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A Hybrid Clustering Method Based on the Several
Diverse Basic Clustering and Meta-Clustering
Aggregation Technique
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aCollege of Information Engineering, Jiaozuo University, Jiaozuo, China; bSchool of Engineering,
Technology and Design, Canterbury Christ Church University, Canterbury, UK

ABSTRACT
In hybrid clustering, several basic clustering is first generated
and then for the clustering aggregation, a function is used in
order to create a final clustering that is similar to all the basic
clustering as much as possible. The input of this function is all
basic clustering and its output is a clustering called clustering
agreement. However, this claim is correct if some conditions
are met. This study has provided a hybrid clustering method.
This study has used the basic k-means clustering method as a
basic cluster. Also, this study has increased the diversity of
consensus by adopting some measures. Here, the aggregation
process of the basic clusters is done by the meta-clustering
technique, where the primary clusters are re-clustered to form
the final clusters. The proposed hybrid clustering method has
the advantages of k-means, its high speed, as well as it does
not have its major weaknesses, the inability to detect non-
spherical and non-uniform clusters. In the empirical studies,
we have evaluated the proposed hybrid clustering method
with other up-to-date and robust clustering methods on the
different datasets and compared them. According to the simu-
lation results, the proposed hybrid clustering method is stron-
ger than other clustering methods.
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1. Introduction

Nowadays, clustering plays an important role in most research fields such
as engineering, medicine, biology, and data mining (Sun et al. 2018; Tan
et al. 2020). Clustering is one of the fields of unsupervised learning and is
an automatic process during which samples are divided into categories
whose members are similar to each other, and these categories are called
clusters. Therefore, a cluster is a collection of samples in which the samples
are similar to each other and are not similar to the samples in other
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clusters (Wei et al. 2019; Trik, Pour Mozaffari, and Bidgoli 2021). Different
criteria can be considered for similarity. For example, the distance criterion
can be used for clustering and samples that are closer to each other can be
considered as a cluster. This type of clustering is known as distance-based
clustering. In simple words, the purpose is to separate groups with similar
features and divide them into clusters (Yang et al. 2021; Ma et al. 2021).
Clustering methods take the data and form these groups using some

kind of similarity criterion. The results obtained from these clusters/groups
can be used on many applications such as image processing, pattern recog-
nition, social network analysis, recommendation engine and information
retrieval (Zhao et al. 2019). In the process of machine learning for cluster-
ing, a similarity measure based on distance plays a pivotal role in clustering
decision (Ghobaei-Arani and Shahidinejad 2021). In all kinds of clustering
methods, two main objectives should be considered in order to obtain the
least error: one, the similarity between one data point with another point
and the second, the distinction of those similar data points with other
points (Forouzandeh et al. 2021; Berahmand et al. 2021). The basis for
such divisions begins with our ability to scale large datasets, and this is a
starting point. Another challenge in clustering is the different types of fea-
tures in the data. Data can be structured, unstructured, hierarchical, and
continuous (Ghobaei-Arani 2021; Shahidinejad, Ghobaei-Arani, and
Esmaeili 2020). Also, it is evident that the data is not dimensionally limited
and is multidimensional in nature.
Basically, a suitable distance measure can be very effective in clustering.

However, the appearance of the clusters can be geometric, so this challenge
must also be considered. On the other hand, the results of the clustering
method should be understandable in order to solve business problems.
Therefore, scalability, features, dimensions, appearance, noises, and interpret-
ability are the things that clustering methods should consider to solve the
problem (Nasiri et al. 2022; Jadidi and Dizadji 2021). In general, performing
clustering using different methods have a similar architecture. This is while
the differences among the clustering methods include the distance/similarity
criteria, initial cluster values and how to form the final clusters. These differ-
ences have led to the development of different clustering methods over time.
Basically, there are five main classes of clustering methods including
Density-based Clustering (DC), Grid-based Clustering (GC), Model-based
Clustering (MC), Hierarchical Clustering (HC), and Partitional Clustering
(PC), as shown in Figure 1 (Wei, Li, and Zhang 2018).
Since most of the basic clustering methods emphasize on specific aspects

of the data, they are efficient on specific datasets (Niu et al. 2020; Li, Qian,
and Wang 2021). For this reason, there is a need for approaches that can
create better results by using the combination of these methods and
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considering their strengths. Meanwhile, hybrid clustering is a new cluster-
ing method that is obtained by combining the results of different clustering
methods. Accuracy, correctness, and stability are important characteristics
of a hybrid clustering method compared to classical clustering methods
(Zheng et al. 2021; Zhu et al. 2021; Tan et al. 2020). In fact, the main pur-
pose of hybrid clustering is to search for better and stronger results, using
the combination of information and results obtained from several primary
clustering (as partitions). So far, many studies have been done on hybrid
clustering. Recent research in this field has shown that data clustering can
significantly benefit from the combination of several data parts. In addition,
their parallelization power has a natural adaptation to the need of distrib-
uted data mining. Hybrid clustering can provide better solutions in terms
of robustness, scalability, stability, and flexibility than basic clustering
methods (as individual).
Basically, hybrid clustering includes two main steps: (1) producing differ-

ent results from basic clustering methods and (2) combining the results
obtained from basic clustering methods to produce final clusters (Zhu et al.
2021). The first is related to the creation of partitions with dispersion and
diversity by different methods, and the second refers to an agreement func-
tion to combine the results (Wei et al. 2019). Usually, in the first step of
hybrid clustering, a number of primary clusters are created, each of which
emphasizes a specific feature of the data. Applying a clustering method on
several different parts of the data or using several different clustering meth-
ods can cause dispersion and diversity in the partition results (Yang et al.
2021). After the primary partitions are formed, these results are usually
combined by using an agreement function. One of the most common

Figure 1. Taxonomy of clustering methods.
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methods of combining the results is using the correlation matrix. A hybrid
clustering framework is shown in Figure 2, where the results of several
basic clustering methods are combined to achieve more stable, scalable, and
quality clustering.
Therefore, nowadays instead of addressing the making a strong global

clustering method, more attention has been paid to building frameworks
that integrate several weak clusters (Zhao et al. 2019; Trik et al. 2022). In
this regard, the “hybrid cluster” or “clusters aggregation”, has been pro-
vided for improving the strength and quality of the clustering process (Tan
et al. 2020). The k-means clustering method, which is one of the flat
approaches, is known as a very fast and fairly efficient method (Yang et al.
2021; Ma et al. 2021). This method, as a weak clustering method, is one of
the best basic clustering methods for contributing to consensus building in
hybrid clustering. This paper addresses the existing problems by presenting
valid local cluster theory. Here, the similarity between valid local clusters is
estimated by applying an inter-cluster and intra-cluster similarity metric. In
the next step of the method, the aggregation process of the basic clusters is
done by the meta-clustering technique, where the primary clusters are re-
clustered to form the final clusters. Eventually, the output of these clusters
is considered along with the average credits to optimize the final agree-
ment. The proposed hybrid clustering method has the advantages of k-
means, its high speed, as well as it does not have its major weaknesses.
The main contribution of this paper is as follows:

� The aggregation process of the basic clusters with a new meta-cluster-
ing technique.

