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Abbreviations

ANCOVA – Analysis of covariance

BP – Blood pressure

CVD – Cardiovascular disease

dBP – Diastolic blood pressure

HIIT – High intensity interval training

IVSd = Interventricular septal diameter diastole

LA – Left atrial

LV – Left ventricle

mBP – Mean blood pressure 

MPI – Myocardial performance index

NO – Nitric oxide

PALS – Peak atrial longitudinal strain

PA – Physical activity

PWd – Posterior wall thickness diastole

ROI – Region of interest

sBP – Systolic blood pressure

VSM – Vascular smooth muscle
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Abstract

Purpose: High intensity interval training (HIIT) has been shown to improve important health

parameters,  including aerobic capacity,  blood pressure, cardiac autonomic modulation and

left  ventricular  (LV)  mechanics.  However,  adaptations  in  left  atrial  (LA)  mechanics  and

aortic stiffness remain unclear. 

Methods: Forty-one physically inactive males and females were recruited. Participants were

randomised to either a 4-week HIIT intervention (n=21) or 4-week control period (n=20).

The  HIIT  protocol  consisted  of  3x30-second  maximal  cycle  ergometer  sprints  with  a

resistance of 7.5% body weight, interspersed with 2-minutes of active unloaded recovery, 3

times per week. Speckle tracking imaging of the LA and M-Mode tracing of the aorta was

performed pre and post HIIT and control period. 

Results: Following HIIT, there was significant improvement in LA mechanics, including LA

reservoir  (13.9±13.4%,  p=0.033),  LA  conduit  (8.9±11.2%,  p=0.023)  and  LA  contractile

(5±4.5%,  p=0.044)  mechanics  compared  to  the  control  condition.  In  addition,  aortic

distensibility (2.1±2.7cm2dyn-1103,  p=0.031) and aortic stiffness index (-2.6±4.6,  p=0.041)

were improved compared to  the control  condition.  In stepwise linear  regression analysis,

aortic distensibility change was significantly associated with LA stiffness change R2 of 0.613

(p=0.002). 

Conclusion:  A  short-term  programme  of  HIIT  was  associated  with  a  significant

improvement in LA mechanics and aortic stiffness. These adaptations may have important
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health  implications  and contribute  to  the  improved  LV diastolic  and systolic  mechanics,

aerobic capacity and blood pressure previously documented following HIIT.
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Introduction

Physical activity (PA) and exercise training are considered important strategies in reducing

mortality as well as preventing cardiovascular disease (CVD) risk (Paffenbarger et al. 1986).

Large scale observational studies demonstrate that regular exercise is cardioprotective and

reduces  the  incidence  of  numerous  chronic  diseases,  including  coronary  artery  disease,

diabetes, hypertension, cancer, and obesity (Warburton et al. 2006). As such, physical activity

is  a  viable  therapeutic  and prophylactic  intervention  for the primary  prevention  of  CVD.

However, despite substantial health benefits observed when meeting international guideline

recommendations  for  PA (150-minutes  of  moderate-intensity  or  75  minutes  of  vigorous-

intensity, or an equivalent combination, per week), adherence is poor and lack of time is often

cited as a common barrier.

High  intensity  interval  training  (HIIT)  has  generated  significant  interest  as  an  exercise

modality  to  improve  cardiovascular  health,  with  significant  improvements  in  functional

capacity  (Weston et al. 2014), metabolic health  (Gibala et al. 2012), and cardiac autonomic

modulation  (O'Driscoll  et  al.  2018), while  remaining  time-efficient.  Recent  work  has

demonstrated  improved  left  ventricular  (LV)  mechanics,  including  systolic  and  diastolic

torsion and arterial blood pressure following 2-weeks of HIIT (O'Driscoll et al. 2018). The

impact  these adaptations have on left  atrial  (LA) and aortic  function are not yet reported

following HIIT. The proximal aorta plays a pivotal role in preserving the arterial-ventricular

coupling by buffering the systolic load during each ventricular ejection (O'Rourke 1994) and

notably,  the left atrium plays a key role in regulating left  ventricular function. Numerous

studies have shown a close association between reduced arterial compliance and LV diastolic

impairment  (Zito et al. 2014; Xu et al. 2011). Moreover, using cardiac magnetic resonance
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imaging, the DALLAS heart study (Maroules et al. 2014) and MESA study (Redheuil et al.

