on grid electricity 
and avoiding purchases during peak pricing periods. The economic 
analysis employs a differential pricing model with peak and off-peak 
electricity rates set at £0.35/kWh and £0.20/kWh [50], respectively. 
For residential applications with a BESS capacity of 30 kWh, the CBLM 
model yields additional savings of £378 at 40 ◦C and £299 at 10 ◦C, 
averaging £339 over the battery’s lifetime. These savings are directly 
attributed to the improved SOC estimation accuracy of the CBLM model, 
which enhances battery health preservation and allows for greater uti
lization of stored solar energy. In commercial applications with a BESS 
capacity of 1000 kWh, the economic impact is more pronounced. The 
CBLM model results in savings of £12,586 at 40 ◦C and £9969 at 10 ◦C, 
averaging £11,278. The substantial cost reduction is due to the model’s 
ability to maintain battery health more effectively over time, enabling 
increased energy storage capacity and reducing peak-period grid 

electricity purchases.
Scenario S2 examines the economic impact of advanced SOC esti

mation in fast EV public charging services, comparing rapid charging 
stations (50 kW) and ultra-fast charging stations (150 kW). The pricing 
model is based on current market tariffs, with rates set at £0.77/kWh for 
rapid charging and £0.83/kWh for ultra-fast charging [51].

For rapid charging stations, the CBLM model achieves additional 
savings of £880 at 40 ◦C and £692 at 10 ◦C, averaging £786. In ultra-fast 
charging stations, the savings increase to £2869 at 40 ◦C and £2257 at 
10 ◦C, averaging £2563.

In S3, a 20 MWh BESS was used for grid-scale energy arbitrage across 
various European countries, utilising historical hourly wholesale elec
tricity price data from European Network of Transmission System Op
erators for Electricity (ENTSO-e) and applying a commercial dynamic 
day-ahead pricing model [52]. The calculation of economic savings 
was based on factoring in daily minimum and maximum electricity 
prices to assess the profitability of using the CBLM over the S. LSTM 
model. The CBLM model’s energy advantage was first determined by 
calculating the difference in daily retained usable energy between the 
two SOC estimation models. This energy advantage was then scaled to 
represent the target BESS capacity (20 MWh) and factored into the daily 
electricity price variations to compute the additional revenue generated 
by the price differentials. The pricing model considered the BESS to 

Fig. 2. Comparison of CBLM and S. LSTM estimation impact on second-life battery degradation under S1.
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charge during lowest hourly price (off-peak) and discharge during the 
highest (peak), maximising the profit from energy arbitrage.

The economic savings from using the CBLM model over the S. LSTM 
model were significant as shown in Table 8. The table highlights the 
savings at the two temperature points, reflecting the differences in SOC 
estimation errors:

At RMSE difference of 2.99 % (40 ◦C), Germany saw the highest 
additional savings of EUR 231,172, while Austria followed with EUR 
216,519.

At RMSE difference of 2.67 % (10 ◦C), savings remained substantial 
but slightly lower, with Germany at EUR 178,132 and Austria at EUR 
166,705.

These small RMSE differences, between 2.67 % and 2.99 %, led to 
noticeable changes in the savings. Even modest improvements in SOC 
estimation accuracy resulted in significant economic benefits, under
lining the importance of reducing SOC errors for maximising profit
ability in SL battery applications.

The substantial savings achieved with the CBLM model enhance the 
economic viability of grid-scale energy storage systems. Operators can 
maximise revenue by efficiently exploiting price differentials without 
incurring excessive degradation costs. The variation in average savings 
between countries shown in Fig. 5 reflects the differences in electricity 
market dynamics, price fluctuation and overall energy demand patterns. 

Germany and Austria show the highest potential for savings, likely due 
to their more volatile electricity markets and higher price differentials 
between peak and off-peak periods.

These results emphasise the potential for advanced SOC estimation 
models like CBLM to significantly enhance the economic viability of 
grid-scale energy storage systems, potentially improving the integration 
of renewable energy sources and contributing to more stable and effi
cient electricity grids across Europe.

4.1.3. Discussion on battery health and economic implications
The results highlight the critical relationship between SOC estima

tion accuracy and both battery health and economic performance in SL 
applications. Key observations include: 

• Even small improvements in SOC estimation accuracy (as indicated 
by RMSE differences of approximately 2.67 % to 2.99 %) can lead to 
substantial reductions in capacity loss and significant economic 
benefits.

