

Research Space Conference paper

> Insights into research-led interdisciplinary approach to teaching Sports related disciplines in Higher Education.3rd Faculty Annual Conference on Learning and Teaching and Scholarship Day: Canterbury Christ Church University, 7th February 2019 Van Vuuren-Cassar, G.



Faculty of Education

## 3<sup>rd</sup> Annual Learning and Teaching Conference and Scholarship Day



## INSIGHTS INTO RESEARCH-LED INTERDISCIPLINARY APPROACH TO TEACHING SPORTS RELATED DISCIPLINES IN HIGHER EDUCATION

DR GEMMA VAN VUUREN CASSAR 7-2-2019

# OVERVIEW

- Teaching and Research
  - Interactive Teaching
  - Research Informed Teaching (RiT)
  - Technology Enhanced and Flipped Learning
- The SPORT PHYSICAL EDUCATION AND COACHING IN HEALTH (SPEACH) PROJECT
- Developing a Research community of practice in HE



# HIGHER EDUCATION OF THE 21ST CENTURY IMPACT OF THE BOLOGNA PROCESS (1999 -2018)





 "All undergraduate students in all higher education institutions should experience learning through, and about, research and inquiry"

(Healey and Jenkins, 2009, p.3).

 Universities have responsibility for the development of research-related skills as a direct result of the Lisbon and Bologna agreements

(Griffioen 2013; de Weert and Van der Kaap 2014).

# RESEARCH COMMUNITY OF PRACTICE: 6 STEPS TO ENGAGE STUDENTS WITH RESEARCH

- 1. Encourage active reading
- 2. Discuss your research with students
- 3. Involve your students in your research
- 4. Highlight co-curricular research opportunities
- 5. Make the most of your institutional resources
- 6. Identify research-based activities in the region



# DEVELOP STUDENT'S AND STAFF RESEARCH ACTIVITY

- Assessments using research methods and data analysis;
- Poster and oral presentations;
- Dissertation showcases;
- Research seminars;
- Conferences;
- Writing workshops;
- Publications journals, blogs etc
- Collaborative projects
- HE networks



## **RESEARCH IN HIGHER EDUCATION**

RESEARCH EXCELLENCE FRAMEWORK (2014, UK)

#### **RESEARCH IN HE DEFINED**

- 'a process of investigation leading to new insights effectively shared'
- ie disseminated within the wider academic domain

#### **RESEARCH-LED TEACHING**

- students benefit from and want to be taught by research active academics - at the leading edge of their fields.
- enables universities to build a research community and an academically rigorous learning environment
- is characterised as enabling students to think analytically, critically and creatively, within and across subject and international boundaries – just as the best researchers do.

|                                                     |                                                         | Students are                     | e participants                            |       |                           |
|-----------------------------------------------------|---------------------------------------------------------|----------------------------------|-------------------------------------------|-------|---------------------------|
|                                                     | Research-tutored<br>Engaging in research<br>discussions |                                  | Research-base                             | d     |                           |
| Emphasis on research content                        |                                                         |                                  | Undertaking<br>research & inquiry         |       |                           |
|                                                     |                                                         |                                  |                                           |       | Emphasis on               |
|                                                     | Learning<br>current<br>the disc                         | g about<br>research in<br>ipline | <i>Developing res</i><br>& inquiry skills | earch | processes and<br>problems |
|                                                     | Researc                                                 | h-led                            | Research-orien                            | ited  |                           |
|                                                     | [                                                       | Students ar                      | e an audience                             |       |                           |
| THE RESEARCH-TEAC<br>Healey and Jenkins (2009, p.7) | HING NE                                                 | EXUS                             |                                           |       |                           |

# WHAT IS "RESEARCH-INFORMED TEACHING"?

- Research informed teaching focuses on *the processes through which knowledge is produced, places emphasis on developing skills of research and enquiry,* and on developing a research culture in which students are encouraged to think about how knowledge is developed and how they can be engaged in that process.
- Immersing students in the relevant disciplinary and departmental research cultures and the process of doing research and enquiry can be of wider benefit. Evidence suggests that students who are actively involved in the process of research are more engaged (Baldwin, 2005).
- Making *reference to relevant academic research* in the course of subject teaching; this is what Griffiths (2004) terms "research led teaching".

