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Abstract 

Despite the advances in treatment using chemotherapy or targeted therapies, due to 

static survival rates, non-small cell lung cancer (NSCLC) is the major cause of cancer-

related deaths worldwide. Epigenetic-based therapies have been developed for NSCLC 

by targeting DNA methyltransferases (DNMTs) and histone-modifying enzymes. 

However, treatment using single epigenetic agents on solid tumours has been 

inadequate; whereas, treatment with a combination of DNMTs inhibitors with 

chemotherapy and immunotherapy has shown great promise. Dietary sources of 

phytochemicals could also inhibit DNMTs and cancer stem cells, representing a novel 

and promising way to prevent and treat cancer. Herein, we will discuss the different 

DNMTs, DNA methylation profiling in NSCLC as well as current demethylating 

agents in ongoing clinical trials. Therefore, providing a concise overview of future 

developments in the field of epigenetic therapy in NSCLC. 

Significance: Combined approaches of epigenetic therapy have the potential to modify 

the entire cancer epigenome and improve the overall survival rate of lung cancer. This 

review summarizes the role of DNA methyltransferases and the clinical benefits of 

altering DNA methylation in the tumour, with a focus on current epigenetic 

developments in the clinic. 
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Introduction 

Lung cancer is currently the leading cause of cancer-related death worldwide. Lung 

cancer has a high incidence at ~17% combined with a poor survival rate (~5-years) [1, 

2]. Approximately, ~20% are small cell carcinoma (SCLC) and ~80% are non-small 

cell carcinoma (NSCLC) including adenocarcinoma (AD), squamous cell carcinoma 

(SCC), and large cell carcinoma (LCC) subtypes. The risk factors for lung cancer has 

been proposed to be driven by an accumulation of genetic mutations or alterations, often 

combined with factors present in the environment. As well as tumour suppressor genes 

(TSGs) and oncogenes, the expression of tumour progenitor genes may be disrupted by 

epigenetic alteration during early stages of cancer progression [3]. The tumour 

progenitor genes assist in controlling a number of biological processes, the progression 

of disease and cancer spread by metastasis [4]. These genes play a crucial role in 

epigenetic alteration that involves chromatin compaction and nuclear architecture. The 

overall survival (OS) rate in the last five years has remained at ~15% despite the 

improvements by research and development into novel therapies [5, 6]. The future 

development of therapies using an epigenetic approach such as DNA methyltransferase 

inhibitors (DNMTi) and histone-modifying drugs may provide a new route in treatment 

and would potentially contribute to better OS. These small molecule inhibitors have 

already been tested in the clinic on their own or in combination with chemotherapy 

drugs. The idea of using combination therapy allows the cancer cells to be exposed first 

to the epigenetic drug thus priming the cancer cells to the chemotherapy [7, 8]. 

DNA methylation is a process that facilitates the transfer of methyl groups to the 5’ site 

of a cytosine in a cytosine-guanine (CpG) dinucleotide. The latter are frequently found 

in high density areas, termed CpG islands, which are located in more than half of the 

human gene promoters. The function of this modification, in combination with histone 
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modifications, facilitates the inhibition of RNA polymerase to bind to this region and 

thus silence the affected gene [9, 10].  

Preventing abnormal DNA methylation as that occurring in cancer cells could provide 

a protective mechanism allowing the cells to recover and facilitate the efficacy of 

treatment such as chemotherapeutics. Herein, we will discuss the current published and 

ongoing clinical trials utilizing epigenetic therapy in NSCLC. 

 

DNA methylation 

DNA methylation is the major type of epigenetic modification that plays a key role in 

regulating gene expression, mammalian developmental stages, genomic imprinting and 

in cancer progression [11-13]. DNA methyltransferases (DNMTs) facilitate the transfer 

of methyl to cytosine using the methyl donor S-adenosyl methionine (SAM) (Figure 1). 

In cancer cells, there are two types of DNA methylation abnormalities; hypo- and 

hyper-methylation. Hypermethylation can result in the silencing of TSGs or genes that 

are involved in cancer progression such as metastasis, invasion, and immune response 

of T-cell recognition [14, 15]. Global genome hypomethylation which is typical of 

aging cells, is a hallmark of cancer [16] and is associated with genomic instability [17].  

