
Drug Discovery Today d Volume 30, Number 2 d February 2025 REVIEWS 
)

T-
SC

R
EE

N
(G
R
EY
Molecular biomarkers of glial activation 
PO
Sand injury in epilepsy 
Reema A. Kalsariya 1,# , Dave Kavila 1,# , Susan Shorter 1 , Deepika Negi 1 , 
Iain C.A. Goodall 1 , Stergios Boussios 2,3,4,5,6 , Saak V. Ovsepian 1,7,⇑ 
1 Faculty of Engineering and Science, University of Greenwich London, Chat
ham Maritime ME4 4TB, UK 
2 Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, ME7 5NY, UK 
3 Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury CT2 7PB, UK 
4 Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK 
5 Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK 
6 AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece 
7 Faculty of Medicine, Tbilisi State University, Tbilisi 0179, Georgia 
Increasing evidence from fluid biopsies suggests activation and injury of glial cells in epilepsy. The 
prevalence of clinical and subclinical seizures in neurodegenerative conditions such as Alzheimer’s 
disease, frontotemporal dementia, and others merits review and comparison of the effects of seizures 
on glial markers in epilepsy and neurodegenerative diseases with concomitant seizures. Herein, we 
revisit preclinical and clinical reports of alterations in glial proteins in cerebrospinal fluid and blood 
associated with various types of epilepsy. We consider shared and distinct characteristics of changes in 
different age groups and sexes, in humans and animal models of epilepsy, and compare them with 
those reported in biofluids in neurodegenerative diseases. Our analysis indicates a significant overlap of 
glial response in these prevalent neurological conditions. 
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Introduction 
Epilepsy is one of the most common neurological disorders, char-
acterised by unprovoked and repeating seizures. It is caused pri-
marily by the pathologically enhanced excitability of 
glutamatergic neurons in the neocortex, limbic system, and parts 
of the brain stem, leading to synchronised activity of large 
groups of neurons. Over recent years, epilepsy has emerged as a 
common comorbidity of the most prevalent neurodegenerative 
diseases (NDDs), including Alzheimer’s disease (AD),(p1),(p2) fron-
totemporal lobar degeneration (FTLD), Parkinson’s disease (PD), 
and dementia with Lewy bodies (DLB).(p1),(p3) The increasing 
incidence of clinical and subclinical seizures with the progression 
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of NDDs suggest a mechanistic relationship, with growing data 
implying synergistic effects between epileptic seizures (ES) and 
neurodegenerative processes.(p4) In AD, for instance, the preva-
lence of seizures from the early stages predicts faster cognitive 
decline.(p5),(p6) Inversely, the early signs of cognitive decline in 
AD are associated with a higher incidence of seizures. Increasing 
clinical data also suggest that better pharmacological control of 
comorbid epilepsy in AD, especially in older age, mitigates cogni-
tive deficits and reduces seizure-related mortality.(p2),(p7) Similar 
trends have also been reported in DLB.(p1),(p8) 

The recognition of the impact of ES on the primary pathology 
and clinical manifestations of AD and related dementias, FTLD,
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FIGURE 1 
Pathological cascade relating epileptic seizures in the brain with the rise in glial markers in biofluids. The onset of epileptic activity in seizure focus (0) and 
spread over extended networks (1–4) drives brain circuits into a hyperactive state, causing a change in the local environment by releasing transmitters, 
trophic factors, and signalling molecules from various cell types. Activated astrocytes and microglia cooperate and release inflammatory molecules and 
mediators, contributing to the hyperexcitability and generation of seizures. IL-1 b released by microglia and astrocytes enhances glutamate release, lowers 
glutamate reuptake, and decreases gamma-aminobutyric acid A receptor (GABAA) currents. IL-6 secreted from activated astrocytes and microglia promotes 
glutamate release. In contrast, IL-17 secreted from astrocytes and microglia promotes the infiltration of peripheral immune cells into the brain and inhibits 
GABAergic transmission, causing excitation-inhibition imbalance. TNF-a secreted by microglia and astrocytes promotes T lymphocyte infiltration, triggers 
microglial glutamate release, and induces GABAA endocytosis. HMGB1 released by activated astrocytes, microglia, or neurons interacts with Toll-like receptor 
4 (TLR4), promotes proinflammatory cytokine secretion, increases Ca2+ influx, upregulates N-methyl-D-aspartate receptor (NMDAR), and disrupts the BBB. 
Activation of transforming growth factor (TGF)- b/activin-like receptor kinase 5 (ALK5) signalling in astrocytes might downregulate the K+-inward rectifier 4.1 
(Kir4.1) channel and impair the aquaporin 4 channel (AQP4), whereas cyclooxygenase 2 (COX-2)/NLR family pyrin domain containing 3 (NLRP3) upregulation 
activates caspase-1 and promotes the release of cytokines. In combination, these changes lead to a rise in glial markers in the interstitial fluid, followed by 
leakage into the CSF and peripheral circulation. 
and potentially other NDDs with likely mechanistic links merits 
careful consideration of comorbid epilepsy when evaluating 
patients with neurodegenerative conditions. In NDDs with comor-
bid epilepsy, seizures, in addition to detrimental effects on the 
course of the disease, also complicate the analysis of pathobiology 
based on fluid biomarkers. Indeed, some of the proteins used as 
markers of injury and loss of neurons and synaptic connections 
found in biofluids of NDDs also respond to a single episode of 
self-limiting seizures without neurodegeneration.(p9) Although 
the mechanistic relationship between the injury and loss of neu-
rons in neurodegenerative conditions with comorbid epilepsy 
remains elusive, growing data support the role of astrocyte deficits 
and associated disruption of glutamate homeostasis, which can 
2 www.drugdiscoverytoday.com
lead to neuronal hyperactivity and cytotoxicity.(p7),(p10),(p11) 