CASE STUDY: LINKING FIRST AND SECOND-YEAR ASSESSMENT STRATEGIES THROUGH RESEARCHING THE NEED FOR A LOCAL SPORTS DEVELOPMENT PROJECT IN A **WORK** BASED LEARNING MODULE AT WEST HERTS COLLEGE, UK

- In the 2<sup>nd</sup> semester of year one Foundation Degree in Sport Studies (FDSS) students develop a project proposal focused on researching the need for a local sports development project.
- Students complete a **project proposal form** which is then presented to a panel for assessment.
- In year two students are encouraged to approach employers with their year one sports development project proposals, to fulfil the requirements of their double semester work-based learning (WBL) module



-Students develop, implement, analyse and reflect on their implemented project proposals and this forms the basis for a 5,000 word mini final project.

-Examples include: a proposal to increase female sports participation which resulted in a cricket enrichment programme at a local secondary school for year eight female pupils and an employment opportunity for the FDSS student

# CHALLENGES WITH RIT IN THE PLACEMENT SETTING



- Matching client need, student need and staff expertise.
- Quality of research/work experience
- Ethical and legal concerns

#### MESSAGE

- Explain benefits of authentic experience
- Students perceive RiT as an opportunity to enhance employment and complete research
- RiT develops graduate attributes:
  - Adaptability, effective communicator, digitally literate, informed, problem solving, critical thinking, leadership and teamwork skills





#### BLOOM'S TAXONOMY AND FLIPPED LEARNING (BERGMANN, 2017)





#### DEFINITION

"Interdisciplinary studies is a process of answering a question, solving a problem, or addressing a topic that is too **broad or complex** to be dealt with adequately by a single discipline, and draws on the disciplines with the goal of integrating their insights to construct a more comprehensive understanding" (Repko, 2011, p.16)

## INTERDISCIPLINARY APPROACH TO TEACHING IN HE





pedagogical cases in physical education and youth sport

eaucation and youth sport





Digital Technologies and Learning in Physical Education Pedagogical cases

Physical Education Pedagogical cases

"SPORT PEDAGOGY IS APPLIED, PRACTICE REFERENCED, MULTI-DISCIPLINARY AND INTERDISCIPLINARY. ITS PURPOSE IS TO CREATE NEW KNOWLEDGE TO SUPPORT PRACTITIONERS IN PHYSICAL ACTIVITY SETTINGS SUCH AS SPORT, EXERCISE, PHYSICAL ACTIVITY AND PHYSICAL EDUCATION"

HTTP://AIESEP.ORG/WP-CONTENT/UPLOADS/2014/11/2012-AIESEP-POSITION-STATEMENT-ON-SPORT-PEDAGOGY.PDF

#### WHAT ARE INTERACTIVE TEACHING STRATEGIES IN HE? (LYALL, MEAGHER, BANDOLA AND KETTLE, 2015)

#### **INTERACTIVE METHODS**

- Project-based learning (PBL)
- Case study methods
- Role-playing
- Simulations
- Virtual methods
- Peer-assessment and review
- Peer-assisted learning (PAL)
- Small-group teaching

#### **CO-TEACHING / TEAM TEACHING**

- Co-creation of syllabus and case studies
- Advanced planning and negotiation with co-teacher
- Co-advising with industry representatives
- Taking turns in teaching
- Creating learning community

## WHY CASE STUDY?

#### STAFF VIEWS

- Case study provides a form of inquiry that elevates a view of life in its complexity (Thomas, 2011)
- Case study imitate real-life settings and real-world complexities and are highly dependent on students' individual efforts.

#### STUDENT VIEWS

- case-based teaching led to students' stronger
   critical-thinking skills (89.1%)
- better ability to make connections across multiple content areas (82.6%)
- deeper understanding of concepts (90.1%)

(Goodman and Huckfeldt, 2013)

(Herreid, 2011)

# PROJECT GOALS: SPORT PHYSICAL EDUCATION AND COACHING IN HEALTH (SPEACH) PROJECT

#### GOALS

- Raising awareness about behavioural change towards an active and healthy lifstyle
- Developing Health Enhancing Physical Activity (HEPA) modules in Higher Education
  - Physical EducationTraining Education (PETE) &
  - Sport coaching education programmes



An initiative by the School of Sport Studies (Hanze University of Applied Sciences Groningen) in collaboration with:



## **BACKGROUND: CHILDREN 2-15**

|             |                      |     |     |      |        | Age (years) |
|-------------|----------------------|-----|-----|------|--------|-------------|
|             | All children<br>2-15 | 2-4 | 5-7 | 8-10 | -11-12 | 13-15       |
|             |                      |     |     |      |        | Hours       |
| Boys        |                      |     |     |      |        |             |
| Weekday     | 3.3                  | 2.8 | 2.8 | 3.0  | 3.7    | 4.2         |
| Weekend day | 4.2                  | 3.2 | 3.8 | 4.3  | 4.6    | 5.3         |
| Base        | 862                  | 216 | 192 | 177  | 124    | 153         |
| Girls       |                      |     |     |      |        | 94,194      |
| Weekday     | 3.2                  | 2.8 | 2.7 | 3.1  | 3.5    | 4.3         |
| Weekend day | 4.0                  | 3.2 | 3.9 | 4.1  | 3.8    | 5.1         |
| Base        | 868                  | 212 | 184 | 191  | 135    | 146         |

Sedentary time per day in children, by age and gender, England 2012 (BHF, 2015)

### BACKGROUND: YOUNG PEOPLE AND ADULTS

|        | QD1 How   | often do you exerc      | ise or play sport: | ?     |            |
|--------|-----------|-------------------------|--------------------|-------|------------|
|        | Regularly | With some<br>regularity | Seldom             | Never | Don't know |
| EU28   | 8%        | 33%                     | 17%                | 42%   | 0%         |
| Gender |           |                         |                    |       |            |
| Man    | 9%        | 36%                     | 18%                | 37%   | 0%         |
| Woman  | 7%        | 30%                     | 16%                | 47%   | 0%         |
| Age    |           |                         |                    |       |            |
| 15-24  | 11%       | 53%                     | 17%                | 19%   | 0%         |
| 25-39  | 8%        | 38%                     | 21%                | 33%   | 0%         |
| 40-54  | 8%        | 31%                     | 20%                | 41%   | 0%         |
| 55 +   | 8%        | 22%                     | 12%                | 58%   | 0%         |
|        |           |                         |                    |       |            |

Eurobarometer, (March 2014)

# **PROJECT DESIGN**



- Management, monitoring & evaluation
- Needs analysis
- Module development
- Training concept development
- Piloting, review & validation
- Quality assurance
- Sustainability



### **NEEDS ANALYSIS**

Healthy Lifestyle, Sports and Physical Activity

#### SURVEY RESULTS: STUDENTS

| Gender | Respondents | %       |
|--------|-------------|---------|
| Male   | 426         | 65 %    |
| Female | 234         | 35 %    |
| Total  | 660         | 100.0 % |

| Country            | Respondents | %       |
|--------------------|-------------|---------|
| Belgium            | 99          | 15.0 %  |
| Denmark            | 73          | 11.1 %  |
| Lithuania          | 92          | 13.9 %  |
| Portugal           | 86          | 13.0 %  |
| Spain              | 76          | 11.5 %  |
| The Netherlands    | 167         | 25.3 %  |
| The United Kingdom | 67          | 10.2 %  |
| Total              | 660         | 100.0 % |











of the European Union

#### **STUDENT VIEWS: IMPORTANT LEARNING METHODS** (SPEACH PROJECT, 2015-2017)



# STUDENT VIEWS: IMPORTANT LEARNING METHODS (SPEACH PROJECT, 2015-2017)

#### Top 5 among PETE students:

- 1. Practice oriented learning: 94 %
- 2. Training: 89 %
- 3. Group-based learning: 87 %
- 4. Internship: 85 %
- 5. Problem-based learning: 82 %

Least important learning method is: E-learning (52 %).

#### Top learning methods suggested by experts

- Same as above
- Involving reflective learning







# NEEDS ANALYSIS MOST IMPORTANT CONTENT

#### Top 5 among PETE students:

- 1. Changing behaviour and motivation theories: 92 %
- 2. Physical activity for specific groups: 89 %
- 3. Personal leadership: 86 %
- 4. Health policy: 82 %
- 5. Nutrition: 79 %

Least important is: Specific epidemiology (62 %).

#### Experts: What is the most important content to focus on?

- Content such as health policy, motivation theory and nutrition
- General packages relevant for every sports discipline (for example nutrition)
- Specific content focusing on the possibility of specialisation.