2014) demonstrated a close association between reduced aortic distensibility and all-cause

mortality  (Redheuil et al. 2014). Furthermore, previous studies have demonstrated a close

association  between  LV diastolic  dysfunction  and arterial  stiffness  (Cauwenberghs  et  al.

2016;  Kaess  et  al.  2016).  In  addition,  LA  performance  is  impaired  in  patients  with

hypertension and diabetes despite normal LA size in comparison to controls (Mondillo et al.

2011). Aerobic exercise is associated with decreased arterial stiffness (Gates et al. 2003) and

improved  LA  performance  (Edelmann  et  al.  2011).  However,  little  is  known  about  the

interaction between arterial compliance and LA function following HIIT. The purpose of this

study is to investigate the effects a four-week HIIT intervention has on LA deformation, LV

function  and  aortic  compliance  (aortic  mechanics),  evaluated  non-invasively  by

echocardiography  compared  to  a  control  group,  in  a  physically  inactive  population.  We

hypothesized that HIIT would significantly improve LA mechanics and aortic stiffness.
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Methods

This  study  was  a  single-centre,  4-week  randomised  controlled  trial  comparing  a  HIIT

intervention with a control group. The study took place at the School of Human and Life

Sciences  at  Canterbury  Christ  Church  University  (CCCU)  in  the  UK.  This  study  was

performed  with  approval  from  the  Ethics  Committee  of  CCCU  in  accordance  to  the

Declaration of Helsinki. All participants recruited provided signed informed consent and the

CONSORT guidelines were followed during the course of the research (Schulz et al. 2010). 

Participants

Forty-four physically  inactive males  and females (aged 23±2.7 years) volunteered for the

study. Resting arterial blood pressure (BP) was recorded in a temperature controlled room pre

and post  the HIIT intervention  and control  condition  using a  validated  automated  device

(Dinamap Pro 200 Critikon; GE Medical Systems, Freiburg, Germany), according to recent

guidelines  (Williams  et  al.  2018).  Participant  height  was  recorded  at  baseline  using  a

stadiometer (Seca 217 Stadiometer, Hamburg, Germany), weight was measured pre and post

the  HIIT  intervention  and  control  condition  using  column  scales  (Seca  700  Mechanical

Column Scales,  Hamburg,  Germany),  and body surface area  was calculated  according to

Mosteller’s  formula  (Mosteller,  1987).  All  participants  had  no prior  medical  history  and

completed a physical activity readiness questionnaire prior to recruitment. Participants were

randomised using stratified randomisation for gender to the HIIT or control group, in order to

avoid gender bias in each group (Good 2006). All participants were advised to adhere to the

same dietary and physical activity habits, refrain from alcohol and caffeine intake 24 hours

before each visit and to avoid food intake at least 4 hrs prior to the laboratory visits to avoid
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postprandial  haemodynamic  changes.  Any  participants  presenting  with  any

cardiovascular/metabolic disease or taking any medication was excluded from the study. 

High intensity interval training intervention

The  HIIT  intervention  was  comprised  of  twelve  sessions  over  a  4-week  period  (3

sessions/week), with each session consisting of three Wingate tests separated by a 2-minute

active (unloaded) recovery period. Each Wingate test was characterised by 30 seconds of

maximal  cycling against  a resistance  equal  to  7.5% of each participant’s  body mass and

performed on a Wattbike trainer  (Nottingham, England). Each participant  performed a  5-

minute warm up before and a 5-minute cool down after each HIIT session. Strong verbal

encouragement  was  provided  during  exercise  and participants  were  unaware  of  the  time

remaining in each 30-second sprint. 