� Definition of valid local clusters by considering the data around the
cluster centers in k-means.

� Generating diverse primary clusters by applying a duplicate strategy on
nonappearance data in valid local clusters.

� Perform extensive experiments to demonstrate the efficacy of the pro-
posed clustering method and give credence to our idea.

Figure 2. Hybrid clustering framework.
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The rest of the paper is organized as follows. A brief discussion of
related works in the literature is provided in Section 2. The formulation of
the problem is provided in Section 3. The proposed clustering method is
presented in Section 4. Experimental results are demonstrated in Section 5.
Finally, Section 6 concludes the paper.

2. Related Works

So far, many studies have been presented by the research community on
the development of clustering methods (Jain 2010; Hansen and Mladenovi�c
2001; Zhang, Hsu, and Dayal 2000). The k-means method is one of the
popular clustering approaches with many improved versions. For example,
H-means solves the empty cluster problem in k-means (Jain 2010; Walid
et al. 2021). Problems of k-means such as outliers, sensitive to noise and
local optimum are considered by J-means method (Hansen and Mladenovi�c
2001). This method can also solve the problem of degeneracy in k-means.
Jiang et al. (2010) proposed K-Harmonic Means (KHM) to solve the pri-
mary clustering problem in k-means. KHM has succeeded in obtaining
high-quality results by considering the harmonic mean of intervals as the
objective function. However, KHM is not suitable for global optimization.
In this regard, Swarm Intelligence techniques are being developed to
replace KHM. The ACOKHM (Ant Colony Optimization and K-Harmonic
Means) method for clustering with a global approach was presented by
Bouyer and Hatamlou (2018). Although ACOKHM provides high-quality
and accurate results, it has a slow convergence to the global optimum.
Hybrid clustering has become very popular as a technique to improve

clustering results. The results of hybrid clustering using basic clustering
methods with higher diversity and more quality are far more accurate
(Bouyer and Hatamlou 2018). However, obtaining more accurate results by
having more diversity in some collections has not yet been proven (Azimi
and Fern 2009). Link-based Cluster Ensemble (LCE) was proposed as a
hybrid clustering method by Jain (2010). LCE is an improved version of
Hybrid Bipartite Graph Formulation (HBGF) in which bipartite graph is
used. The authors first create a dense graph for each pair of samples and
clusters and then form the final clusters using spectral clustering. Niu et al.
(2020) proposed a hybrid clustering method that they developed based on
the hybrid of locally reliable cluster solutions. This method is configured
based on k-medoids and provides the concept of valid local clusters. Here,
weighted undirected graph is used to find relationships between clusters.
Huang, Wang, and Lai (2017) proposed Locally Weighted Meta-

Clustering (LWMC) to improve hybrid clustering methods. Here, the
Jaccard coefficient is used to calculate the weight of connections between
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clusters. LWMC uses the normalized cut method to create meta-clusters,
where each meta-cluster contains several clusters (Huang et al. 2020). The
authors use a weighted voting-based technique to create the final clusters.
Consensus clustering by partitioning similarity graph was proposed by
Hamidi, Akbari, and Motameni (2019). This method uses graph pruning
for clustering, where the number of clusters is automatically estimated. The
authors use meta-cluster and majority vote as an aggregation function to
create the final clusters. Here, the Jaccard coefficient is used to calculate
the similarity. Iterative Combining Clustering Method (ICCM) was pro-
posed by Khedairia and Khadir (2022). ICCM uses an iteratively based
technique to analyze data and create primary clusters. Here a voting
method is used to create a set of partitions. For this, each sample votes for
its own sub-cluster so that samples with higher votes are assigned to the
corresponding sub-clusters. In the meantime, the samples that do not get
the highest vote are clustered in the next iterations.
The hybrid clustering is still considered as a tool as well as a research

field of the theory studied. A review paper is presented by Golalipour et al.
(2021) for a variety of these methods. Due to the fact that precision in clus-
tering does not have a straightforward meaning such as classification, an
alternative concept is presented for it, which states that a precise clustering
is clustering which is most similar to other clusters formed on the given
data, in other words, a better clustering means a more stable clustering.
For a reason similar to the reason for the suitability of a diverse collection
of classifiers for hybrid classification, a set of the clustering is considered as
a goof set, if its basic clustering is varied (Bai, Liang, and Cao 2020). In
order to generate a diverse clustering consensus, a weak clustering method
must be applied to the data several times.
We use the k-means clustering method as a weak cluster for solving this

problem (Abapour, Shafiesabet, and Mahboub 2021). Four sub-problems in
hybrid clustering are presented as follows: (1) The problem of recognizing
relatively correct labels in clustering: Unlike categorization, there is no real
information about labels in clustering. (2) The problem of obtaining a var-
iety of clustering that describe the entire data: In hybrid learning, while
several poor learners are combined as strong learners, whatever the basic
learners more complement each other, the hybrid learner acts better
(Rezaeipanah, Nazari, and Ahmadi 2019; Rezaeipanah et al. 2021). That is,
any weak clustering will cover the rest of the clustering. Therefore, for this
purpose, we need to create several complementary clustering by applying
k-means clustering methods. (3) The problem of determining the appropri-
ateness between clusters: Unlike classifications in which each label is exclu-
sively assigned to a category, the labels do not have a single meaning in
clustering, and they simply represent that data has the same cluster
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(Mojarad et al. 2021). The clusters with the same name in two different
clustering do not imply any truth. Therefore, before doing anything in
hybrid clustering, the label of different clustering should be re-labeled
based on correspondence. In addition, even two clusters of the same clus-
tering are likely to signify a real cluster. (4) The problem of combining the
results of matched basic clustering: In different clustering, each sample may
have different labels. So, we have to determine a final label called an agree-
ment label. In hybrid learning, while several poor learners are combined as
a strong learner, whatever the action is more effective, the hybrid learner
acts better (Li, Rezaeipanah, and El Din 2022).