Increasing evidence also supports a role of the activation of micro-
glia and endothelial cells as part of the neuroinflammatory 
response in NDDs and epilepsy(p12),(p13),(p14),(p15) (Figure 1). Con-
trasting with the increase in neuron-specific  markers  in  biofluids, 
which are viewed primarily as indicators of the neurodegenerative 
process,(p16),(p17) changes in glial proteins are considered to be asso-
ciated with the hyperactivity and injury of glial cells.(p12),(p18) It 
remains to be shown if and how the response of glia to seizures 
contributes to the clinical manifestations of AD and other NDDs 
with comorbid epilepsy. 

In this review, we revisit reports of changes in glial markers in 
the cerebrospinal fluid (CSF) and blood of patients with epilepsy
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and several NDDs, as well as in animal models. Our analysis sug-
gests a convergence of the glial response in these prevalent neu-
rological diseases and urges further studies of the glial reaction to 
seizures to elucidate the role of astrocytes and microglia in the 
pathobiology of epilepsy and neurodegenerative conditions with 
concurrent seizures. 

Literature review and data presentation 
All authors conducted a literature search using scientific data-
bases such as PubMed and ScienceDirect. Google Scholar, Acade-
mia, and ResearchGate were utilised as additional information 
sources where necessary. Keywords used for the search were ‘glial 
biomarkers of epilepsy’, ‘glial fibrillary acidic protein (GFAP)’, 
‘S100b in biofluids of epilepsy’, ‘epilepsy with neurodegenerative 
diseases’, ‘effect of epileptic seizures on glial protein’, 
‘interleukin-1b (IL-1b) and epilepsy’, ‘interleukin-6 (IL-6) and 
epilepsy’, ‘high mobility group box one (HMGB1) protein and 
epilepsy’, ‘tumour necrosis factor-alpha and epilepsy’, ‘tumour 
necrosis factor-a (TNFa) in epilepsy’ and ‘glial biomarkers of neu-
rodegenerative diseases’. The list of articles was scanned to iden-
tify information relevant to the current analysis. A summary of 
references was drafted, followed by thematic grouping and 
manuscript writing. Figures were prepared using Adobe Illustra-
tor Artwork 16.0 in the Adobe Creative Suit Version 6 program. 
Tables were generated using Microsoft Word. EndNote X8.2 
was used for reference formatting per journal guidelines. 

Glia-specific markers in biofluids from patients with 
epilepsy 
Based on their origin, glia-specific proteins of biofluids are 
loosely classified into astrocytic, oligodendroglia, and microglial, 
with some originating from more than one cell type.(p18),(p19),(p20) 

GFAP 
An increase in GFAP in biofluids indicates activation or injury of 
astrocytes, leading to its release into the interstitial space and 
leakage from there to the CSF and blood (Figure 1). In rat and 
mouse models of pilocarpine-, kainic acid-, and 4-
aminopyridine (4-AP)-induced status epilepticus (SE), GFAP 
expression in the hippocampus and entorhinal cortex is 
increased, suggesting an astrocytic response.(p21),(p22),(p23) In a 
nonconvulsive SE rat model induced by electrical stimulation, 
there was also an increase in astrocyte and microglial activation 
at 1 and 4 weeks after seizure, associated with neuronal loss.(p24) 