Transthoracic Echocardiography

A standardized transthoracic echocardiogram and Doppler examination was performed using

a commercially available Vivid-q ultrasound system (GE Healthcare, Milwaukee, Wisconsin)

with a 1.5 – 3.6 MHz phased array transducer. All images were acquired at baseline and post

intervention in the HIIT and control group by the same sonographer. The images were stored

in raw archive DICOM data for  offline  analysis  and measurements  were  recorded by an

experienced echocardiographer (NJ) who was blinded to participant characteristics and group

allocation.  Echocardiographic  studies  were  performed  and  standardized  in  accordance  to

current  ASE/EACVI guidelines  (Evangelista  et  al.  2008). LV dimension,  wall  thickness,

geometry, mass, and LV systolic and diastolic parameters were assessed. LV ejection fraction
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was estimated using Simspon’s rule. LV diastolic function was assessed using the EACVI

diastolic guidelines  (Nagueh et al. 2016) in the apical 4 chamber view using PW Doppler

flow at the tips of the mitral valve to obtain mitral E (m·s-1), mitral A (m·s-1) and E wave

deceleration time (ms). Using tissue Doppler imaging at the annular level of the mitral valve,

the  septal  and lateral  peak  early  diastolic  (E’),  late  diastolic  (A’)  and peak  longitudinal

systolic velocity (S’) of the myocardium were recorded. LV filling pressure was estimated

from the Mitral E/E’.

Left atrial parameters

LA deformation was evaluated from the septal and lateral wall of the left atrium in the apical

four chamber view (Figure 1). LA strain imaging was analysed offline using a GE EchoPac

workstation. During image acquisition, frame rates between 60-90 frames·s-1 were recorded.

The software automatically generates a region of interest (ROI) with a default width of 15mm

and  tracing  of  the  left  atrium  was  performed.  If  tracking  of  the  LA  myocardium  was

inadequate,  the  ROI  was  manual  adjusted  to  enhance  tracking. The  automated  software

generated traces depicting the regional longitudinal strain for each segment and calculated

global longitudinal strain. Using P wave onset enabled us to define the first negative peak,

which  occurred  at  maximal  LA  contraction  and  represented  its  contractile  function

(contractile  strain),  the  first  positive  peak,  which  occurred  at  mitral  valve  opening  and

represented LA conduit function (conduit strain), and the difference of these peaks, which

represented reservoir function (reservoir strain). Global LA strain parameters were assessed

as the average of six segmental values. Peak atrial longitudinal strain (PALS) was measured

from the onset of the QRS to the positive peak of strain at the onset of the P wave (Mondillo

et al. 2011). LA stiffness was estimated using the formula, LA stiffness = (E/E’)/PALS.
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Aorta parameters

Two-dimensional guided M-mode assessment of the ascending aorta in the parasternal long

axis view during systole and diastole was used to measure the elastic properties of the aorta

(Figure 2). The formulas used to calculate the aortic parameters were as follows:

 Aortic strain (%) = (aortic systolic diameter – diastolic diameter)  x 100 / diastolic

diameter.

 Aortic Distensibility (cm2·dyn-1) = (2 x aortic strain) / (systolic pressure - diastolic

pressure).

Sample size calculation

Based on operator coefficient of variation for diastolic function and estimated filling pressure

(E/E’) using transthoracic echocardiography, a sample size of 14 to 17 participants in each

group has 80% power to detect a significant difference in diastolic function and estimated

filling  pressure,  respectively,  with a  2-sided p<0.05.  It  was  estimated  a  drop-out  rate  of

between 10-30% leading to an overall sample size of 44 participants (22 in each group).  