 

DNA methyltransferases  

Mammals have four active members of DNMTs called DNMT1, DNMT3A, DNMT3B 

and DNMT3L; the latter being an accessory protein in the DNA methylation process 

[18]. The DNMTs are a group of proteins that share a similar amino acid sequence and 

are highly conserved. The N-terminus is composed of a regulatory domain and the C-

terminus has the catalytic domain [19]. In lung cancer, multiple epigenetic 

modifications, including DNA methylation, result from chronic carcinogen exposure 



Targeting DNA methyltransferases in Non-small-cell lung cancer 

	

	 4	

such as smoking and radon gas [20]. DNMTs upregulation has been reported in smokers 

with NSCLC, being associated with silencing of TSGs such as FHIT, CDKN2A and 

RARb [21, 22]. The reactive oxygen species (ROS) could be produced during exposure 

to cigarette smoke caus localized inflammation in the airways [23]. There is a fine 

balance between oxidants and antioxidants termed “redox homeostasis” that’s critical 

for a healthy response in all organisms including mammals. Excessive oxidative stress 

results in the targeting of transcriptional repressors and thus an increase in DNA 

methylation. The biological consequences lead to chromosomal changes, mutations etc. 

that are important processes contributing to carcinogenesis [24]. 

 

 DNMT1 

The DNMT1 is the main maintenance methyltransferase responsible for copying 

methylation patterns to the nascent DNA strand after DNA replication [25, 26]. 

DNMT1 is found associated with DNA replication forks in the S phase of the cell cycle, 

which methylate’s the newly synthesized DNA [27, 28]. The N-terminal region is 

composed of 621 amino acids (aa) that are not required for DNMT1 activity but play a 

role in distinguishing between hemi-methylated and unmethylated DNA [29] (Figure 

2). The C-terminal region is composed of 500 aa that contains the active centre and 

displays conservation between C5 DNMTs from eukaryotes and prokaryotes. All 

DNMTs catalytic domains display a shared core structure called the “AdoMet-

dependent methyltransferase”. This region is required for cofactor binding (motifs I and 

X) and substrate catalysis (motifs IV, VI and VIII). The target recognition domain 

located between motifs VIII and IX plays a role in DNA recognition and specificity. 

The DNMT1 is the main DNMTs directed towards the replication foci. There exists 

three nuclear localization signal (NLS) sequences located to the N-terminus which 
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contribute to the maintenance of methylation and facilitate the enzyme to be close to 

the nuclear replication site including the replication foci targeting sequence, the poly 

bromo homology domain and the proliferating cell nuclear antigen (PCNA) binding 

domain. PCNA is involved in DNA replication and its interaction with DNMT1 could 

facilitate the newly synthesized daughter strands to be remethylated prior to them being 

packaged into chromatin. DNMT1 closely binds to the replication machinery thus 

allowing DNMT1 to associate with newly replicated and histone-free DNA [30]. It is 

suggested that p21, cell-cycle regulator can block DNMT-PCNA interacting. DNA 

damage activates p21 protein which could regulate DNMT-PCNA association. In 

addition, p21 could down regulate DNMT1 expression. Deletion of both alleles of 

DNMT1 in mice demonstrates lethality on day E9 of development [31]. There are other 

cell cycle regulators that can interact with DNMT1 such as retinoblastoma gene product 

(Rb). Rb can bind to DNMT1 and block the methytransferase activity of DNMT1 

during DNA replication. Downregulation of Rb may allow DNMT1 to freely move in 

the genome and thus could lead to abnormal de novo methylation of CpG [32, 33]. Poly 

(ADP-ribose) polymerase 1 (PARP1) assists in repairing single-strand DNA breaks. 

Blocking the action of PARP1 prevents the repair of single-strand breaks and leads to 

double strand breaks (DSB). Interestingly, poly (ADP-ribose) polymerase 1 (PARP1) 

has been shown to interact with the promoter of DNMT1 and has a role in protecting 

CpG island methylation and limiting the silencing at transcription [34]. In other studies, 

this interaction of PARP1 and DNMT1 regulates the activity of DNMT1 [35, 36]. In 

subsequent studies, PARPi and DNMTi were combined to target BRCA proficient 

triple negative breast cancer and AML resulting in enhanced binding of PARP1 in 

chromatin and retaining PARP1 and DNMT1 at double strand breaks (DSB) [37].  
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TRDMT1 (DNMT2) 

TRDMT1 formally known as DNMT2 is the shortest of all the mammalian DNMT. It 

is composed of the C-terminal region lacking the regulatory N-terminal domain (Figure 

2). It is thought that TRDMT is involved in recognizing DNA damage, mutation repair 

and DNA recombination [38]. While TRDMT is not considered to be a DNA 

methylase, it can methylate cytosine-38 of the small transfer RNA (tRNA) as opposed 

to DNA [39, 40]. 

 

 DNMT3A , -3B, L 

The DNMT3 family (DNMT3A and DNMT3B) were first cloned and characterized 

back in 1998 [41]. There appears to be high conservation regarding amino acid 

sequence between different organisms including human and mouse DNMT3 display 

high similarity (~95%) along with maize, Arabidopsis thaliana, and zebrafish [41-43]. 