In a mouse model of pilocarpine-induced SE, there was also 
strong upregulation of GFAP in the hippocampus at 1 and 
3 weeks post-SE.(p25) Interestingly, some reports showed a reduc-
tion in the GFAP level in the brain in a mouse and rat 
pilocarpine-induced SE model, possibly attributed to the degen-
eration of astrocytes.(p26),(p27) Mechanistic analysis in a rat model 
of epilepsy showed that a minimum of nine seizures or a 250-s 
episode is necessary to induce reactive astrocytes, attested to by 
their hypertrophy and increased expression of GFAP.(p28) 

Clinical evidence suggests elevated GFAP in the serum and 
CSF of subjects affected by different types of seizures, with 
changes therein correlating with the severity and duration of epi-
lepsy (Table 1). Analysis of GFAP in serum and CSF showed a sig-
nificant increase after prolonged ES as compared with 
psychogenic nonepileptic seizures (PNES) and healthy con-
trols.(p29) Nass and coworkers compared the levels of GFAP in 
subjects with autoimmune epilepsy (AIE), genetic generalised 
epilepsy (GGE), and PNES. They showed similar levels of GFAP 
in the serum and CSF in all types of epilepsy, with no compar-
ison with controls presented.(p30) The concentration of GFAP in 
the serum of the epilepsy groups in that study, however, 
exceeded those reported in controls.(p29) Mochol et al. also 
reported higher serum GFAP levels in epilepsy patients with gen-
eralised tonic–clonic seizures (GTCS) and focal epilepsy (FE) after 
adjustment for potential confounders (sex, age, and body mass 
index).(p31) The level of GFAP in that analysis was not associated 
with epilepsy duration, seizure type or severity, or recurrent 
seizures in the preceding 6 months.(p31) Schulz and coworkers 
analysed autoantibodies in the CSF and serum of those with 
new-onset epileptic seizures (NES) or chronic epilepsy of 
unknown aetiology. The study reported increased GFAP autoan-
tibodies associated with AIE compared with controls.(p32) Elhady 
and colleagues observed significantly higher levels of GFAP in 
the serum of children after focal-onset epilepsy (FOE) and 
generalised-onset epilepsy (GOE), with the GFAP response 
reflecting the severity of seizures in the previous 6 months and 
predicting active seizures.(p33) Of note, longitudinal studies 
found that GFAP levels in serum in paediatric cases of GTCS, 
focal motor seizures (FMS), and epileptic spasms can remain ele-
vated over several months after seizures.(p33) Overall, from the 
discussed reports, it emerges that epilepsy can lead to the activa-
tion of astrocytes with GFAP upregulation and release (Table 1). 
The disrupted blood–brain barrier (BBB) in epilepsy can lead to 
the leakage of GFAP from interstitial fluid and CSF into the 
bloodstream, causing an increase in its levels therein (Figure 1). 

S100b 
Like GFAP, S100b is enriched in astrocytes, where it serves as the 
principal calcium-binding protein, regulating intracellular Ca2+ 

dynamics and signalling.(p34) S100b controls various functions, 
including enzyme activity, cell cycle and differentiation, prolifer-
ation, migration, and apoptosis.(p35),(p36),(p37) Several reports have 
demonstrated S100b increase in the CSF and blood of subjects 
with epilepsy (Table 1). In patients with mesial temporal lobe 
epilepsy (MTLE), the plasma level of S100b measured more than 
5 days after the last epileptic seizure was significantly higher 
compared with healthy controls. Notably, the S100b level in 
female patients exceeded that in males. No sex difference in 
S100b was found in healthy controls.(p38) Analysis of the level 
of S100b in serum within 6 h of typical seizures in patients with 
ES and PNES showed markedly higher levels of protein in ES vs 
PNES, whereas its level in PNES was higher compared with 
healthy controls.(p39) S100b was also examined in serum samples 
collected within 30 min after seizures in children with temporal 
lobe epilepsy (TLE), with its level exceeding that in healthy chil-
dren.(p40) In children with MTLE, the S100b level was signifi-
cantly higher compared with seizure-free age-matched 
controls.(p41) Post-seizure follow-up studies showed that the 
levels of S100b were elevated in the blood in most patients with 
SE after an average of 7 to 11 days.(p42) Eighty-four percent of 
patients with serum S100b above a specific cutoff point
www.drugdiscoverytoday.com 3
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TABLE 1 

Glia markers in fluid biopsies of epilepsy 

Biomarker, 
cell of origin 

Epilepsy 
type 

Fluid 
source 

Age (years) Sex, n Biofluid Collection 
phase 

Response to 
seizures 

Refs 

F = 19, M = 24; F = 15, 
M  =  5

GFAP, astrocytes ES, PNES Human 30.2, 34 Serum Postictal Increase (p29) 

AIE, GGE, 
PNES, 

64, 29, 
43 

Serum and 
CSF 

Human N = 26 Postictal Increase (p30) 