Statistical analysis

Unless otherwise stated, continuous variables are expressed as mean ± standard deviation. All

data analysis was performed using the Statistical Package for Social Sciences (SPSS V22.0,

release  version  for  windows;  SPSS  Ins.,  Chicago,  IL,  USA).  Normal  distribution  of  all
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continuous variables was confirmed using the Shapiro-Wilk test (Field 2018). Comparison of

data collected pre and post intervention between the control and HIIT groups (change scores)

was analysed using a one-way analysis of covariance (ANCOVA) with baseline parameters

used  as  covariates  to  assess  whether  changes  in  echocardiographic  and  BP  parameters

following both  intervention  and control  periods  are  influenced  by initial  baseline  values.

Stepwise  linear  regression  analysis  using  LA  stiffness  as  the  dependent  variable  was

conducted. Statistical significance was deemed a priori as p<0.05.
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Results 

A total of 41 participants completed the HIIT intervention (n=21, age 21±1.7 years, height

173.7±9.5  cm)  and  control  period  (n=20,  age  22±3.5  years,  height  172.4±8.8  cm).  Two

participants dropped out the study at randomisation and 1-participant from the control group

discontinued, without giving a reason. Descriptive characteristics are presented in Table 1.

No differences  were  apparent  between  conditions  for  participant’s  age,  height,  or  BP at

baseline. Following 4-weeks of HIIT there was a statistically significant reduction in resting

systolic  BP  (-6.86±8.76  mmHg)  compared  to  the  control  condition  (-1.15±9.4  mmHg,

p=0.041). 

Conventional cardiac structural and functional parameters

The conventional cardiac structural and functional parameters at baseline and following HIIT

and control periods are displayed in Table 2. HIIT significantly increased LV ejection time

(p=0.001), lateral S’ (p=0.018), lateral E’ (p<0.001), and septal S’(p=0.01), and significantly

reduced  LV  internal  diameter  in  systole  (p=0.027)  and  myocardial  performance  index

(p=0.039) compared to the control condition. 

Left atrial mechanics and aortic function

Following 4-weeks of HIIT, there was significant improvement in LA mechanics compared

to the control condition. LA reservoir (p=0.033), LA conduit (p=0.023), and LA contractile

(p=0.044)  mechanics  significantly  improved  following  HIIT  compared  to  the  control

condition. HIIT was also associated with a statistically significant reduction in LA stiffness
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compared to the control condition (p=0.032). There was a significant reduction (p=0.012) in

the ascending aortic diastolic diameter and significant improvement in aortic distensibility

(p=0.031) following  HIIT  compared  to  the  control  condition.  These  adaptations  were

associated with a significant reduction in aortic stiffness (p=0.041) following HIIT compared

to control. The LA mechanical and aortic functional parameters at baseline and following

HIIT and control  periods  are  displayed in  Table  3.  Following stepwise  linear  regression

analysis  with  LA  stiffness  as  the  dependent  variable,  aortic  distensibility  (ß  =  -0.557,

p=0.002) and LA conduit function (ß = -0.772,  p<0.001) were significantly associated with

LA stiffness. The overall model fit was R2 = 0.613 (Figure 3).

Discussion
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The present study is the first randomised controlled study to investigate the effect HIIT has

on LA deformation and aortic mechanics in a cohort of physically inactive individuals. The

results of the study demonstrate that HIIT significantly improved LA mechanics and aortic

distensibility  compared  to  a  control  condition.  Reductions  in  aortic  bioelasticity  and LA

performance negatively effects LV systolic and diastolic function  (Pandey et al. 2017). As

such, these findings may have wider health and clinical implications in not only individuals

who are unable to meet current  PA guidelines,  but clinical  groups,  such as hypertensive,

diabetic and heart failure patients with preserved ejection fraction. 