3. Problem Formulation

A dataset is defined as a set of data samples that each data sample itself
is a numerical vector (or feature vector). The dataset is shown by X and
each data sample is shown by xi and obviously xi 2 X: The j-th feature
of the xi data sample is shown by xij: The size of each dataset X is
shown by Xj j: The number of features of the dataset X is shown by x1j j:
Let N be the number of samples and M the number of features from a
dataset. Let c be the subset of data as clustered/partitioned. When the
union of all subsets is equivalent to the original data set and each pair of
subsets has no intersection, then each subset can be defined as a cluster.
A clustering is shown by p ¼ p1, p2, :::, pcf g, where pi represents the i-th
cluster. Obviously, ⋃ci¼1p

i ¼ X and 8i, j 2 1, 2, :::, cf g : pi \ pj ¼ ;: The

center of each cluster pi is shown by Cpi , and its j-th feature is defined
as Eq. (1)

Cpi
j ¼

P
k2pi xkj
pij j (1)

A valid sub-cluster from a cluster pi is shown by rpi and is defined
according to Eq. (2)

rpi ¼ xk : p
ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXx1j j

j¼1

Cpi
j � xkj

��� ���2
vuut � c

8><
>:

9>=
>; (2)

where c is a threshold parameter. It should be noted that a sub-cluster can
be considered as a cluster.
Basically, there are many similarity/distance measures in the literature to

define the difference between two clusters. In this paper, we define the
similarity metric between the two clusters pi and pj, which is shown by
sim pi, pjð Þ, and defined as Eq. (3)

CYBERNETICS AND SYSTEMS 7



sim pi, pjð Þ ¼
pi \ pj

pi [ pj
þ ⋃9q¼1Tq pi, pjð Þ� pi [ pjð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX x1j j

w¼1
Cpi
w � Cpj

w

��� ���2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXx1j j

w¼1

Cpi
w � Cpj

w

��� ���2
vuut � 4c

0 Otherwise

8>>>><
>>>>:

(3)

where Tq pi, pjð Þ is calculated using Eq. (4)

Tq pi, pjð Þ ¼ xk : Xj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXx1j j

w¼1

pqw pi, pjð Þ � xkw
�� ��2

vuut � c

8><
>:

9>=
>; (4)

where pq pi, pjð Þ is a point and w-th feature is denied as Eq. (5)

pqw pi, pjð Þ ¼ qð Þ � Cpi
w þ 10� qð Þ � Cpi

w

10
(5)

Let X ¼ x1, x2, :::, xi, :::, xnf g be a set of n samples of the dataset X,

where xi ¼ xi1, x
i
2, :::, x

i
j, :::, x

i
d

h i
is an i-th sample with d features. Also, let

P ¼ p1, p2, :::, pk, :::, pmf g be a hybrid of m individual clustering method,
where pk is the k-th member of the hybrid. Each pk 2 P returns a set of

clusters pk ¼ ck1, c
k
2, :::c

k
l , :::, c

k
pkj j

h i
(as a partition), where pkj j refers to the

number of clusters created by pk: For each xi 2 X, pkðxiÞ represents the
cluster label belonging to xi in pk: Here, the problem of hybrid clustering
is defined as finding a new partition p� ¼ c�1, c

�
2, :::c

�
l , :::, c

�
K½ � from the con-

sensus results of set P, where K is the number of final clusters.
A weighting graph corresponding to a consensus of the clustering is

shown by P with GðPÞ and is defined as GðPÞ ¼ VðPÞ,EðPÞ½ �: The ver-
tex set of this graph is also the valid subsets of all consensus’s clusters,
namely, V Pð Þ ¼ rp11 , :::, rp

c1
1
, rp12 , :::, rp

c2
2
, :::rp1B , :::, rp

cB
Bf g: The weight of the

edges between the vertices of this graph or the cluster-cluster connections
is considered as the similarity value, as shown in Eq. (6)

E v1, v2ð Þ ¼ sim vj, við Þ (6)

Basically, the k-means clustering method is considered as an unsuper-
vised learning method, where it is used to process unlabeled data. The pur-
pose of this clustering is to find the best group in the data and k
determines the number of clusters. The data is placed in clusters based on
the degree of similarity. In such a way that the data with the most similar-
ity are placed in one group and have the least similarity with other groups.
Here, k specifies the number of clusters and means the averaging. Clusters

8 B. ZHOU ET AL.



have a number of characteristics. The first feature: all the data in a cluster
must be most similar to each other. The second feature: the data in differ-
ent clusters should have the greatest difference. The time complexity of the
k-means method is OðN:k:IÞ, so that I is the number of iterations.
The pseudocode for k-means-based hybrid clustering is shown in

Algorithm 1. In this pseudocode, the original dataset is saved as TX and
then an improved version of k-means is called sequentially to find and
store the clustering results.

Algorithm 1. The hybrid clustering method based on k-means method.

01: P ¼ ;;
02: TX ¼ X;
03: For i ¼ 1 to B do
04: pi ¼ modified k-means (TX, ci);
05: TX ¼ TX � ⋃cij¼1rpj

i
;

06: P ¼ P [ pif g;
07: End

Since the difference between basic clustering is a prerequisite for the
effectiveness of the cluster group, in the following, how to obtain several k-
means clustering with different valid local labels will be discussed. For the
first time, we define an optimization problem for generating basic cluster-
ing as Eqs. (7) and (8)

min
p

z pð Þ ¼
XN
h¼1

XT
i¼1

hh Xið Þ ⋋ðph Xið ÞÞd Xi , Vph Xið Þð Þ
�" #

(7)

XT
h¼1

hh Xið Þ ⋋h Xið Þ ¼ 1 , 1 � i � N (8)

where hh Xið Þ is a Boolean variable that if is equal to 1, Xi will partly play a
role in the production of the basic cluster h: hh Xið Þ is provided to control
this issue that how many times do each sample play.
Here, constraint is required to each of the samples is applied only once

simultaneously to produce basic clustering that is provided by cluster cen-
ters in clustering. The purpose of minimizing the objective function Z is to
create cluster centers in each basic cluster to indicate that samples are in
the valid local and possible spaces. We suggest an incremental learning
method for solving the optimization problem. This method gradually pro-
duces the productive basic clustering by trying to optimize an incremental
problem in each step. The incremental problem is as Eq. (9). Given that P
has gained the first basic cluster gð0 < g < TÞ:

CYBERNETICS AND SYSTEMS 9



Min Zð P0 [ fpgþ1g (9)

In addition, hhþ1i is estimated through Eq (10)

hhþ1i ¼ 1,
Xg
h¼I

⋋h Xið Þ ¼ 0,

0, otherwise

8><
>: (10)

where 1 � i � N:
Given this constraint, we see that samples which are obtained by cluster

centers and not shown in P play an important role in basic clustering
g þ 1: The incremental learning method is as follows: We first set h ¼ 1,
hh Xið Þ ¼ 1 for 1 � i � N and S ¼ X: At each step, we select k samples as
the primary cluster centers from S randomly and use k-means with limita-
tion for its cluster. In the clustering method, the cluster centers are limited,
which can be seen only in relation to their neighborhoods in Eq. (9). This
will cause the final cluster centers obtained to show samples in local spaces
to be valid. After executing k-means, we will update S ¼ S� S0, where S0 is
a set of samples that have valid local labels in the kh basic clustering.
Additionally, we will update h ¼ hþ 1, if xi 2 S, then hh Xið Þ ¼ 1, other-
wise, for 1 � i � N, it will be 0.
The above method repeats until the number of samples in S is less than

k2h: Updating the cluster centers at each step through the iteration mechan-
ism leads to the production of the final cluster centers. It can guarantee
data description by multiple clustering. On the other hand, the importance
of satisfying the final conditions should be determined. Many researchers
argued that the maximum number of clustering in the set S of samples

should be less than
ffiffiffiffiffi
Sj jp

(Zheng et al. 2021; Zhu et al. 2021; Tan et al.
2020). Thus, while the number of samples in S is less than k2h, we assume
that S cannot be divided into kh clusters. Finally, if these conditions are
met, the repetition can be stopped.