Not 
specified 

GTCS, FE Human N = 119 Serum Postictal Increase (p31) 

AIE, idE Human 45 F = 15, M = 24 CSF Ictal Increase (p32) 
GOE, FOE Human 7 F = 14, M = 16 Serum Postictal Increase (p33) 

S100b, astrocytes MTLE Human 27 F = 14, M = 14 Plasma Postictal Increase (p38) 
Ictal (within 
6  h  )

ES, PNES Human 30, 34 F = 19, M = 24; 
F = 15, M = 5 

Serum Increase (p39) 

TLE Human 11 F = 7, M = 12 Serum Postictal Increase (p40) 
MTLE Human 4–30 F = 15, M = 15 Serum Postictal Increase (p41) 

Serum and 
CSF 

SE Human 49 N = 82 Postictal Increase (p42) 

FIE Human 10 F = 19, M = 13 serum Postictal Increase (p43) 
GSE, FSE Human 7 F = 44, M = 54 Serum Postictal Increase (p44) 
SE Human 70 F = 54, M = 33 Serum Ictal Increase (p45) 

IL-1b, astrocytes, 
microglia 

Serum and 
CSF 

Ictal, 
postictal 

PTE with TBI Human 18–70 F and M = 35 Bidirectional (p51) 

DrE Human 8.9 F = 47, M = 68 Serum Postictal Increase (p53) 
FIRES with 
HLH 

Serum and 
CSF 

Human 4–16 F = 2, M = 3 Postictal No change (p54) 

Not 
specified 

stE, idE Dog F and M = 73 CSF Postictal Increase (p57) 

IL-6, astrocytes, 
microglia 

Serum and 
CSF 

Ictal, 
postictal 

RSE Human <8 M = 11 Increase (p61) 

Plasma and 
CSF 

Postictal; 
24 h 

rS Human 1.6–26 F = 5, M = 8 Increase (p62) 

Serum and 
CSF 

Ictal, 
postictal 

FIRES Human 18 M = 1 Increase (p63) 

Postictal; 
24 h 

idE, AE Dog 0.75–15 F = 5, M = 12 CSF Increase (p64) 

TNF-a, astrocytes, 
microglia 

Serum and 
CSF 

idE, AE Dog 0.75–15 F = 5, M = 12 Postictal Increase (p64) 

gS, pS, SE Human 22–25 N = 36 Serum Postictal Increase (p68) 
Ictal, 
postictal 

AERRPS Human 7.5 M = 1 Plasma Increase (p69) 

IPE Human 15 F = 18, M = 32 CSF Postictal Increase (p70) 

HMGB1, astrocytes, 
microglia 

Ictal, 
postictal 

FS, AS Human 1–3 F = 66, M = 70 Serum Increase (p74) 

FS, AS Human 6.0 N = 20; N = 20 Serum Postictal Increase (p75) 
sE, mE Human 10 F = 43, M = 41 Serum Postictal Increase (p76) 
DrE Human 35–46 N = 27; N = 56 CSF Postictal Increase (p77) 
DrE Human 34 F = 37, M = 28 Serum Postictal Increase (p78) 

<0.3 and 
>0.3 

idE Dog N = 40 Serum Postictal Increase (p79) 

Abbreviations: AE, acquired epilepsy; AERRPS, acute encephalitis with refractory, repetitive partial seizures; AIE, auto-immune epilepsy; AS, afebrile seizures; CSF, cerebrospinal fluid; DrE, drug-
resistant epilepsy; ES, epileptic seizures; F, female; FE, focal epilepsy; FIE, focal intractable epilepsy; FIRES, febrile infection-related epilepsy syndrome; FOE, focal-onset epilepsy; FS, febrile seizures; 
FSE, focal seizures epilepsy; GGE, genetic generalised epilepsy; GOE, generalised-onset epilepsy; gS, generalised seizure; GSE, generalised seizures epilepsy; GTCS, generalised tonic–clonic seizures; 
HLH, hemophagocytic lymphohistiocytosis; iDE, idiopathic epilepsy; M, male; mE, mild epilepsy; MTLE, mesial temporal lobe epilepsy; PNES, psychogenic nonepileptic seizures; pS, partial seizure; 
PTE, post-traumatic epilepsy; rS, refractory seizures; RSE, refractory status epilepticus; sE, severe epilepsy; SE, status epilepticus; stE, structural epilepsy; TBI, traumatic brain injury; TLE, temporal lobe 
epilepsy.
presented with SE, whereas in most patients without SE, the 
S100b levels were lower than the cutoff point. Serum S100b 
levels were not significantly different according to SE aetiology, 
semiology, or refractoriness. Notably, higher serum S100b pre-
4 www.drugdiscoverytoday.com
dicts confusion or decreased alertness in patients. The authors 
recommend that serum S100b levels be added to the clinical eval-
uation and electroencephalogram to identify the difficult-to-
diagnose form of SE.(p42) 
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Biomarker, cell of origin NDD Fluid source Age (years) Sex, n Biofluid Response to seizures Refs 