#### Top 5 among students in the field of coaching/training:

- 1. Changing behaviour and motivation theories: 88 %
- 2. Personal leadership: 85 %
- 3. Nutrition & Health Policy: 82 %
- 4. Physical activity for specific groups & Testing and exercise prescription: 78 %

Least important is: Specific epidemiology (60 %).

# MODULE DEVELOPMENT

|   | Title: Complex HEPA challenge                                                                                                                                                                                                    | Responsible<br>partner | Co-<br>developer<br>(PE) | Co-developer<br>(CO) |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|----------------------|
| 1 | <ul> <li>Stimulating sport and physical activities for<br/>children with special needs towards a brighter<br/>future</li> </ul>                                                                                                  | Hanze                  | LSU                      | NOC*NSF              |
| 2 | <ul> <li>Promoting HEPA among children and youth</li> </ul>                                                                                                                                                                      | SDU                    | VUB                      | ICCE and<br>ESDRM    |
| 3 | <ul> <li>A healthy lifestyle for the whole family!</li> </ul>                                                                                                                                                                    | VUB                    | LSU                      | NOC*NSF<br>and ESDRM |
| 4 | <ul> <li>Nutrition, digital technology and physical<br/>activity for adults</li> <li>"Understanding the changes of the human body<br/>and the impact of nutrition and physical activity in<br/>midlife (40-59 years)"</li> </ul> | CCCU                   | SDU                      | ICCE                 |
| 5 | <ul> <li>Influencing and monitoring behaviour towards<br/>HEPA</li> </ul>                                                                                                                                                        | Hanze                  | LSU                      | NOC*NSF              |

# MODULE DEVELOPMENT

THE CHALLENGE: NUTRITION, DIGITAL TECHNOLOGY AND PHYSICAL ACTIVITY FOR ADULTS http://speach.hanze.nl/

**The Case:** You (and your team) have been tasked by your professional body to develop a **programme of health enhancing physical activity for a new client group, middle-aged adults (40-59**).

This programme will be piloted in your region in the first instance. Your programme needs to bring together various policies, provisions and stakeholders that provide Physical Activities for this age group. **The unique characteristic of this programme will be the integration of information and wearable technology** to support participants in their journey **to participate in walking sports or other physical activities; and the impact of nutrition and physical activity on their health**.





By Fitbit, Inc









Next





< 7 hr 34 min

141

# MODULE TEMPLATES



Promoting HEPA among

children and youth

Stimulating sport and physical activities for children with special needs

- Learning outcomes (LO)
- Level 4-5 (Vocational)
- Level 6 (Bachelors)
- Level 7 (Masters)
- Student assignment(s)
- Task 1: Knowledge Enrichment Activity (20%)
- Task 2: Assignment: Scientific report (group task) (40%)
- Task 3: Portfolio of engagement with clients and the workplace (individual task) (40%)

#### Go directly to our modules





Healthy Family Healthy Lifestyle for the whole family! Physically Active Adults

Nutrition, digital technology

and HEPA for adults



Influencing Behaviour Influencing & monitoring behaviour towards HEPA

| Week to week schedule |                           |                                                                     |  |  |
|-----------------------|---------------------------|---------------------------------------------------------------------|--|--|
| Week                  | Subject                   | Topic Content                                                       |  |  |
| 1/2                   | Introduction              | Nutrition and physical activity                                     |  |  |
| 3/4                   | Nutrition                 | Concepts and physical activity                                      |  |  |
| 5/8                   | Nutrition                 | Physiological applications and HEPA                                 |  |  |
| 9/10                  | Field trip                | Target population settings                                          |  |  |
| 10/11                 | Digital technology        | Technology for health enhancing physical activity                   |  |  |
| 13/14                 | Leadership                | Practical Workshop:<br>Walking physical activities for participants |  |  |
| 15 -21                | Work based<br>learning    | Tutor and peer consultations                                        |  |  |
| 22-25                 | Preparation<br>Assessment | Tutorials                                                           |  |  |
|                       |                           |                                                                     |  |  |

### **PILOTING MODULES**

• From 6-10 February 2017, over 65 students from eight European countries joined the international SPEACH week hosted at Hanze University of Applied Sciences Groningen.