Algorithm 2. Pseudocode of the MKM scheme.

Input: X, k, e
Output: P, V
01: P ¼ ;,V ¼ ;, S ¼ X, h ¼ 0;
02: hh Xið Þ ¼ 1, for 1 � i � N;
03: Randomly select kh primary cluster centers as vh on S;
04: While F < F0 do
05: F0 ¼ F;
06: Given vh, p̂h is updated by argminl¼1:::kh

d Xi, vhlð Þ
07: For Xi 2 S;

10 B. ZHOU ET AL.



08: Given ph, v̂h is updated by v̂h ¼
P

Xi2D
Xi

�
Dj j
,

09: where D ¼ p Xið Þ ¼ l
V

Xi 2 B vhlð Þ,Xi 2 S
� ���� ���

10: For 1 � l � kh;

11: F ¼ Pkh
l¼1 ph Xið Þ¼l ,Xi 2 S

P
dðXi, vhlÞ2

12: S0 ¼ ⋋h Xið Þ ¼ 1, Xi 2 S
� �

;

13: End For
13: For i ¼ 1 to N do
14: If Xi 2 S

0
then

15: hhþ1 Xið Þ ¼ 0;
16: else
17: hhþ1 Xið Þ ¼ hh Xið Þ;
18: End If
19: End For
20: P ¼ P [ phf g;
21: V ¼ V [ vh;
22: S ¼ S� S0;
23: End For
24: End While

The incremental method is called the Modified k-means (MKM) cluster-
ing method, which is formally described in Algorithm 2. The time com-
plexity of MKM, OðNt TkhÞ, where T is the number of partitions
generated. The outputs of the algorithm have been the clustering set P ¼
ph, 1 � h � Tf g and also the set of cluster centers, which is equal to V ¼
vh, 1 � h � Tf g: In order to simplify the basic clustering generation pro-
cess, we determine a number of clusters in each basic clustering as k, kh ¼
k, 1 � h � T: We continue the following example in Figure 3. Here, we
obtain a set of data as e ¼ 0:8 on the dataset as well as 10 cluster bases.
Part (d) shows the partition lines of these basic clusters generated by the

Figure 3. An example of MKM: (a) real class labels, (b) clustering from k-means, (c) local
hypothesis of the clusters, and (d) multiple partitions by MKM.

CYBERNETICS AND SYSTEMS 11



MKM scheme. We observe that these basic clusters are somewhat different,
which is useful for the cluster group.
Note that the number of T basic cluster depends on the parameter e:

When the amount of e decreases, the T value must be increased, because a
small amount of e indicates that each basic cluster contains a number of
local modifications. Therefore, while the e is set to a smaller value, we need
a more basic clustering to describe the whole data. The setting of e depends
on the needs of users, so that users can set the parameter to control the
basic cluster number based on their needs.

4. Proposed Clustering Method

This study has provided a hybrid clustering method. This study has used
the basic k-means clustering method as a basic cluster. Also, this study has
increased the diversity of aggregation by adopting some measures. Here,
the aggregation process of the basic clusters is done by the meta-clustering
technique, where the primary clusters are re-clustered to form the final
clusters. The proposed hybrid clustering method has the advantages of k-
means, its high speed, as well as it does not have its major weaknesses.
In general, the labels in the dataset represent classes, but the labels in

clustering only represent groups. Therefore, the labels in the clustering can-
not be used for comparisons and cluster analysis. In this regard, it is neces-
sary to align labels in clustering. Additionally, since the k-means method
can only detect spherical and uniform clusters, two of the same clustering
can represent a clustering. Hence, analysis of the relationship between clus-
ters through similar clustering in needed. Now, there are inconsistent
measures among the clusters proposed in the research literature (Yang
et al. 2021; Ma et al. 2021). An example of this can be seen in chain clus-
tering, where the intersection between clusters is determined by the dis-
tance between the farthest/closest sample between two clusters (Zhao et al.
2019). This method is sensitive to noise because it depends on a few spe-
cific samples to determine the final clusters. On the other hand, the dis-
tance between centers in center-based clustering approaches is defined as
the absence of correlation. This method does not have the ability to effect-
ively identify the border between clusters, but it has high computational
efficiency and is resistant to noise.
In general, the similarity between two clusters in different partitions can

be estimated based on the number of samples belonging to those clusters.
This strategy cannot reflect samples with wrong labels in the cluster.
However, some of these samples can have a high impact on the similarity
calculation. Also, two clusters from the same partition share no sample,
which is the reason for the inability of this metric to calculate similarity.
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Although there is good practice coordination between measures, they are
not suitable for hybrid clustering. As mentioned, the labels of the created
base partitions are different from the valid local labels. In other words, the
validity of labels of each cluster may be low or high. Hence, the calculation
of differences between clusters should be considered based on local labels.
However, due to the use of MKM to generate initial partitions, the overlap
between local labels should be relatively small. In this regard, we use an
indirect overlap technique to calculate the similarity between clusters.
If chl and cgi are two clusters, Vhl and Vgi are their cluster centers and

Vhl þ Vgið Þ=2 is the middle point of two centers. We assume there is a hid-
den cluster cz whose cluster center is Vhl þ Vgið Þ=2 for hidden for the clus-
ter. Let the probability of samples being in valid local locations be greater
with the density of samples. If there is a hidden cluster and the distance
between Vhl and Vgi is not greater than 4� e, valid local spaces from the
clusters chl and cgi are overlapping with the hidden clusters cz, as shown in
Figure 4. In this case, the valid local spaces chl and cgi are indirectly over-
lapping with the hidden cluster. For clusters chl and cgi , we consider these
parameters to estimate the similarity between clusters.
The distance between cluster centers is estimated based on the probabil-

ity of a hidden cluster between them. As we know, whatever d Vhl ,Vgið Þ is
smaller, the valid local spaces between them and cz will more overlap. In
this respect, it is a fact that their similarity is inversely related to
d Vhl ,Vgið Þ: Also, k-means is a clustering approach with a linear mechanism
and can identify the border of two clusters through a line between their
centers. If the range around them is among several samples, they can be
clearly identified. We use the following example in Figure 5.
It is clearly seen that clusters B and C have centers with larger distances

compared to clusters A and B. Meanwhile, it is easier to determine the bor-
der between clusters A and B. Hence, the distance between the centers of
clusters A and B may be increased considering the clarity of the boundary

Figure 4. Hidden cluster between clusters.
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identification. According to this hypothesis, let the similarity between two
clusters be estimated through a hidden cluster. Formally, similarity is meas-
ured as Eq (11)

d chl , cgið Þ ¼
B

Vhl þ Vgi

2

� 	����
����

d Vhl ,Vgið Þ d Vhl ,Vgið Þ � 4� e

0 Otherwise

8>>><
>>>:

(11)

Given the defined similarity matrix, we use an undirected weight graph
(e.g., G ¼< A,W >) to describe the relationships between clusters. In this
graph, A refers to the set of nodes that represent the cluster labels in P:

On the other hand, W in G refers to the weight of edges, which expresses
the similarity between clusters. Hence, the similarity of both clusters is the
concept of the weight of the edges between them, for example,
x, y 2 A , wXy ¼ d cx, cyð Þ, and whatever there is similarity between

them. By calculating the weighted graph, the relationships between the
clusters can be mapped to the normal graph discharge challenge, which is
as Eq. (12)

min
X

Q Xð Þ ¼ 1
k

XK
l¼1

P
x2Al , y2A�Al

wxyP
x2Al , z2A wxz

" #
(12)

where X ¼ Al, 8l ¼ 1, 2, :::, k is a partition of nodes in G and Al is one of
the subsets of A:
Our goal is to measure this partition using the minimization of the

objective function Q: This is achieved by creating a partition that has high
similarity between nodes in similar subsets and low similarity with nodes
in other subsets. To solve this problem and create partition A, the normal-
ized spectral clustering method has been used, where nodes in similar sub-
sets represent a cluster. Hence, if LðcxÞ is the label of the subset which cx
belongs to it, then we will have L Cxð Þ ¼ l, if Cx 2 Al: If 1 < l < k and x 2
A, the time complexity of the making of the cluster relationship

is O N T:khð Þ2

 �

:

Figure 5. Similarity between clusters.
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The use of hybrid clustering leads to the mapping of the clustering prob-
lem from the sample level to the cluster level. Assume that PC is a set con-
taining all primary clusters created from all basic methods. Taking each
cluster as a sample, the clustering process is applied again, where this time
the clusters are clustered. This technique can create meta-clusters, where
each meta-cluster contains several clusters. Meta-clusters have more know-
ledge about the data than clusters because they combine the latent know-
ledge from different clustering methods. Here, the clusters’ clustering
method is done using k-means. Let the similarity of two samples from the
available dataset be s xi, xjð Þ: Anyway, in meta-clusters the concept of simi-
larity is extended from the sample level to the cluster level. We define the
similarity measure of clusters in a meta-cluster through Eq. (13)

W mca,mcbð Þ ¼ 1
mcaj j:jmcbj

Xmcaj j

v¼1

Xmcaj j

w¼1

X cvj j
i¼1

X cwj j
j¼1

Cðxi, xjÞ
cvj j:jcwj

2
4

3
5

8xi 2 cv, xj 2 cw

(13)

where mca and mcb are two meta-clusters, and W mca,mcbð Þ refers to the

average similarity between them. Also, mcaj j and mcb
�� �� are the number of

clusters in mca and mcb, respectively. Moreover, cvj j and cwj j describe the
number of samples in cv and cw, respectively.
We create the final clusters by considering meta-clusters, where each

instance of the dataset is assigned to a meta-cluster with maximum similar-
ity. Meanwhile, the number of suitable clusters can be recognized by merg-
ing the initial clusters and applying a threshold value. Therefore, k is
determined as the number of optimal clusters by merging the initial clus-
ters until the threshold h is reached, as defined in Eq. (14). In other words,
clusters are merged until the similarity of each existing pair of clusters is
greater than h:

if r ca, cbð Þ � h¼) hence merged True
not merged False

, 8a, b 2 P C

�
(14)

where ca and cb are two clusters of the PC: Also, r ca, cbð Þ defines to the
average similarity between ca and cb:

5. Experimental Results

This section is related to the evaluation of the proposed clustering method
based on four synthetic datasets and five real datasets. Here, the efficiency
of the proposed method is evaluated through the analysis of different valid-
ation methods and runtime. The evaluation of the proposed method is
compared with some state-of-the-art methods such as COllaborative-Single
Link (CO-SL) (Fred and Jain 2005), COllaborative-Average Link (CO-AL)
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(Fred and Jain 2005), Combined Similarity Measure-Single Link (CSM-SL)
(Iam-On et al. 2011), Combined Similarity Measure-Average Link (CSM-AL)
(Iam-On et al. 2011), Weighted Triple Quality-Single Link (WTQ-SL)
(Iam-On et al. 2011), Weighted Triple Quality-Average Link (WTQ-AL)
(Iam-On et al. 2011), Weighted Connection Triple-Single Link (WCT-SL)
(Iam-On et al. 2011), Weighted Connection Triple-Average Link (WCT-AL)
(Iam-On et al. 2011), Meta-Clustering Algorithm (MCLA) (Strehl and Ghosh
2002), HyperGraph Partitioning Algorithm (HGPA) (Strehl and Ghosh
2002), Cluster-based Similarity Partitioning Algorithm (CSPA) (Strehl and
Ghosh 2002), Selective Voting (SV) (Zhou and Tang 2006), Selective
Weighted Voting (SWV) (Zhou and Tang 2006), Iterative Voting Consensus
(IVC) (Nguyen and Caruana 2007), Expectation–Maximization (EM)
(Topchy, Jain, and Punch 2005), Normalized Spectral Clustering (NSC) (Ng,
Jordan, and Weiss 2001), Density Based Spatial Clustering of Applications
with Noise (DBCAN) (Ester et al. 1996), and Clustering by Fast Search and
Find of Density Peaks (CFSFDP) (Rodriguez and Laio 2014).

5.1. Experiment Settings

A number of settings for these compared methods are listed below to
ensure that the comparisons are in uniform environment. The number of
clusters per basic cluster is equal to the actual number of classes in each of
the desired datasets. k-means is also used as a productive of basic cluster-
ing. There are two methods for basic clustering: (1) Multiple implementa-
tions of the k-means T, each with a random amount of cluster centers. Let
N refer to the number of samples. A set of the group T is set based on the
dataset scale. If N � 500, then T ¼ 25, if 500 � N < 1, 000, then T ¼ 45
and if N � 1, 000, then T ¼ 15: (2) Implement the proposed method. The
method requires an input parameter e, which is adapted to the size of the
T group, as required. Here, the size of the group T is essentially consistent
with the first plan.
We implemented all these methods with MATLAB 2019a simulator for

experiments. The simulations are based on a synthetic fog environment on
the Dell Latitude Laptop with IntelVR AtomTM processor N550 (Core i7 at
3.3 GHz) and 16GB of RAM. Meanwhile, the proposed method has some
parameters as input whose values are adjusted using Taguchi approach
(Yang et al. 2021).