GFAP, astrocytes AD Human 66 F = 21, M = 24 Plasma and CSF Increase (p80) 
AD, Dem Human 70 N = 27 CSF Increase (p82) 
AD Human 73 F = 9, M = 7 CSF Increase (p83) 
AD Human 38 F = 16, M = 11 Serum Increase (p84) 
AD, Dem Human 62–76 N = 230 Serum Increase (p85) 
AD + MCI Human 67–78 N = 28 Serum and CSF Increase (p86) 
AD + MCI Human 61 F = 235, M = 149 Plasma and CSF Increase (p87) 
AD, Dem Human 51–84 F = 11, M = 17 CSF Increase (p89) 
PD + MCI Human 59 F = 22, M = 41 Plasma Increase (p96) 
PD Human 68 N = 29 Plasma Increase (p99) 

S100b, astrocytes AD Human 77 F = 36, M = 18 Serum Increase (p81) 
AD Human 57 F = 15, M = 16 CSF Increase (p88) 
PD Human 65 F = 28, M = 30 CSF Increase (p93) 
PD Human 63 F = 13, M = 27 Serum Increase (p95) 
AD Human 69 F = 18, M = 50 CSF Increase (p102) 

IL-1b, astrocytes, microglia AD Human 53–80 M = 9, F = 2 CSF Increase (p46) 
PD Human 42–76 M = 12, F = 10 CSF Increase (p46) 
PD Mouse 4 months M = 18 Serum Increase (p47) 
AD Human Not specified M + F = 197 Plasma Increase (p105) 

IL-6, astrocytes, microglia VaD Human 73 M + F = 67 Serum Increase (p90) 
VaD Human 74 M + F = 11 CSF Increase (p97) 
VaD Human 65 M + F = 30 Serum Increase (p100) 
ALS Human 60 M + F = 68 Plasma Increase (p107) 

TNFa, astrocytes, microglia PD Human 64 F = 35, M = 51 Blood Increase (p92) 
ALS Human 57 M = 28, F = 23 Serum Increase (p94) 
VaD Human 65 M + F = 30 Serum Increase (p100) 
AD Human 68 M + F = 55 Serum Increase (p106) 
ALS Human 60 M + F = 68 Plasma Increase (p107) 

HMGB1, astrocytes, microglia AD Human Not specified M + F = 8 CSF Increase (p91) 
ALS Human Not specified M + F = 5 CSF Increase (p108) 
MCI + AD Human 63–84 M + F = 24 Serum Increase (p116) 

Abbreviations: AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; CSF, cerebrospinal fluid; Dem, dementia; F, female; M, male; MCI, mild cognitive impairment; MS, multiple sclerosis; PD, 
Parkinson's disease; VaD, vascular dementia. 
Calik and coworkers conducted a case–control study of the 
S100b level in children diagnosed with focal intractable epilepsy 
(FIE). The higher S100b level in FE vs age-matched controls led 
the authors to conclude that this protein can be a reliable periph-
eral biomarker for neuronal damage in patients with intractable 
epilepsy.(p43) Alterations of S100b in serum and CSF were also 
compared in children with generalised seizure epilepsy (GSE) 
and focal seizure epilepsy (FSE), with the S100b level in serum 
being significantly higher over 6 h after the epileptic attack in 
the former.(p44) Monitoring S100b in serum showed that its level 
gradually declined from 6 h to 24 h after the epileptic attack. 
Based on statistical analysis and predictive values, the authors 
conclude that serum S100b could provide a sensitivity index 
for evaluating nerve damage in children with epilepsy, which 
can be used as a serum biomarker for diagnosis and assessment 
of the severity of the disease.(p44) A retrospective analysis of the 
serum levels of S100b during the 72-h postictal period in patients 
with SE demonstrated higher levels in the serum compared with 
healthy controls.(p45) Elevated S100b was associated with stupor/-
coma before treatment, independently from aetiology, age, and 
sex. No differences in S100b serum levels were found between 
patient samples acquired within 24 h and those acquired 24 h 
after SE onset.(p45) 