Left atrial performance

During each cardiac cycle, the left atrium deforms such that during systole the left atrium

stretches and recoils to its original shape during diastole. It is evident from previous studies

that  there is  a closer interlink between LA stretch and LV global  longitudinal  strain,  LA

volume and LA ejection fraction (Russo et al. 2012). All parameters of LA mechanics were

significantly  improved  following  HIIT  in  our  study  compared  to  control  conditions.  In

addition, HIIT was associated with a significant improvement in LA compliance, which was

estimated using a non-invasive calculation of LA stiffness. When the left atrium is highly

compliant, mean LA pressure is lower due to a steady transformation of venous flow into the

LV (Suga 1974). Ultimately, our findings suggest these adaptations in LA deformation may

improve cardiac performance. Indeed, our study demonstrated significant improvements in

markers of cardiac performance, including ejection time, lateral and septal S’, lateral E’, and

myocardial performance index. These results are also supported by recent research from our

groups laboratory, which demonstrated significant improvements in systolic and diastolic LV

mechanics (O'Driscoll et al. 2018). In addition, animal studies have shown increased calcium
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reuptake  by  the  sarcoplasmic  reticulum up to  30% higher  in  the  myocardium following

aerobic interval training (Matsunaga et al. 2007), which determines LV relaxation. A greater

calcium reuptake from myofilaments augments active relaxation and improving LV filling

(Carrick-Ranson et al. 2012). 

Aortic mechanics

Aortic distensibility is a parameter, which is closely related to the bioelastic function of the

aorta and which serves as a marker for CVD (Laurent et al. 2006). The results of this study

show that aortic distensibility and aortic stiffness index was significantly improved following

4-weeks of HIIT.  Erol  et  al.  (2002) demonstrated  an increase  in aortic  distensibility  and

decreased aortic stiffness in elite athletes compared to a control group. Since our study was

observational, the underlying mechanisms by which improved ascending aorta compliance

are induced is unclear. However, improved arterial compliance following HIIT demonstrated

in the present study may be due to local and systemic influences.

Any proposed mechanism must be consistent with structural and functional changes in the

vascular system. Structurally, arterial compliance/distensibility is primarily determined by the

composition of the arterial  media such as vascular smooth muscle (VSM) and connective

tissue (elastin and collagen fibres) (MacDonald and Nichols 2011). The elastin/collagen ratio

in the proximal thoracic aorta determines the physical properties and the degree of VSM tone

determines  the  functional  properties.  Relaxation  of  the  VSM  transfers  less  stress  from

collagen to elastin,  which increases aortic compliance as a result  of the active adaptation

(Belz 1995). It is reasonable to assume that short term HIIT influences active adaptation of

the aorta locally and systemically in improving arterial compliance. The significant reduction
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in resting systolic blood pressure supports this concept. There is also suggestion that exercise

can suppress sympathetic-adrenergic tone which increases arterial compliance (Tanaka et al.

2000). However, several studies have shown conflicting results regarding the role of arterial

compliance modulated by sympathetic-adrenergic tone of smooth muscle in the arterial wall

(Raper and Peterson 1969; Boutouyrie et al. 1994). It has been known for a long time that

aortic diameter and compliance are influenced by vasoactive receptors such as Angiotensin II

and noradrenaline, which exist within the large arteries (Bolton 1979; Vanhoutte et al. 1981).

It seems reasonable to speculate that release of vasoactive substances may exert autocrine and

paracrine  influences  on vascular tone and be a potential  modulator  for aortic  compliance

secondary to HIIT. It is also conceivable that, episodic shear stress on the endothelium of the

arteries  during  exercise  due  to  enhanced  blood  flow,  releases  nitric  oxide  (NO)  thereby

supporting flow dependant dilatation  (Endo et al. 1994). Nonetheless, the present findings

indicate  that  compared  to  control  conditions,  short  term  HIIT  in  a  sedentary  population

significantly improves aortic elastic properties. 