5.2. Evaluation Criteria

Given the availability of real labels from the original dataset, we use two
common measures based on unsupervised learning to estimate the similar-
ity between the results and the correct division of the dataset of different

16 B. ZHOU ET AL.



methods. Given a dataset X and two partitions of these samples, namely
C ¼ c1, c2, :::, ckf g (clustering result) and P ¼ p1, p2, :::, pk0f g (real parti-
tion), the values associated with C and P can be provided in a contingency
table (Table 1), so that nij indicants the number of same nodes in the clus-

ters ci and pj : nij ¼ ci \ pj
�� ��:

Normalized Mutual Information (NMI) and Adjust Rand Index (ARI)
are evaluation metrics in experiments. The details of these criteria are
described below.

5.2.1. NMI

Let pa ¼ ca1, c
a
2, :::, c

a
paj j

 �
and pb ¼ cb1 , c

b
2 , :::, c

b

pbj j
� �

be the results of two

basic clustering methods as two partitions with paj j and pb
�� �� clusters,

respectively. Accordingly, the NMIðpa, pbÞ defines the diversity value for
these partitions (Li, Qian, and Wang 2021), as shown in Eq. (15)

NMI pa, pbð Þ ¼
2
P paj j

i¼1

P pbj j
j¼1

nijlog
n:nij
nia:nbj

� �
P paj j

i¼1
nia log nia

n


 �þP pbj j
j¼1

nbj log
nbj
n

� � (15)

where n is the number of samples, nij is the same number of samples in cai and

cbj , nia is the number of samples in cai , and nbj is the number of samples in cbj :

5.2.2. ARI
This measure is often used in cluster validation and can indicate agreement
between two partitions (Niu et al. 2020). The ARI is calculated based on
the Rand Index, as defined in Eq. (16)

ARI pa, pbð Þ ¼
P paj j

i¼1

P pbj j
j¼1

nij
2

� 	
� P paj j

i¼1
nia
2


 �P pbj j
j¼1

nbj
2

� �� �
= n

2


 �
1
2

P paj j
i¼1

nia
2


 �þP pbj j
j¼1

nbj
2

� �� �
� P paj j

i¼1
nia
2


 �P pbj j
j¼1

nbj
2

� �� �
= n

2


 �
(16)

Table 1. The default table to compare two partitions.
C P p1 p2 pk0 Sums

c1 n11 n12 n1k0 b1
c2 n21 n22 n2k0 b2
..
. ..

. ..
. . .

. ..
.

ck nk1 nk2 nkk0 bk
Sums d1 d2 dk0 –
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where n is the number of samples, nij is the same number of samples in cai and

cbj , nia is the number of samples in cai , and nbj is the number of samples in cbj :

5.3. Datasets

Experimental evaluations were performed on nine datasets. More informa-
tion describing the datasets used in the experiments can be found in Table
2. The cluster distribution of this synthetic 2D dataset is shown in Figure
6. The real datasets are derived from the UCI machine learning repository
(Golrou et al. 2018; Movahhed Neya, Saberi, and Rezaie 2022).

5.4. Compared Methods

The proposed hybrid clustering method is evaluated in comparison with a
wide range of clustering methods. Most of the clustering methods used for
comparison are state-of-the-art and hybrid clustering methods. These methods
include CO-average as a dual similarity approach that performs clustering
through shared similarity matrix (Fred and Jain 2005). Similarity matrices
based on CSM, WTQ, and WCT also belong to dual similarity approaches
and are considered for comparison (Iam-On et al. 2011). Here, CO, CSM,
WTQ, and WCT are analyzed through Single-Link (SL) and Average-Link
(AL) hierarchical clustering methods to calculate the final results.

Figure 6. Distribution of four synthetic datasets: (a) imbalance, (b) aggregation, (c) banana, and
(d) ring.

Table 2. Description of the datasets used.
Type dataset Datasets Number of samples Number of features Number of clusters

Artificial dataset Imbalance 2,250 2 2
Aggregation 788 2 7
Banana 2,000 2 2
Ring 1,500 2 3

Real dataset Wine 178 13 3
Iris 150 4 3

Digits 5,620 63 10
WBCD 569 30 2

KDD-CUP99 1,048,576 39 2
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Also, HGPA, MCLA, and CSPA are hybrid clustering methods presented
by Strehl and Ghosh (2002). These methods are also considered for com-
parison and evaluation of the proposed method. In addition, we use SV
and SWV as analysis-based weighted clustering methods for comparison
work (Zhou and Tang 2006). Here, two feature-based clustering methods
including IVC and EM are also used for comparison. IVC is presented by
Nguyen and Caruana (2007) and EM by Topchy, Jain, and Punch (2005).
We also evaluated the proposed method in comparison with some

Strong clustering approaches. Here, DBCAN, NSC, and CFSFDP were used
for comparison. NSC is presented by Ng, Jordan, and Weiss (2001),
DBCAN by Ester et al. (1996), and CFSFDP by Rodriguez and Laio (2014).

5.5. Results and Discussions

This section analyzes the results of the proposed method in comparison with
existing clustering methods. First, the parameter e is analyzed as an effective
input parameter for the proposed method. In general, setting the parameter e
is an important challenge in the proposed method. We discussed that the
selection of this parameter depends on the number of basic clustering consid-
ered by the users. Then, we examined the effect of the parameter e on the
performance of proposed method with performing relevant tests. For example,
this problem has been analyzed on Wine and Iris datasets. As shown in part
(a) in Figures 7 and 8, the number of basic clusters generated by the MKM
scheme decreases with increasing e: However, as shown in part (b) in these
figures, the quality of the clustering results does not increase, hence the value
of e should be slightly increased. On the other hand, the results clearly show
that the number of basic clustering methods considered is not suitable. In
other words, the number of methods considered to produce high-quality final

Figure 7. Analysis of the e parameter of the proposed method on the Wine dataset. (a) num-
ber of basic clusters generated and (b) quality of clustering results.

CYBERNETICS AND SYSTEMS 19



clusters is high or low. Therefore, we must select an appropriate value of e to
control the number of basic clustering on each dataset.
In the following, the proposed method is evaluated in comparison with

other hybrid clustering methods. Based on the NMI and ARI credit criteria,
the performance of different clustering methods has been compared on
synthetic and real datasets. Table 3 shows the results of the comparisons
for the synthetic dataset based on NMI, and the results of this measure for
the real dataset are reported in Table 4. These comparisons for ARI are
presented in Tables 5 and 6, respectively. Here, the last two columns indi-
cate the average and Standard Deviation (SD) of each method for this data-
set based on MKM. As illustrated, the superiority of the proposed method
in creating high-quality and high-accuracy clusters on synthetic data sets is
clear. This issue is confirmed by observing the results of the subject cluster-
ing methods. The proposed method has succeeded in creating higher

Figure 8. Analysis of the e parameter of the proposed method on the Iris dataset. (a) number
of basic clusters generated and (b) quality of clustering results.

Table 3. Results of evaluations on synthetic datasets based on NMI metric.