• Applications involving deeper discharge cycles (S1 and S3) and high 
C-rates (S2) are more sensitive to SOC estimation errors, resulting in 
greater benefits from improved SOC estimation accuracy.

• The financial savings across scenarios justify the investment in 
advanced SOC estimation techniques like the CBLM model.

Fig. 3. Comparison of CBLM and S. LSTM estimation impact on second-life battery degradation under S2.

M.K. Al-Alawi et al.                                                                                                                                                                                                                            Journal of Energy Storage 117 (2025) 116071 

9 



4.2. Impact of SOC estimation on degradation mechanisms

4.2.1. Degradation metrics analysis
The simulation results highlight the impact of SOC estimation errors 

on key battery degradation metrics over 800 cycles. Fig. 6 presents a 
comparison of key degradation metrics, LLI, NEP, and LAM between the 
CBLM and S. LSTM models, focusing on the final portion of the simu
lation. The comparison between CBLM and S. LSTM models provides 
insights into the extent of degradation caused by different SOC 

estimation accuracies.
The LLI plot (a) shows a clear divergence between the CBLM and S. 

LSTM models in the later stages of the simulation. The CBLM model 
consistently results in lower LLI than the S. LSTM model. This suggests 
that the CBLM model’s superior SOC estimation significantly reduces the 
stress on the battery during charge-discharge cycles, thereby minimising 
lithium inventory loss,. The regular cycling pattern seen in both models 
reflects repeated charge-discharge cycles, but the S. LSTM model expe
riences deeper LLI peaks, indicating more severe degradation due to SOC 
estimation errors.

NEP follows a similar cyclic pattern as LLI, with the CBLM model 
again showing less degradation. Although NEP is less sensitive to SOC 
estimation errors compared to LLI, the periodic fluctuations suggest that 
SOC inaccuracies lead to increased electrode stress over time, particu
larly in the S. LSTM model. By the end of the simulation, the S. LSTM 
model exhibits more pronounced electrode porosity reduction, while the 
CBLM model manages to mitigate this effect. This could have long-term 
implications for battery efficiency, as electrode porosity affects ion 
transport and overall performance.

The LAM plot displays a gradual but steady increase in material loss, 
with the S. LSTM model exhibiting higher degradation levels. The 
widening gap between the two models in this late phase of the simula
tion indicates that active material loss is directly impacted by SOC 
estimation accuracy. The CBLM model preserves more active material, 
which is critical for maintaining battery capacity and electrochemical 
performance over time. This is particularly relevant for second-life ap
plications, where active material preservation can extend the battery’s 
usable life.

The cumulative LLI plot underscores the importance of SOC esti
mation accuracy in the final stages of battery life. Both models exhibit a 
steep increase in cumulative LLI, but the CBLM model consistently ac
cumulates less lithium loss than the S. LSTM model. This trend becomes 
especially pronounced as cycling progresses, emphasizing that SOC 
estimation errors compound over time. As second-life batteries are 
typically used in these later cycles, this difference highlights the critical 
role of advanced SOC estimation (such as that employed by the CBLM 
model) in extending battery lifespan.

4.2.2. Statistical analysis of degradation metrics
The Shapiro-Wilk (SW) test confirmed that the data for LLI, NEP, and 

LAM followed a normal distribution, allowing for parametric statistical 
analysis as shown in Table 9.

Fig. 7 shows the t-test results for three degradation metrics LLI, NEP, 
and LAM, comparing the CBLM and S. LSTM models. All metrics exhibit 
statistically significant differences, with particularly strong deviations 
observed in LLI and LAM, as indicated by the large magnitude of their t- 
statistics. This suggests that the choice between these models can have a 
considerable impact on degradation predictions, especially for these two 
metrics.

To further quantify the magnitude of these differences, Cohen’s 
d was calculated and presented in Fig. 8, showing that: 

• LLI had a small effect size above 0.2, suggesting a meaningful dif
ference between the two models in terms of lithium inventory loss.

• In contrast, NEP and LAM showed trivial effects, indicating that the 
practical significance of SOC estimation on these metrics is less 
pronounced.