In this study, stepwise linear regression analysis revealed that aortic distensibility, which is

an aortic bioelastic parameter, was significantly (p=0.002) associated with LA stiffness. In

addition, LA reservoir strain was significantly associated with LA stiffness (p<0.001), which

reflects  the LA active relaxation.  These findings are important since a reduction in aortic

distensibility can impair LV active relaxation, through increased LA afterload that ultimately

leads  to  LA  myocardial  fibrosis,  which  is  key  in  LA systolic  and  diastolic  dysfunction

(Mondillo  et  al.  2011;  Morris  et  al.  2011).  Previous  studies  have  shown  increased  LA

stiffness is secondary to LA fibrosis in parallel with LV and large artery stiffening, secondary

to  subendocardial  fibrosis  (Morris  et  al.  2011) and  medial  degeneration  (Jacob  2003)

respectively. Miyoshi et al (2011) study demonstrated that LA function is related to arterial
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compliance,  suggesting  increased  arterial  stiffness  impairs  early  active  relaxation  (LA

reservoir function), which is an early form of LA-LV-arterial decoupling. 

Previous studies have attempted to study the association between LV diastolic dysfunction

and arterial stiffness  (Cauwenberghs et al. 2016; Kaess et al. 2016; Kim et al. 2017). Our

study findings support the hypothesis that a four-week HIIT intervention improves aortic and

LA mechanics and may provide some mechanistic basis for reduced cardiovascular risk in at-

risk groups who undertake increased levels of exercise and consequent improved fitness. We

postulate  that  this  improved  atrio-ventricular  and  ventriculo-arterial  function  after  HIIT

exercise may, if continued, have important health implications in cardio-metabolic diseases

such  as  hypertension,  diabetes  and  heart  failure  with  preserved  ejection  fraction  in  the

medium to longer term. Further studies are required to prove this in outcome driven trials of

HIIT.

Strengths and limitations

This was a small, single-centre study design which recruited a Caucasian-only population.

Our study does not allow the determination of a causal effect. A causal link in improving

aortic and LA function following HIIT can be hypothesized; however, further longitudinal

studies are needed to confirm this hypothesis. LA deformation analysis was performed using

strain imaging in the apical 4 chamber view only and we used non-invasive imaging methods

to analyse aortic mechanics similar to Stefanadis et al. (1990) technique, which has shown

good correlation with invasive techniques. For the calculation of aortic distensibility, brachial

arterial  BP was used instead  of  aortic  root  pressure as  there  may not  be any significant

variation  between  both  in  healthy  volunteers.  Measurement  of  pulse  wave  velocity  is
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considered as the gold standard method for assessing arterial stiffness; however, our study

focussed on utilizing transthoracic echocardiography in analysing aortic and LA function.

Notwithstanding  these  limitations,  our  study  was  randomised  and  image  analysis  was

performed  by  a  single  skilled  operator  blinded  to  participant  characteristics  and  group

allocation. 

Conclusion

Our study demonstrated that a four-week  HIIT intervention was associated with significant

improvement  in  LA  mechanics  and  aortic  stiffness  compared  to  non-exercise  control

conditions. The present study also suggests close interaction between aortic distensibility and

LA stiffness. These adaptations may have important health implications and contribute to the

improved  LV diastolic  and systolic  mechanics,  aerobic  capacity  and reduced  arterial  BP

previously documented following HIIT. In light of the positive impact on the left atrium and

aorta,  HIIT  is  a  promising  exercise  strategy  for  improving  cardiometabolic  health  with

minimal time commitment. Further investigation is warranted to identify the potential risks

and benefit of long term HIIT and the optimal level of HIIT for cardiovascular protection. 
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Figure legends

Figure 1: Left atrial strain imaging in the apical 4 chamber view. Note: AVC = Aortic valve 

closure; LASr = LA reservoir phase, LAScd = LA conduit phase, LASct = LA contraction 

phase, x-axis = Time (msec); y-axis = LA strain (%); top right graph illustrates segmental LA

strain and bottom right graph illustrates mean LA strain.

Figure 2: Aortic distensibility measurement using M-mode in the parasternal long axis view

using  transthoracic  echocardiography.  Measurement  of  aortic  distensibility  and  stiffness

using the internal aortic diameter during the systolic and diastolic phase of the cardiac cycle

from an M-mode tracing.

Figure 3: Correlation between delta left atrial stiffness and delta aortic distensibility 

following HIIT (F(2,19)=15.062, p<0.001) with an R2 of 0.613).
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