The DNMT3A and DNMT3B are unable to distinguish between hemi-methylated and 

unmethylated CpG sites and therefore are unable to copy patterns of methylation or 

contribute to methylation maintenance [44], these enzymes are suggested to function 

as de novo methyltransferases and remain distributed in the nucleus [44]. Mouse 

knockouts of the DNMT3A die early at around four weeks while DNMT3B knockout 

results in embryonic lethality between E14.5 to E18.5 [44], and reduces the embryonic 

skeletal growth at E14.5 and E18.5 [45]. Expression levels of DNMT3A and DNMT3B 

are higher at early embryonic stage than after differentiation and in somatic tissues at 

the adult stage. This is not surprising as the embryonic stage is when the major de novo 

methylation events are likely to occur. However, in cancer the DNMT3s are 

overexpressed in tumour cells [46]. A number of studies have highlighted the relation 



Targeting DNA methyltransferases in Non-small-cell lung cancer 

	

	 7	

of DNMT3B overexpression in various cancers [47-50]. DNMT3B has been 

demonstrated to play a pivotal role in de novo hypermethylation of promoter CpG 

islands, which maybe an important process for the down regulation of TSGs in cancer 

cells [46]. 

DNMT3L is another member belonging to the same family of DNMT3s has 

been shown to have a regulatory function during de novo methylation [51]. DNMT3L 

is highly conserved to DNMT3A and DNMT3B apart from motifs necessary for DNMT 

activity at the C-terminus are lacking [51]. 

Some reports indicate that in human colon cancer cells the association of 

DNMT1 and DNMT3B could be important in regards to the maintenance of DNA 

methylation patterns [51]. Recent studies have shown that DNMT3A and DNMT3B are 

interacting together with nucleosomes that contain methylated DNA [51]. Interestingly, 

the levels of DNMT3A and DNMT3B are elevated in many different cancers [52], this 

could be responsible for hypermethylation of promoter CpG-rich regions of particular 

TSGs found in cancer [53].  

 

DNA methylation: global and gene-specific aberration in cancer cells 

DNA methylation is crucial for gene regulation of tissue and developmental stages [54, 

55]. This biological process has been demonstrated to increase with aging, and also 

when cell lines are maintained in culture [56, 57]. Several studies have shown that both 

global DNA hypomethylation and local hypermethylation appear during cancer 

progression [58]. This epigenetic abnormality usually occurs as a nonrandom event and 

is specific to the type of tumour [14]. The DNA methylation status and patterns of 

chromatin are aberrantly altered in cancer cells. A majority of cancers display both 

reduced methylation of depleted CpG regions in areas where all the CpG dinucleotides 
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would be methylated, and elevated levels of methylation of CpG islands within 

promoter regions of a gene [59]. In addition, methylation in cancer is usually specific 

to certain promoters in the tumour [60]. A reduction in DNA methylation status in 

human cancer could have several effects on tumourigenesis. The first could be lowered 

transcriptional repression of dormant regions of the genome which may lead to an 

insertion of viral genes, or alteration of imprinting leading to biallelic gene expression 

[61]. Secondly, reduced methylation in cancer could have a major impact on the 

stability of the chromosomes [62, 63].  

 DNA methylation has been indicated to act as an initiator of cancer and 

progression through inactivation of genes [64, 65]. These epigenetic disorders are often 

attributed to a dysfunction of DNMT [12, 18]. DMNTs play a pivotal role in the 

maintenance of chromosomal homeostasis due to their catalytic role and ability to block 

gene transcription [66]. Dysfunction of DMNTs has a significant consequence on the 

DNA and histone modifications leading to instability of the genome, inactivation of 

genes and chromatin remodeling. Thus, the genome of cancer cells shows global 

hypomethylation and regional hypermethylation to specific areas [67]. Furthermore, 

epigenetic dysfunction could be a result of cross talk between DNMTs and chromatin 

regulators such as transcriptional co-suppressors and histone methyltransferases [68-

71].  

In cancer cells, DNA hypomethylation was the first described type of epigenetic 

abnormality [14]. Indeed, deletion or reduced expression levels of DNMT1 has been 

shown to cause global hypomethylation of the genome and instability of chromosomes 

[62]. In acute myeloid leukemia (AML) presented with DNMT3A mutations, HOXB 

cluster was demonstrated to contain hypomethylated CpG islands (CGIs) [72]. These 

studies have given some insights into the role of aberrant DNMTs on global 
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hypomethylation in tumorigenesis. Further studies are required to understand the 

mechanisms that control global genome hypomethylation in cancer progression [11]. 

In healthy cells, DNA methylation appear in dinucleotides with fewer CpG, 

while CpG rich areas are unmethylated [66, 69] (Figure 3). Advanced stages of cancer 

are associated with a global change in methylation status where hypermethylation of 

the promoter region of a number of genes is elevated [73]. Thus, this type of 

methylation leads to the silencing of specific TSGs that are pivotal to cancer 

progression (Figure 3). Aberrant CGI hypermethylation is a key epigenetic 

characteristic of cancer where hypermethylation of TSGs is mostly implicated [11, 74, 

75]. Regulation of gene expression can occur due to interaction between DMNT1 and 

noncoding RNAs that affects the DNA methylation level of the methylation-sensitive 

gene CCAAT/enhancer-binding protein alpha (CEBPA) [76]. 