## MODULE RESOURCES

Case based challenge: wearable technology

| Class based learning<br>& Group work | Activity                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | <ul> <li>Lab work: review wearable technology and apps that will be of interest to your client group for nutrition and physical activity.</li> <li>Discuss your findings with your classmates and share your findings. Upload your findings to a virtual learning environment that can be accessed by you and your future clients.</li> </ul> |
|                                      | Web links, Books, Journals, Reports                                                                                                                                                                                                                                                                                                           |

## CONCLUSION

- Insights into teaching and research in sport related disciplines demonstrate how the project team and participants developed into a community of innovative and research led teaching and culture, that transformed the student experience.
- The SPEACH project shows that **students were co-creators** of the curriculum through **rigorous and ethical research** procedures.
- Students were delighted that theory and practice were combined in each module through case studies and a variety of research led teaching activities.
- The development of the five modules by three partners from different institutions and disciplines was a transformational journey.
- The **combination of areas of content** required the use of **team teaching** approaches in Higher Education.
- Students felt that interdisciplinary modules were authentic to the world of work; and the application of research and analytic skills promoted graduate attributes and enhanced employability.

## REFERENCES

Baldwin, G. (2005). *The teaching–research nexus: how research informs and enhances learning and teaching in the Higher Education Sector* University of Melbourne. Melbourne: University of Melbourne.

Bergman, J. (2017) *Flipped Learning*, Available at: <u>https://www.heacademy.ac.uk/knowledge-hub/flipped-learning-0</u> (Accessed 25-01-2019)

British Health Foundation (2015) Physical Activity Statistics 2015 Available at https://www.bhf.org.uk/publications/statistics/physical-activity-statistics-2015 (Accessed 15-7-2017)(Report compiled by Nick Townsend, Kremlin Wickramasinghe, Julianne Williams, Prachi Bhatnagar and Mike Rayner. Nuffield Department of Population Health, University of Oxford)

Eurobarmeter (2014) Special Eurobarometer 334: Sport and Physical Activity - Datasets Available at: http://ec.europa.eu/commfrontoffice/publicopinion/archives/eb\_special\_419\_400\_en.htm#412 (Accessed 15-7-2017)

European Higher Education Area in 2018:Bologna Process Implementation Report Available at <a href="https://eacea.ec.europa.eu/national-policies/eurydice/sites/eurydice/files/bologna">https://eacea.ec.europa.eu/national-policies/eurydice/sites/eurydice/files/bologna</a> internet 0.pdf (Accessed 24-10-2018)

Goodman, B.E. and Huckfeldt, V.E. (2013) The Rise and fall of a required interdisciplinary course: lessons learned. *Innovative Higher Education, 39* (1) 75–88. Available from: <u>http://doi.org/10.1007/s10755-013-9261-4</u> (Accessed 19-3-2018).

Griffiths, R. (2004). Knowledge production and the research–teaching nexus: the case of the built environment disciplines. Studies in Higher Education, 29(6), 709–726.

Griffioen, D. M. E. (2013) *Research in higher professional education: A staff perspective*. Academic Thesis: University of Amsterdam.

## REFERENCES

Herreid, C.F. (2011). *Case study teaching*. New Directions for Teaching and Learning, 31–40.. Available from <a href="https://onlinelibrary.wiley.com/doi/epdf/10.1002/tl.466">https://onlinelibrary.wiley.com/doi/epdf/10.1002/tl.466</a> (Accessed 15-3-2016)

Healey, M., & Jenkins, A. (2009). *Developing undergraduate research and inquiry*. York: The Higher Education Academy.

Lyall, C., Meagher, L., Bandola, J., Kettle, A. (2015) Interdisciplinary provision in higher education: current and future challenges. Higher Education Academy: York. Available from <u>file://stafs-nhr-</u> <u>02.ccad.canterbury.ac.uk/gv22/Downloads/interdisciplinary provision in he.pdf</u> (Accessed 12-3-2016)

Repko, A.F. (2011) Interdisciplinary Research: Process and Theory. London: Sage.

Thomas, G. (2011) How to do your case study. London: Sage.

Weert, de E. and Van der Kaap, H. (2014) The changing balance of teaching and research in the Dutch binary higher education system. In: Shin, J. C., Arimoto, A., Cummings, W. K., and Teichler, U. (Eds.) *The changing academy – The changing academic profession in international comparative perspective*. Dordrecht: Springer, pp. 113–33.



## THANK YOU FOR LISTENING

<u>Gemma.van-vuuren-</u> cassar@canterbury.ac.ul