IL-1b 
One of the critical pathobiological features shared by NDDs and 
epilepsy is the neuroinflammatory response.(p46),(p47),(p48) In the 
inflamed brain, IL-1b is produced by activated microglia and 
astrocytes,(p49),(p50),(p51),(p52) with its level in fluids responding 
to various seizure types (Table 1). Diamond and coworkers 
showed that there is an increase in IL-1b in the CSF of individuals 
who have posttraumatic epilepsy (PTE) associated with traumatic 
brain injury (TBI) and inflammation.(p51) A rapid and significant 
seizure-related rise in IL-1b has been reported in the serum of 
children with afebrile drug-resistant epilepsy (DrE), suggesting 
an inflammatory response with microglial activation after seizure 
attacks.(p53) Remarkably, in 4–16-year-old subjects with febrile 
infection-related epilepsy syndrome (FIRES) and hemophago-
cytic lymph histiocytosis (HLH), CSF and serum collected during 
seizures and 6 months thereafter showed no change in IL-1b
www.drugdiscoverytoday.com 5
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FIGURE 2 
Molecular biomarkers of epileptogenesis in liquid biopsies. (a) Venn diagram demonstrating the overlap of molecular markers of epileptogenesis in epilepsy, 
neurological and psychiatric diseases with comorbid epilepsy, NDD, and traumatic brain injury. (b) Representation of emerging molecular biomarker types 
and candidates detected in the biofluids of people with epilepsy. Among the biomarker candidates, those released by reactive and injured glia are coloured 
red. Part of the data included in the figure were adapted with permission.(p116) (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
levels.(p54) Neuroinflammation has also been evident in animal 
seizure models.(p55),(p56) Analysis of the serum of dogs with either 
PTE associated with structural abnormalities (stE) in the brain or 
idiopathic epilepsy (idE) without structural changes showed an 
increase in IL-1b.(p57) Of note, in dogs with epilepsy and healthy 
dogs, IL-1b was not measurable in CSF.(p57) Indeed, attempts to 
measure IL-1b in the CSF of dogs with nonspecified types of epi-
lepsy and TBI showed no detectable IL-1b.(p57) Overall, IL-1b 
increases in the blood of humans and dogs affected by epilepsy 
support shared neuroinflammatory pathways and neurobiologi-
cal mechanisms with NDDs (see below). Given that IL-1b plays 
a crucial role in neuroinflammation, changes therein could shed 
light on the underlying pathobiology and facilitate diagnosis and 
therapeutic interventions. Further research is warranted to vali-
date the utility of IL-1b as a glial activation biomarker in epilepsy 
and NDDs. 

IL-6 
Like IL-1b, IL-6 levels have been reported to increase in biofluids 
in those with epilepsy, AD, and other NDDs.(p58),(p59) This versa-
tile cytokine is released from activated microglia and astrocytes 
by various pathogenic stimuli, contributing to neuroinflamma-
tory responses and changes in the microenvironment.(p60) Sev-
eral studies have demonstrated an increase in IL-6 levels in the 
CSF and blood of subjects with epilepsy (Table 1). A report on 
refractory SE (RSE) in children under the age of 8 demonstrated 
an increase in the levels of IL-6 in both the CSF and serum during 
and after ES.(p61) Intrathecal dexamethasone infusion resolved 
the RSE, with levels of inflammatory markers gradually normalis-
ing over subsequent days.(p61) Billiau and coworkers tested the 
fluids of subjects in multiple age groups suffering from refractory 
seizures (rS) and discovered that 24 h after the seizure episodes, 
the level of IL-6 subsided but remained significantly elevated in 
both the CSF and plasma.(p62) Another study similarly found that 
6 www.drugdiscoverytoday.com
in patients suffering from FIRES, there was an increase in the 
concentration of IL-6 in the CSF and serum during the ictal 
and postictal periods.(p63) Assessment of the IL-6 level and activ-
ity in fluids of dogs with idE or acquired epilepsy (AE) showed a 
significant rise in the CSF and serum, followed by a gradual 
decline over 24-h, 48-h, and >48-h periods following the last 
epileptic episode.(p64) The higher levels of IL-6 in fluid biopsies 
support the hypothesis that inflammatory processes involving 
cytokines play a crucial role in the pathogenesis of epilepsy. 