Many teams around the world have studied the role of abnormal TSG 

methylation in respect to cancer progression. In most studies, the DNMTs are indicated 

as a driving force in these studies. For example, in breast cancer, DNMT3B is 

overexpressed and is attributed to the hypermethylation of BRCA1 promoter [77]. In 

knockout DNMT3 mice, hypomethylation is reduced in conserved domains (canyons) 

containing transcription factors [78]. The canyon related genes such as HOX are 

elevated with DNMT3A mutation in AML [78].  

A number of studies are discovering that non-TSGs are becoming largely 

methylated during an early stage in cancer. It has been reported for an AML profile 

study of DNMT3A mutations that a majority of hypermethylated cytosines are found 

in intergenic regions and gene bodies [79]. Likewise, transgenic mice with DNMT3A 

mutation have higher levels of hypermethylation in intergenic regions and gene bodies 

of lymphocyte developmental genes e.g. Gata3 and Notch1 [80]. Also, gene body 
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methylation by DNMT3B could promote transcription and could be a novel therapeutic 

target for cancer [81]. DNA hydroxy-methylation could play a role in cancer, as in 

glioma, a 5-hydroxymethyl cytosine (5hmC), which is produced from 5-methylcytosine 

(5mC) with the help of ten-eleven translocation (Tet) enzyme is a novel non-canonical 

aberrant DNA hyper-methylation type [82]. Both DNA hypermethylation, along with 

aberrant expression of non-coding RNAs (ncRNA) play a role in developing lung 

cancer [83]. 

 

DNA methylation profile in lung tumour/biofluids 

The major cause of lung cancer is smoking-related which is driven by molecular 

changes in the tumour tissue. The genetic changes alter between different types of lung 

cancer i.e. SCLC and NSCLC but minor changes are observed between subtypes such 

as SCC and AD [84]. Smoking is mostly responsible for the epigenetic aberration 

causing the downregulation of the p16 gene in NSCLC [85]. Different types of cancers 

display in their tumour tissue a unique signature of aberrant methylation [86]. Early 

studies investigated the methylation profile of neuroendocrine tumours of SCC and AD, 

indicating that there was no significant difference in the methylation profile between 

the SCLC and NSCLC groups, while the methylation of the TSG RAS association 

domain family 1A (RASSF1A) was much higher in tumours of SCLC than in NSCLC 

[87-90]. The methylation of RASSF1A was also linked to earlier recurrence at stages I 

and II of NSCLC [91]. In contrast, the occurrence of p16, CDH13 and APC methylation 

was elevated in NSCLC compared to carcinoid tumours. In addition, the expression and 

methylation status of the TSG, p16/INK4A has a more favourable prognostic role in 

cancer [92-94]. Aberrant hypermethylation has been observed in many other promoters 

such as APC, RARb, CDKN2A, MGMT, MLH and MSH2 and many others in lung 
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cancer which are detailed in Table 1 [59, 95-99]. In addition, a number of chromatin 

modifications can be used as prognostic markers. A study by Moran and colleagues 

compared the methylation pattern of about 104 genes known to have altered 

methylation status in NSCLCs to its corresponding non-tumour controls [100]. 

Moreover, they studied the prognostic correlations in NSCLC patients and found that 

calcitonin related polypeptide alpha (CALCA) and matrix metalloproteinase (MMP-2) 

hypermethylation are associated with poor prognosis, compared to RASSF1 

hypermethylation that confers a good prognosis [100]. Another study analysed the 

profile of the expression level of the promoter, along with the DNA methylation status 

and they found upregulated/hypomethylated promoters such as myeloma 

overexpressed (MYEOV), which is overexpressed in NSCLC. MYEOV knockdown 

showed a decrease in cell proliferation, invasion and increase in apoptosis [101]. In 

addition, several histone gene loci are abnormally hypermethylated in lung cancer, and 

histone genes methylation can be used as an early detection biomarker in the samples 

of bronchoalveolar fluid (BALF) [102] 

 

Dietary phytochemicals effect on epigenetic mechanisms  

Despite the continuous work on developing new anti-cancer drugs, phytochemicals that 

affect cellular ROS have been paid limited attention. However, maintenance of the 

redox homeostasis is by antioxidant and pro-oxidant compounds intake. Depending on 

the concentration and cellular microenvironment, dietary phytochemicals such as 

polyphenols can exhibit both antioxidant and pro-oxidant activities [103, 104]. Dietary 

phytochemicals or phytonutrients also named secondary plant metabolites that have the 

ability to fight the disease if taken in effective concentration [105]. They are found in 

fruits, vegetables, and products derived from plants, for example, tea, wine, and spices. 
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According to different studies, regular intake of these fruits, vegetables, or supplements 

that have phytochemicals may be useful in preventing or controlling different types of 

cancer [106-111]. Also, dietary phytochemicals could modulate the epigenetic 

mechanisms including DNA methylation, histone modification, and non-coding RNAs 

[112-114]. Genistein, Resveratrol, Polyphenols, and different types of fatty acids are 

an example of nutrients that have positive effects on health; they are further studied as 

protective factors against cancer, cardiovascular disease and obesity through 

understanding their epigenetic mechanisms [115]. 