The cumulative sum analysis, depicted in Fig. 9, demonstrates a 
comparison of the rate at which LLI, NEP, and LAM accumulate over 
time. The steeper gradient observed in the cumulative sum of LLI, 
particularly in the later cycles, clearly demonstrates that LLI is the 
fastest-accumulating degradation factor among the three metrics. While 
all metrics initially exhibit similar rates of increase, LLI rapidly diverges 
as cycling progresses, suggesting that Loss of Lithium Inventory is the 
dominant degradation mechanism over time.

Fig. 4. Comparison of CBLM and S. LSTM estimation impact on second-life 
battery degradation under S3.

Table 7 
Economic savings achieved by CBLM over S. LSTM across S1 and S2.

Scenario. Service 40 ◦C 10 ◦C Average 
saving

S1 Residential PV BESS (30 kWh) £378 £299 £339
Commercial PV BESS (1000 
kWh)

£12,586 £9969 £11,278

S2 Rapid (50 kW) £880 £692 £786
Ultra-fast (150 kW) £2869 £2257 £2563

Table 8 
Economic savings achieved by CBLM over S. LSTM across S3.

Scenario. Country 40 ◦C 10 ◦C Average Saving

S3 
(20 MWh 
BESS)

Austria EUR 
216,519

EUR 
166,705

EUR 
191,612.32

Italy EUR 
169,555

EUR 
130,750

EUR 
150,152.71

Germany EUR 
231,172

EUR 
178,132

EUR 
204,652.31

Portugal EUR 
102,039

EUR 78,821 EUR 90,430

Spain EUR 
103,847

EUR 80,225 EUR 92,036
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This is particularly critical when considering the operational lifespan 
of SL batteries, which are employed in the later stages of a battery’s life. 
As second-life batteries are exposed to additional cycling, the degrada
tion mechanism shifts more heavily toward LLI accumulation. The faster 

rate of LLI loss suggests that advanced SOC estimation methods, such as 
those employed by the CBLM model, become increasingly important in 
these later cycles.

Fig. 5. Additional economic savings for SL batteries under S3 for using CBLM over S. LSTM.

Fig. 6. Comparison of degradation metrics between CBLM and S. LSTM models.
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5. Wider implications for the energy ecosystem

The findings of this study have significant implications for the energy 

ecosystem, particularly in optimizing the use of SL EV batteries. By 
demonstrating that improved SOC estimation through CBLM reduces 
battery degradation and enhances economic viability, this research 
provides actionable insights for stakeholders in energy storage, grid 
management, and renewable energy integration.

The study proves that accurate SOC estimation directly affects the 
longevity and performance of SL batteries. With the CBLM reducing 
capacity loss and maintaining higher SOH across various applications, 
operators can extend the service life of SL batteries. This prolongation 
maximises the return on investment for battery assets and also delays the 
environmental impact associated with battery disposal and 
manufacturing of new units.

The study demonstrates that advanced SOC estimation leads to sig
nificant economic benefits by reducing operational costs and extending 
battery life. This improved economic viability makes SL battery 

Table 9 
SW normality test.

Degradation 
meric

CBLM 
p- 
value

S. 
LSTM 
p-value

H0 Follow normal 
distribution?

LLI 0.7059 0.9228 Fail to 
reject

Yes

NEP 0.7306 0.4620 Fail to 
reject

Yes

LAM 0.4137 0.9574 Fail to 
reject

Yes

Fig. 7. t-Statistics of degradation metrics (LLI, NEP, and LAM) comparing the CBLM and S. LSTM models.

Fig. 8. Cohen’s d effect size for LLI, NEP, and LAM comparing CBLM and S. LSTM models.
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solutions more attractive to stakeholders, encouraging investment and 
adoption in various sectors. Furthermore, as SLBs become more 
economically viable through advanced SOC management, the scalability 
of SLB solutions in different sectors becomes more attractive. This 
scalability can accelerate the deployment of energy storage systems, 
promoting wider use of SL batteries in applications ranging from resi
dential energy storage to grid-scale systems.

In applications like grid services (Scenario S0), where batteries 
perform frequent shallow cycles for ancillary services, the reduced 
degradation offered by the CBLM means that batteries can operate 
reliably over longer periods. This reliability is crucial for maintaining 
grid stability, especially as the grid incorporates more intermittent 
renewable energy sources.