TNF-a 
TNF-a is another major player in neuroinflammation, and it is 
also implicated in the hyperactivity of neurons and the genera-
tion of ES. As a proinflammatory cytokine, TNF-a is produced 
mainly by activated microglia and astrocytes(p65),(p66) and is 
known to regulate neuronal excitability, the activity of immune 
cells, and the modulation of synaptic plasticity.(p67) A growing 
number of reports have demonstrated a rise in TNF-a in the 
CSF and blood of humans and animals with epilepsy (Table 1). 
Like IL-1b and IL-6 in humans, in dogs suffering from stE and 
idE, there was a notable increase in TNF-a in the CSF and serum 
24 h and 48 h after the last seizure episode.(p64) Higher TNF-a 
levels in biofluids of dogs substantiate the hypothesis that 
inflammatory processes involving cytokines play a crucial role 
in the pathogenesis of seizures.(p64) Sinha and coworkers showed 
that in young adult patients suffering from a generalised seizure 
(gS), partial seizure (pS), SE, or localisation-related epilepsy (LRE), 
there was an elevated level of TNF-a in the serum for 1–24 h after 
the last seizure episode.(p68) This finding is in line with the 
notion of a rise in cytokines in the serum of postictal patients 
with several epilepsy syndromes. In addition, in a study of a 
boy with acute encephalitis and refractory and repetitive partial 
seizures (AERRPS), an increase in the levels of TNF-a in the 
plasma during and after seizure attacks was reported.(p69) These
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findings suggest that AERRPS, a major immune-mediated compo-
nent, involves an autoimmune response and exaggerated cyto-
kine production and release.(p69) Patients in their teens with 
intractable partial epilepsy (IPE) also showed an increase in 
TNF-a concentrations in the CSF shortly after seizure.(p70) Nota-
bly, upon therapy with the antiseizure matrix metalloproteinase 
(MMP)-9 inhibitor pranlukast, TNF-a was reduced. Pranlukast is 
likely to have pleiotropic effects, countering the leakage of 
cytokines from brain tissue fluids into biofluids and inhibiting 
their release from glial cells.(p70) As a potential biomarker of epi-
lepsy, TNF-a also responds to neuroinflammation in NDDs, 
which might signify shared mechanisms involving the activa-
tion of microglia and astrocytes. 

HMGB1 
The nuclear protein HMGB1, released from microglia and astro-
cytes, plays a crucial role in the immune response and neuroin-
flammation in the central nervous system (CNS).(p71),(p72),(p73) 

Like other biomarker candidates, many studies showed an 
increase in HMGB1 levels in response to episodes of seizures 
(Table 1). A report in infants with either febrile seizures (FS) or 
afebrile seizures (AS) showed an increase in HMGB1 in the serum 
during and 15 min after ES.(p74) The authors suggest HMGB1 
might lower the action potential firing threshold and promote 
neuronal excitability. A notable surge in the serum HMGB1 level 
was also observed in children with either FS and AS, which was 
detected 10 min after GTCS or myoclonic seizure (mS) episodes 
and remained high during the first 24 h after seizures.(p75) A com-
parative study of HMGB1 in various types of seizures revealed 
that its level in severe epilepsy (sE) cases was higher than in 
milder epilepsy (mE) cases and controls, implying that it could 
be a potential indicator of the intensity of ES.(p76) A rise in 
HMGB1 was reported in the serum and CSF of adults with 
drug-refractory epilepsy (DrE) and newly diagnosed epilepsy 
(NDE) 24 h after epileptic bouts, with HMGB1 changes correlat-
ing with the severity of seizures and their resistance to anti-
seizure medications.(p77) 

Comparison of HMGB1 in adults with refractory epilepsy 
(RE), well-controlled chronic epilepsy (WCE), and NDE showed 
a more robust seizure-related increase in the marker in the serum 
of subjects with DrE.(p78) Higher levels of serum HMGB1 in RE as 
compared with drug-responsive and healthy subjects suggest 
that HMGB1 can distinguish the former from the latter.(p78) Sim-
ilar to inflammatory mediators, HMGB1 was also elevated in the 
serum of dogs with idE within the first hour after epileptic bouts 
compared with healthy dogs.(p79) Notably, the serum HMGB1 
concentrations in dogs with nonepileptic brain diseases did not 
differ from those of healthy dogs, indicating specific role of sei-
zures in increasing the level of this protein in serum.(p79) In dogs 
with chronic epilepsy (>3 months), the HMGB1 concentration 
was higher than in dogs affected by the condition for 3 
months.(p79) 

Glial markers in biofluids from patients with 
neurodegenerative diseases 
Ample data suggest changes in glial markers in the CSF and blood 
in AD(p46),(p80),(p81),(p82),(p83),(p84),(p85),(p86),(p87),(p88),(p89) and other 
NDDs(p46),(p47),(p90),(p91),(p92),(p93),(p94),(p95),(p96),(p97),(p98),(p99),(p100) 

(Table 2). An increased level of GFAP is viewed as an indicator of 
the activation and injury of astrocytes, with overwhelming evi-
dence supporting their role in neuroinflammation.(p101) Elevated 
plasma and serum levels of GFAP are found in normal older 
adults with mild cognitive impairment (MCI), patients with 
AD, and patients with AD dementia, as estimated by the brain 
amyloid load, and correlate with cognitive decline.(p80),(p82),(p83), 
(p84),(p85),(p86),(p87),(p89) Higher levels of GFAP have also been 
reported in the serum and CSF in other NDDs.(p96),(p99) Like 
GFAP, S100b is expressed in astrocytes and has been explored 
as a candidate biomarker of injury and degeneration in these 
cells, with a rise therein reported in the biofluids of patients with 
AD and PD(p81),(p88),(p93),(p95),(p102) (Table 2). 