 DNA methylation is one of the epigenetic mechanisms that depends on methyl 

donors availability. S-Adenosylmethionine (SAM) is the known methyl group donor 

synthesised in the methionine cycle which depends on various diet-derived precusors, 

such as methionine, folate, choline, betaine, vitamin B2, B6, and B12 that enter the 

cycle and end up with SAM generation. Thus, deficiency of methyl donors results in 

low SAM synthesis and alternation of DNA methylation pattern [116, 117]. 

Netherlands Cohort Study on diet and cancer demonstrated that severe famine during 

childhood and adolescence is correlated to a lower risk of colorectal cancer through 

modulating the methylation status of cancer-related genes [118]. Also, famine during 

prenatal period is associated with low DNA methylation status of insulin-like growth 

factor 2 (IGF2) gene compared to control group, illustrating that early stages of fetal 

development have an effect on maintaining the epigenetic marks [119]. In addition, diet 

could affect histone modification, such as acetylation, deacetylation, and methylation 

that have an impact on the intiation and development of cancer [120].  A study by Wolff 

and colleagues found that feeding pregnant female mice with a diet rich in methyl donor 

resulted in producing offspring with a high percentage of wild-type color in coat 

compared to controls that had a normal diet by affecting the chromation structure and 
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transcription through epigenetic modifications [121]. However, the connection between 

the environment (diet) and biological effect (regulation of transcription) is mediated 

through histone post-translational modifications [122]. On the other hand, 

dysregulation of miRNA expression promotes cancer intiation through modulating cell 

death, proliferation, migration and invasion [123]. Different studies illustrated the 

effect of plant-derived foods and bioactive compounds, for example curcumin, 

sulforaphane, genistein and others in modulating oncogenic and tumour suppressive 

miRNAs expression [124-127].  

Many studies have investigated the effect of phytochemicals on epigenetic 

mechanisms in lung cancer. A study by Taniguchi and colleagues examined the effect 

of (−)-epigallocatechin gallate (EGCG) which is the major polyphenol compound of 

green tea on both artificial and spontaneous lung metastasis and they found that the 

number of lung nodule had decreased depending on the amount of EGCG solution 

(0.05% or 0.1%) that was administered perorally [128]. A cohort-based study showed 

the association between the dietary factors such as leafy green vegetables, folate, and 

multivitamins and the DNA metylation status of cells derived from aerodigestive tract 

of both smokers and former smokers [129]. This study explained the use of combination 

therapy of TRAIL and naringenin on TRAIL‐resistant NSCLC A549 cells to induce 

apoptosis [130]. Other studies explaining the effect of bioactive ingredients on cancers 

are summarised in Table 2. Further studies of the effects of phytochemicals on 

epigenetic mechanisms could provide new biomarkers for cancer prevention and 

alternative therapeutic approach in cancer.  

 

Current development of demethylating agents for lung cancer treatment 

Aberrant DNA methylation of cancer cells plays a pivotal role in cancer progression 
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which is evident from early stages in the disease. Novel applications are being 

developed to address the improvement of lung cancer treatment which now includes 

epigenetic therapy (Figure 4).  

Currently, there are several drugs specifically targeting epigenetic alterations 

that have been approved by the US Food and Drug Administration (FDA). These 

include the demethylating agents 5-azacytidine (myelodysplastic syndrome treatment) 

which is subcutaneously injected at a dose of 75 mg/m2/day for 7 days and then repeated 

every 28 days; the dose can be decreased to 50 mg/m2 for haematological toxicity or 

increased to 100 mg/m2 in case of no response after two cycles. Thrombocytopenia and 

leukopenia were among haematological toxicity, along with extramedullary toxicity 

such as pneumonia, arthralgia, diarrhoea, and irritation at the site of injection which 

was uncommon [131]. Different doses of decitabine (myelodysplastic syndrome and 

AML treatment) were used for the treatment of myelodysplastic syndrome arranged in 

three cycles to achieve the best efficiencies, while decitabine dosage for AML is 25 

mg/m2 for 1-4 days and repeated every 4 weeks as a cycle [132]. World Health 

Organisation toxicity grade was used to evaluate decitabine toxicity which included 