For residential and commercial PV systems (Scenario S1), the 
enhanced SOC estimation enables better energy management, allowing 
users to store excess solar energy more efficiently and use it during peak 
demand times. The study quantified significant economic savings, which 
can incentivise more consumers and businesses to adopt solar plus 
storage solutions. This, in turn, supports broader renewable energy 
adoption by making it more economically attractive.

In the context of fast EV charging stations (Scenario S2), accurate 
SOC estimation reduces the risk of battery overuse and overheating, 
which are critical concerns at high C-rates. By mitigating these risks, 
charging station operators can offer more reliable and safer services, 
encouraging EV adoption by alleviating range anxiety and reducing 
charging times. This improvement supports the expansion of EV infra
structure, a key component in reducing transportation-related 
emissions.

The research showed that in grid-scale energy arbitrage (Scenario 
S3), the CBLM leads to substantial financial gains by preserving more 
usable energy and reducing degradation-related losses. Energy storage 
operators can capitalize on electricity price differentials more effec
tively, enhancing the profitability of energy trading activities. This 
economic incentive can drive further investment in large-scale battery 
storage systems, contributing to grid flexibility and stability.

By extending the effective lifespan of SL batteries, the study’s find
ings contribute to resource conservation. Less frequent battery re
placements mean reduced demand for raw materials like lithium and 
cobalt, lowering the environmental footprint of battery production. 
Additionally, prolonged battery life reduces waste and the burden on 
recycling systems, aligning with circular economy principles and sus
tainability goals.

The demonstrated benefits of advanced SOC estimation suggest a 
need for supportive policies and regulations. Policymakers could 
consider setting standards for SOC estimation accuracy in battery 
management systems or providing incentives for adopting technologies 
like the CBLM. Such measures could accelerate the integration of effi
cient SL batteries into the energy ecosystem, amplifying the positive 
impacts identified in this study.

6. Conclusion

This study critically examined the impact of advanced SOC estima
tion methods on the degradation and profitability of second-life electric 
vehicle batteries, specifically focusing on the performance of CBLM 
compared to S. LSTM model. The research demonstrated that more ac
curate SOC estimation can substantially mitigate battery degradation 
and offer financial benefits across various SL applications including grid 
services, residential and commercial PV integration, fast EV charging 
stations, and grid-scale energy arbitrage. We adapted an empirical 
degradation model for SL batteries, integrating SOC estimation errors 
into the degradation metrics. The modified degradation model accu
rately captured the electrochemical stress induced by SOC estimation 
inaccuracies, thus allowing for a more precise prediction of battery 
degradation over time. The results from the four operational SL sce
narios clearly showed that SOC estimation errors lead to significant 
deviations in battery degradation rates, especially under deep discharge 
cycles. Additionally, we introduced the “energy advantage metric,” 
which provides a quantitative comparison of the usable energy retained 
across different SOC estimation models. The CBLM consistently 
demonstrated higher energy advantage, with advantages ranging from 
21.66 to 65.20 Ah-cycles depending on the application. Furthermore, 
the economic impact investigation using the energy advantage com
parison across the SOC estimation models, showed that improved SOC 
estimation led to significant cost savings, with mean savings ranging 
from £339 in residential PV systems to over EUR 200,000 in grid-scale 
energy arbitrage. Which underscores the economic viability of inte
grating advanced SOC estimation models in SL battery applications, 
where even small improvements in SOC accuracy translate into signifi
cant financial benefits over time. Results of PyBaMM simulations on the 
effects of SOC estimation errors on key degradation mechanisms such as 
LLI, NEP and LAM demonstrated that the CBLM model significantly 
reduced LLI and LAM compared to the S. LSTM model, with statistical 
tests confirming the magnitude of these improvements. The findings 

Fig. 9. Cumulative normalised sum of LLI, NEP and LAM for the CBLM model over 800 cycles.
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emphasise that SOC estimation errors compound over time, accelerating 
battery degradation. Future research work could focus on implementing 
the proposed framework under varied real-world charging and dis
charging duty cycles, as this study used static predefined charging sce
narios. Additionally, future research could expand on this work by 
assessing the degradation impact of various SOC estimation models 
using the proposed framework developed in this study. This includes 
investigating the performance of other deep learning-based models and 
hybrid architectures, as well as exploring the potential of alternative 
clustering-based SOC estimation models.
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