Methods

Imbalance Aggregation Banana Ring
Average SD

Random MKM Random MKM Random MKM Random MKM MKM MKM

CO-SL 0.269 0.007 0.875 0.631 0.402 0.001 0.693 0.693 0.333 0.238
CO-AL 0.269 0.231 0.875 0.841 0.402 0.415 0.210 0.194 0.420 0.261
CSM-SL 0.269 0.314 0.872 0.765 0.402 0.412 0.220 0.189 0.420 0.258
CSM-AL 0.269 0.001 0.872 0.024 0.402 0.002 0.020 0.001 0.007 0.310
WTQ-SL 0.269 0.009 0.875 0.550 0.402 0.002 0.539 0.693 0.314 0.225
WTQ-AL 0.269 0.205 0.869 0.887 0.402 0.432 0.216 0.237 0.440 0.257
WCT-SL 0.269 0.004 0.875 0.631 0.402 0.002 0.119 0.002 0.160 0.283
WCT-AL 0.269 0.298 0.875 0.863 0.402 0.395 0.215 0.118 0.418 0.260
MCLA 0.269 0.238 0.838 0.678 0.402 0.384 0.001 0.006 0.326 0.303
HGPA 0.004 0.007 0.628 0.678 0.001 0.007 0.001 0.129 0.205 0.271
CSPA 0.160 0.160 0.736 0.678 0.391 0.438 0.377 0.122 0.350 0.206
SV 0.269 0.001 0.386 0.304 0.402 0.230 0.174 0.163 0.174 0.093
SWV 0.269 0.002 0.617 0.435 0.402 0.003 0.247 0.148 0.147 0.147
IVC 0.269 0.223 0.893 0.810 0.402 0.395 0.380 0.170 0.399 0.240
EM 0.269 0.320 0.874 0.828 0.003 0.003 0.148 0.148 0.325 0.331
Proposed method 0.817 0.997 0.981 0.981 0.693 0.999 0.763 0.995 0.993 0.106
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Table 5. Results of evaluations on synthetic datasets based on ARI metric.

Methods

Imbalance Aggregation Banana Ring
Average SD

Random MKM Random MKM Random MKM Random MKM MKM MKM

CO-SL 0.247 0.001 0.795 0.419 0.505 0.001 0.502 0.502 0.231 0.194
CO-AL 0.247 0.181 0.795 0.752 0.505 0.511 0.132 0.110 0.388 0.255
CSM-SL 0.247 0.323 0.794 0.710 0.505 0.507 0.146 0.104 0.411 0.251
CSM-AL 0.247 0.001 0.794 0.008 0.505 0.001 0.006 0.002 0.003 0.293
WTQ-SL 0.247 0.001 0.795 0.379 0.505 0.001 0.413 0.502 0.221 0.199
WTQ-AL 0.247 0.134 0.790 0.784 0.505 0.527 0.140 0.168 0.403 0.251
WCT-SL 0.247 �0.013 0.795 0.419 0.505 0.001 0.027 0.002 0.102 0.287
WCT-AL 0.247 0.297 0.795 0.766 0.505 0.491 0.140 0.020 0.394 0.253
MCLA 0.247 0.193 0.704 0.485 0.505 0.481 0.002 0.007 0.291 0.265
HGPA 0.001 0.001 0.493 0.485 0.001 0.001 0.002 0.122 0.152 0.213
CSPA 0.051 0.051 0.551 0.485 0.494 0.546 0.318 0.086 0.292 0.195
SV 0.247 �0.004 0.310 0.231 0.505 0.117 0.086 0.063 0.102 0.150
SWV 0.247 0.001 0.372 0.300 0.505 0.005 0.182 0.032 0.084 0.124
IVC 0.247 0.167 0.821 0.775 0.505 0.491 0.325 0.119 0.388 0.221
EM 0.247 0.333 0.826 0.743 0.005 0.005 0.032 0.032 0.278 0.330
Proposed method 0.423 1.000 0.906 0.988 0.670 1.000 0.508 0.993 0.996 0.184

Table 6. Results of evaluations on real datasets based on ARI metric.

Methods

Wine Iris Digits WBCD
Average SD

Random MKM Random MKM Random MKM Random MKM Random MKM Random

CO-SL 0.732 0.732 0.729 0.732 0.732 0.732 0.732 0.732 0.732 0.001
CO-AL 0.567 0.567 0.564 0.567 0.567 0.567 0.567 0.567 0.567 0.001
CSM-SL 0.849 0.356 0.729 0.655 0.616 0.298 0.732 0.004 0.328 0.082
CSM-AL 0.849 0.002 0.729 0.002 0.001 0.001 0.732 0.004 0.002 0.336
WTQ-SL 0.732 0.732 0.729 0.732 0.732 0.732 0.732 0.732 0.732 0.001
WTQ-AL 0.567 0.567 0.564 0.567 0.567 0.567 0.567 0.567 0.567 0.001
WCT-SL 0.732 0.732 0.729 0.732 0.732 0.732 0.732 0.732 0.732 0.001
WCT-AL 0.567 0.567 0.564 0.567 0.567 0.567 0.567 0.567 0.567 0.001
MCLA 0.732 0.732 0.729 0.732 0.732 0.732 0.732 0.732 0.732 0.001
HGPA 0.733 0.733 0.730 0.733 0.733 0.733 0.733 0.733 0.733 0.001
CSPA 0.849 0.849 0.846 0.849 0.849 0.849 0.849 0.849 0.849 0.001
SV 0.008 0.008 0.005 0.008 0.008 0.008 0.008 0.008 0.008 0.001
SWV 0.164 0.164 0.161 0.164 0.164 0.164 0.164 0.164 0.164 0.001
IVC 0.689 0.539 0.596 0.689 0.602 0.600 0.050 0.354 0.545 0.253
EM 0.787 0.493 0.599 0.698 0.622 0.620 0.634 0.599 0.603 0.074
Proposed method 0.913 0.870 0.773 0.758 0.844 0.786 0.680 0.771 0.796 0.086

Table 4. Results of evaluations on real datasets based on NMI metric.

Methods

Wine Iris Digits WBCD
Average SD

Random MKM Random MKM Random MKM Random MKM Random MKM Random

CO-SL 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760
CO-AL 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725
CSM-SL 0.836 0.464 0.760 0.670 0.732 0.474 0.625 0.007 0.836 0.464 0.760
CSM-AL 0.836 0.023 0.760 0.027 0.005 0.005 0.625 0.007 0.836 0.023 0.760
WTQ-SL 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760
WTQ-AL 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725
WCT-SL 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760
WCT-AL 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725
MCLA 0.836 0.548 0.760 0.772 0.764 0.605 0.625 0.473 0.836 0.548 0.760
HGPA 0.172 0.374 0.162 0.725 0.495 0.005 0.002 0.002 0.172 0.374 0.162
CSPA 0.779 0.582 0.682 0.725 0.787 0.594 0.300 0.444 0.779 0.582 0.682
SV 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020
SWV 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243
IVC 0.730 0.585 0.682 0.711 0.722 0.688 0.043 0.336 0.730 0.585 0.682
EM 0.799 0.558 0.674 0.731 0.729 0.717 0.541 0.532 0.799 0.558 0.674
Proposed method 0.888 0.856 0.816 0.806 0.903 0.861 0.614 0.668 0.888 0.856 0.816
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quality clusters due to the use of valid local clustering theory as well as the
use of meta-clusters. Therefore, the proposed method identifies the final
clusters more effectively and increases the efficiency.
Basically, the performance of the proposed method is better than other