Over the last decade, the contribution of glial proinflamma-
tory factors to the pathogenesis of NDDs has also been increas-
ingly recognised. The most common cytokines of the nervous 
system, IL-1b and IL-6, are primarily released by microglia but 
can also be secreted by reactive astrocytes, neurons, and endothe-
lial cells.(p103),(p104) The increase in IL-1b and IL-6 in biofluids is 
taken to indicate neuroinflammation, with their rise reported 
in AD, PD, and other NDDs(p46),(p47),(p90),(p92),(p94),(p97),(p100),(p105) 

(Table 2). Like cytokines, several reports in NDDs suggest 
enhanced release of TNF-a by the activated microglia of inflamed 
neural tissue, which affects multiple signalling pathways and 
mechanisms within neurons and glia and contributes to apopto-
sis and neurodegeneration.(p92),(p94),(p100),(p105),(p106),(p107) Finally, 
biofluids of several patients with NDD have also shown increased 
HMGB1(p91),(p98),(p108) (Table 2). Overall, although alterations of 
glial markers in biofluids in NDDs are viewed mainly in relation 
to the neuroinflammation associated with the neurodegenerative 
process, glial markers also respond to different types of epilepsy 
without overt signs of neurodegenerative changes. 

Concluding remarks and outlook 
Unprovoked and repeated seizures represent the primary hall-
mark of epilepsy. Clinical and subclinical seizures are also preva-
lent in AD, DLB, FTLD, and, to a lesser extent, other NDDs. Our 
recent analysis of changes in neuronal markers in biofluids in 
epilepsy demonstrated significant overlap with those reported 
in several NDDs.(p9) In this review, we revisited the reports of 
glial marker changes in the CSF and blood in different types of 
epilepsy, with the results having implications for the pathobiol-
ogy and diagnosis of NDDs without and with comorbid epilepsy. 
The correlation of the rapid rise in several glial-specific proteins 
in biofluids with the type of epilepsy implies glial activation 
and injury, likely interfering with molecular biomarkers used 
for diagnosis of NDDs and other conditions with concurrent epi-
lepsy (Figure 2). As the current analysis shows, many types of ES 
activate glial cells, releasing an array of proteins in CSF and the 
bloodstream. 

Although elucidation of the specific mechanisms driving 
the rise in glial markers in the CSF and blood in response to sei-
zures warrants further research, they are likely to involve 
release from reactive and injured glial cells via exocytosis, 
exosome-mediated discharge, and leakage caused by cell dam-
age. Because of the effects on the local microenvironment,
www.drugdiscoverytoday.com 7



POST-SCREEN (GREY) Drug Discovery Today d Volume 30, Number 2 d February 2025

PO
ST-SC

R
EEN

(G
R
EY

)

the release of glial cell cytokines, chemokines, and other medi-
ators can potentially impair neuronal mechanisms and synap-
tic functions. Consequently, restoring local homeostasis and 
countering inflammation caused by reactive astrocytes and 
microglia in epileptogenic tissue might provide an avenue for 
therapeutic intervention. Major clinical and preclinical efforts 
are underway to identify the mechanisms and detrimental 
effects of glial inflammatory factors and mitigate the associated 
damage.(p109),(p110),(p111),(p112) The knowledge gained from 
these studies should aid in diagnosis and guide therapeutic 
interventions to counter neuroinflammation and restore the 
microenvironment of affected brain tissue. Detailed analysis 
of the glial response should also facilitate the identification 
of signalling pathways mediating the harmful effects in neu-
rons and other affected cell types.(p113),(p114),(p115) Finally, care-
ful studies of glial marker dynamics in various types of epilepsy 
and NDDs should assist with designing and validating preci-
sion therapies to counter the injury and degeneration of neu-
rons associated with glial dysfunctions. In synergy with 
mechanistic studies using preclinical models, these develop-
ments are anticipated to improve the management of immuno-
logical and homeostatic aspects of various forms of epilepsy, 
8 www.drugdiscoverytoday.com
AD, DLB, and other neurological conditions with comorbid 
epilepsy. 
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