infection, liver toxicity nausea, vomiting, cardiovascular effects, and mucositis [132], 

histone deacetylases inhibitors (HDACi) for T-cell lymphoma are romidepsin (FDA 

dose 14 mg/m2, 4 h infusion on 1, 8, 15 days of 28-day cycle) requires monitoring for 

patients’ thrombocytopenia, neutropenia, lymphopenia, and anaemia during treatment 

while vorinostat (phase II trials maximum tolerated dose 400 mg/day) results in 

gastrointestinal symptoms, fatigue, and thrombocytopenia as common side effects and 

thrombosis is the most serious event [133, 134]. Belinostat used for peripheral T-cell 

lymphoma as an intravenous infusion of 100 mg/m2/day over 30 minutes on days 1 - 5 

of a 21 day cycle with common side effects including nausea, vomiting, fatigue, 
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anaemia while serious side effects are pneumonia, thrombocytopenia, and multi-organ 

failure [135] and Panobinostat for multiple myeloma is given as three doses per week 

of an initial dose schedule of 20 mg once every other day of weeks and 2 of each 21-

day cycle for 8 cycles, which can be adjusted depending on the type of toxicity 

developed in the patient such as thrombocytopenia, anaemia, diarrhoea, nausea and 

vomiting [136]. 

For lung cancer, there are some drugs currently in clinical trial (phase I/II) that are being 

tested in refractory patients with metastatic NSCLC (Table 3). The results showed that 

a combination of epigenetic treatment with low dose of DNA methylation inhibitor, 

azacytidine (CC-486) (phase II dose 40 mg/m2/day) and the histone deacetylase 

inhibitors, entinostat (7 mg fixed dose) may improve survival in advanced NSCLC with 

common side effects such as reactions at the site of injection, gastrointestinal 

disturbances, hyperglycaemia, and haematological side effects [137]. Combined 

treatment of the epigenetic drugs and chemotherapy for NSCLC has been trialed in the 

clinic. Combinational treatment with paclitaxel and carboplatin with a HDAC inhibitor, 

vorinostat or placebo trialed in phase II. These trials indicate that vorinostat promotes 

the treatment with paclitaxel and carboplatin in advanced lung cancer patients [138]. 

Due to lack of efficacy, phase III trial of this combination was terminated [139]. In vitro 

studies have shown that DNA methylation can be inhibited by 5-aza-2’deoxycytidine 

which sensitizes lung cancer cells to the EGFR inhibitor, gefitinib [140]. Treatment 

with gefitinib is efficient in patients presenting with EGFR mutations, while a majority 

of tumour cells are resistant to this treatment. The EGFR gene can be hypermethylated 

and thus silenced in numerous cell lines. Treating with 5-aza-2’deoxycytidine restores 

EGFR expression and thus, enables the cells to respond to gefitinib treatment [140]. In 

a late stage NSCLC study, 5-aza-2’deoxycytidine treatment revealed improved survival 
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times by re-expression of TSG silenced while haematopoietic toxicity is the major side 

effect [141]. 

A number of clinical trials are currently on-going for NSCLC including 

azacitidine combined with pembrolizumab and pembrolizumab alone in advanced 

NSCLC [142]. Other trials are studying combined nab-paclitaxel with azacitidine as a 

second line for advanced NSCLC [143]. A new epigenetic drug called RRx-001 can 

inhibit HDACs, DNMT1 and DNMT3a expression. This drug is currently being tested 

in combination with platinum doublet chemotherapy treatment [144]. In another trial 

(phase I), azacytidine is being tested as an inhaled product in NSCLC [145]. A few 

studies have reported that PARPi enhances the formation of DSBs with 

radiosensitisation in lung cancer models [146, 147]. A preclinical trial has recently 

utilized DNMTi to sensitize NSCLC cells to PARP inhibition and radiotherapy by a 

mechanism resulting in aberration DNA damage repair [148]. 

Zebularine is another member of nucleoside DNMT inhibitor family, that 

showed good results in vitro experiments regarding potency and considered as a 

promising agent to be used for future clinical trials [149]. Zebularine inhibits DNMT 

by the formation of tight covalent complexes between DNMT protein and zebularine-

substituted DNA [150]. At acidic and neutral pH, zebularine is highly stable, which is 

unlike azacytidine and decitabine. It is administered by frequent dosing or continuous 

intravenous infusion to maintain prolonged DNMT inhibition [151]. Combinations of 

zebularine with other therapeutic agents such as chemotherapy, immunotherapy or 

radiotherapy could be the future medical use of this drug as it is a promising drug 

candidate [149].  
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Technological advancements and HTS drug discovery 

The availability of 3D DNMTs, medicinal chemistry, drug repurposing and in 

silico methods has helped develop drug candidates or probes that target DNMTs. Due 

to the different side effects caused by DNMTi, low specificity prompts the need to 

develop more potent inhibitors through experimental and computational strategies. 