methods in the real dataset. However, improving the accuracy of the pro-
posed method in the real dataset is less than that of the synthetic dataset.
One of the most important reasons for this is that the dimensions of real
data sets are much larger than synthetic datasets. In addition, according to
the results, it can be stated that most of the compared clustering methods
have performed better than the MKM scheme considering the random
scheme. Because any basic cluster generated by the MKM scheme only
includes the local modification of clusters in a dataset. However, these
existing methods do not recognize or consider local modification.
Therefore, they cannot get the results of a good group in the MKM
scheme. The proposed method has better performance in MKM scheme
than other methods. Note that the proposed method implements only in
the MKM scheme, because the MKM scheme is part of it. We observe that
the proposed method in the MKM scheme works better in terms of NMI
and ARI based on other methods in the randomized scheme.
In the following, the proposed method is evaluated in comparison with

other strong clustering methods. The results of comparing the proposed
method with three strong clustering methods (i.e., NSC, DBCAN, and
CFSFDP) based on the synthetic and real datasets are reported in Tables 7
and 8, respectively. Here, the last two rows refer to the mean and SD in
each clustering method. As shown in these experiments, the clustering
quality provided by the proposed method is better or promising compared
to other methods. As the simulation results show, the proposed method
can simulate strong simulation results and realize “a few clusters equal to a
strong cluster.”
In another experiment, the computational complexity of clustering meth-

ods is evaluated through runtime analysis. The efficiency of the proposed
method on the KDD-CUP99 dataset was tested. We set k ¼ 2 and e ¼
0:14: The runtime of the method with a number of samples (i.e., N) is
shown in Table 9. It is clearly evident that the number of T basic clustering

Table 7. Results of evaluations on synthetic datasets.

Synthetic datasets

NSC DBSCAN CFSFDP Proposed method

ARI NMI ARI NMI ARI NMI ARI NMI

Imbalance 0.9989 0.9992 0.9987 0.9993 0.9990 0.9988 0.9995 0.9989
Aggregation 0.9931 0.9919 0.8076 0.8887 0.9866 0.9811 0.9860 0.9809
Banana 0.9989 0.9992 0.9987 0.9993 0.9990 0.9988 0.9995 0.9989
Ring 0.9989 0.9992 0.9987 0.9993 0.3217 0.3780 0.9995 0.9989
Average 0.9975 0.9974 0.9509 0.9717 0.8266 0.8392 0.9961 0.9944
SD 0.0025 0.0032 0.0827 0.0479 0.2915 0.2664 0.0058 0.0078
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increases with increasing number of samples. Given the time complexity of
the proposed method, the runtime with T is second order. Given the run-
time of the proposed method, the runtime with T is second order.
However, since that T < N and T slowly increase in comparison with N
growth, the cost of increasing T growth time is acceptable. As depicted, the
cost of runtime of the method proposed is proportional to the number of
linear samples. Therefore, the proposed method must be able to quickly
obtain the final clustering in a large-scale dataset. As illustrated, the pro-
posed method is very efficient.

6. Conclusion

Among the clustering methods, hybrid clustering is one of the popular
methods with high stability and robustness, which provides the ability to
discover hidden patterns with high accuracy. Hybrid clustering can adapt
itself to the input dataset by using the knowledge of different methods and
increase the quality of the final solution. The different quality of partitions
from basic clustering methods is one of the arguments of hybrid clustering,
which can achieve better results by combining them. Although k-means is
a poor clustering method, it has a low computational cost, which makes it
unsuitable for clustering results. Therefore, this study used the k-means
clustering method as the basic cluster. Here, we presented a different defin-
ition of valid local clusters by considering the data around the cluster

Table 8. Results of evaluations on real datasets.

Synthetic datasets

NSC DBSCAN CFSFDP Proposed method

ARI NMI ARI NMI ARI NMI ARI NMI

Wine 0.9297 0.9003 0.3574 0.4438 0.7401 0.7515 0.8674 0.8529
Iris 0.7442 0.7967 0.5149 0.5891 0.7015 0.7264 0.7552 0.8029
Digits 0.7523 0.8106 0.5039 0.7150 0.7571 0.8632 0.7828 0.8580
WBCD 0.7480 0.6315 0.0465 0.0290 0.7292 0.6139 0.7687 0.6654
KDD-CUP99 0.6346 0.6276 0.2843 0.3551 0.5853 0.5907 0.6346 0.6356
Average 0.7618 0.7533 0.3414 0.4264 0.7026 0.7091 0.7617 0.7630
SD 0.0948 0.1072 0.1715 0.2337 0.0614 0.0989 0.0747 0.0943

Table 9. Performance of the proposed method based on runtime (s) on the KDD-
CUP99 dataset.
Number of samples T CSPA MCLA SWV IVC CFSFDP Proposed method

5,000 44 11.82 6.24 10.85 12.39 18.81 5.96
10,000 107 41.18 39.87 39.74 39.70 53.26 26.14
15,000 110 67.98 62.21 54.08 51.37 63.20 39.54
20,000 114 99.11 88.15 70.79 65.01 74.91 55.11
25,000 114 123.91 108.81 83.65 75.26 83.01 67.51
30,000 119 156.64 136.09 101.38 89.81 95.75 83.87
35,000 119 183.18 158.21 115.20 100.87 104.60 97.14
40,000 179 316.56 269.36 192.11 166.36 168.89 163.83
45,000 232 505.95 427.18 297.38 254.11 249.69 258.53
50,000 234 562.69 474.46 327.19 278.09 269.27 286.92
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centers in k-means. To increase the diversity in the primary clusters, we
used a duplicate strategy on nonappearance data in valid local clusters.
Also, we used the inter-cluster and intra-cluster similarity measure to esti-
mate the similarity between valid local clusters. This process has resulted in
the production of a weighted graph in which the weight of the edges
expresses the degree of similarity between the clusters. An aggregation
function based on meta-clustering was used to create the final clusters, in
which the primary clusters were re-clustered to obtain the final clusters. In
general, the idea of the proposed method is to understand the concept of
several weak clusters equal to a strong cluster by k-means. The results
obtained from the proposed hybrid clustering method are more consistent
with the real data structure. This method has reported better results com-
pared to state-of-the-art methods on different datasets. Based on the results,
the proposed method is effective for dealing with large-scale datasets.
According to the concept of granular computing, how to extract the rela-
tionship between basic clustering methods and primary partitions is worth
studying in future work. Also, the proposed method can appear more
effective considering feature extraction/selection approaches. On the other
hand, it is recommended to use techniques of increasing diversity such as
bagging to select suitable basic clustering methods for future works.
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