Different approaches such as molecular docking, virtual screening, pharmacophore 

modelling, and molecular modelling have been used to understand the activity of the 

known compounds and help design novel DNMTi. Structure-based approaches suggest 

that long scaffolds molecules can target DNMTs catalytic and cofactor-binding sites; 

while screening of compound database by in silico studies has led to the discovery of 

active compounds [152]. Moreover, DNMTs crystallographic structures have 

contributed to the lead compounds optimisation that is based on the target structure. In 

addition, Computer-aided drug repurposing and computational nutri-epigenomics are 

considered as synergistic approaches. Designing of master key epigenetic compounds 

would be the most effective approach to proceed with epi-drugs into the clinic and help 

in illustrating the epigenetic mechanisms through the development of epi-probes that 

target DNMTs [153]. 

A recent study has illustrated the pilot drug combination (DC) high throughput 

screening (HTS) of 45 pairwise 4 x 4 drug combination matrix that is generated from 

10 test compounds and arrayed onto 3 x 384-well growth inhibition assays for six 

patient-derived melanoma cell lines by using the pairwise drug combinations between 

dasatinib and melanoma approved drugs (dabrafenib, vemurafenib, or trametinib). 

They found that these DCs synergistically inhibited cell growth, activated apoptosis, 

and increased cell death of mouse melanoma cell lines independent of their drug 

resistance phenotypes. The in vitro studies pave the way for further investigation of 
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DCs of melanoma combination therapies to improve the outcome and/or to prevent or 

delay the development of disease resistance [154]. Another study explained the use of 

structure-activity relationship (SAR) to test the anticancer activity of caged xanthones 

and their derivatives against various cancer cell lines as a model, such as A549, HepG2, 

and U251. In this study, the compounds were selected and docked to find the potential 

target and their metabolites were assessed by pharmacokinetics. After that, the lead 

compound was selected for further analysis like gene ontology, signalling pathway 

maps, metabolic networks and identification of off-target sites [155].  
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Conclusion and future perspective  

The incidence of lung cancer is associated with aging and the use of tobacco products 

negating cardiovascular and pulmonary comorbidities. Dysregulation of DNA 

methylation is a hallmark of many cancers including lung cancer. DNMTs targeted 

therapy is an emerging treatment of diseases controlled by epigenetic changes. 

Currently, there are two DNMTi, azacytidine and decitabine approved for treating 

patients affected by MDS and AML while others are being trialled in multiple types of 

cancers including lung cancer. Many efforts are being made to improve the efficacy 

through combining DNMTis with other therapies. Recent studies on PARPi and 

DNMTi combination with radiotherapy are promising and could provide a new avenue 

of treatment especially for patients that are unable to tolerate platinum-based 

chemoradiotherapy. Another avenue of treatment not well explored to date would be 

the use of antisense technology to downregulate DNMT in lung cancer. A few studies 

have explored the effect of using DNMT1 siRNA on lung cancer [156, 157]. 

Researchers have developed epigenetic tools from the bacterial immune system, 

CRISPR/Cas9 system [158, 159]. A number of studies have reported the use of 

CRISPR/Cas9 editing tools to alter DNA methylation and gene expression [160, 161]. 

These same tools could be developed to specifically target and modulate DNMT’s in 

lung cancer. Currently, lung cancer is the major cause of cancer death worldwide. The 

patients and relatives affected by this terrible disease rely on the scientific community 

to make the discoveries moving quickly from bench to bedside to deliver and improve 

outcome. The development and a greater understanding of epigenetic therapies will 

lead the way to solve this endeavour. 
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Figures 

 

Figure 1 DNA methylation. Cytosine is converted to 5’-methyl-cytosine catalyzed by 

DNMTs and SAM that donates the methyl group. SAM, S-adenosyl methionine. 

 

Figure 2 Structure of the known DNA methyltransferases (DNMT's) and DNMT-

like proteins. The N-terminal domain is composed of a motif interacting with proteins 

or DNA essential in the regulatory function. The C-terminal domain is composed of a 

methytransferase region necessary for the catalytic function. Other important regions 

such as the nuclear localization sequence (NLS), replication foci targeting (RFT), zinc 

binding region of DNMT1 or the cysteine-rich PHD (plant homeodomain) region 

located to DNMT3A/3B. 

 

Figure 3 DNA methylation pattern in normal and cancer cells. CpG islands in 

promoter region are unmethylated in normal cells, whereas they are either hyper- or 

hypo- methylated in cancer cells. In gene bodies, the CpG islands are rarely methylated 

in normal cells, while they are abnormally methylated in cancer cells, leading to 

silencing of TSGs or genes that are involved in cancer or genomic instability due to 

activation of transcription of several incorrect regions. 1, 2, 3 exons of the gene; X, 

transcription inactivation; DNMTs, DNA methylatransferase. 

 

Figure 4 Targeting epigenetic alterations. DNA methylation, histone acetylation, and 

methylation represent the common epigenetic alterations related to gene silencing. H1, 

histone 1 or linker histone 1 that binds around the DNA entry and exit sites and 

responsible for maintaining the nucleosome’s structure. DNMTs, HATs, HMTs, and 
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HDACs are the enzymes responsible for transferring or removing the chemical groups 

from DNA or histone resulting in DNA methylation, histone acetylation, histone 

methylation, and histone deacetylase, respectively. Inhibition of these enzymes stops 

epigenetic alterations resulting in gene silencing and used for the treatment of different 

cancers. While binding proteins are responsible for recognising the modified histone or 

methyl-CpG island. DNMTs, DNA methyltransferases; HMTs, histone 

methyltransferases; HATs, histone acetylases; HDACs, histone deacetylases.   

 

Table 1 Genes hypermethylated in lung cancer. 

 

Table 2 A summary of studies exploring the effect of bioactive ingredients on cancers. 

 

Table 3 DNA methyl transferase inhibitors and combined therapies undergoing clinical 

trials for NSCLC. 
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 Table 1 Genes hypermethylated in lung cancer 

  

Mechanism Target 
gene 

Gene function References 

Apoptosis 
 

DAPK1 
TNFRSF6 
DR4, DR5 
CASP8 
CXCL14 
DCL1 
FHIT 

Pro-apoptotic 
TNF-receptor family, mediates apoptosis, SCLC 
TNF-receptor family, mediates apoptosis, SCLC  
Apoptosis effector, SCLC 
Pro-apoptosis, cell cycle arrest 
Apoptosis, cell growth and cell adhesion 
Apoptosis, transcriptional activator 

[162-164] 
[165] 
[165] 
[165] 
[166] 
[167] 
[168-171] 

Cell cycle 
 

P16 
RASSF1A 
 
PTEN 
CDKN2A 
Reprimo 
CCNA1 
P14 (ARF) 

CDK4/6 inhibitor in cell cycle arrest at G1/S checkpoint 
Cell cycle regulation, and ras-induced apoptosis 
 
AKT/mTOR negative regulator and cell cycle 
Cyclin-dependent kinase inhibitor; cell cycle arrest 
p53-mediated cell cycle arrest 
Cell cycle regulator 
p53 and cell cycle regulator 

[59, 85, 172, 173] 
[164, 174, 175] 
 
[176] 
[164, 167] 
[177] 
[178] 
 
[179] 

DNA repair 
 

MGMT 
hMLH1 
MSH2 
CYGB 
OTUD4 

DNA repair, removes alkyl from O6 position of guanine 
DNA repair 
DNA repair 
ROS scavenger 
DNA damage repair pathways (GG-NER and alkylation damage repair 
pathway) 

[164, 180, 181] 
[95] 
[95] 
[182] 
[183] 

Cell adhesion 
and invasion 
 

CDH1 
CDH13 
TSLC1 
DAL-1 
DCL1 
MMP2 
TIMP3 
NISCH 
KIF1A 
CTSZ 
LOX 

Cell-cell adhesion, cell motility inhibitor, invasion and metastasis 
Regulates cell proliferation 
Cell-cell adhesion 
Cell-cell contact 
Apoptosis, cell growth and cell adhesion 
Degradation of extracellular matrix 
Tissue inhibitor of metalloproteinase 3; metastasis 
Cytoskeleton organization and cell migration 
Kinesin family; microtubule transport 
cysteine cathepsin protease family; Cell invasion 
Monoamine oxidase lysyl oxidase; Cell invasion 

[164, 184] 
[184] 
[185] 
[186] 
[167] 
[181] 
[167] 
[187] 
[187] 
[178] 
[178, 188] 

Transcription 
Regulation 
 

APC 
RARb-2 
SHOX2 
RUNX3 
BHLHB4 
BLU 
HOXA 
TCF21 
BRMS1 
BNC1 
TBX-2 

Negative regulator of Wnt pathway and b-catenin 
Cell growth and differentiation 
Regulator of transcription, cell growth and differentiation 
Transcription factor, TSG and pro-apoptotic 
Regulator of transcription; differentiation 
Transcription repressor 
Homeobox transcription factors; differentiation 
Differentiation 
Transcriptional repressor of NF-κB; pro-apoptotic; prognostic NSCLC 
Regulator of rRNA transcription 
Cell development and differentiation 

[96, 189] 
[97, 164] 
[190] 
[174, 191] 
[181] 
[175, 181, 192] 
[193, 194] 
[195] 
[196, 197] 
[178, 198] 
[199] 

Signalling and 
Wnt pathway 
 

DKK3 
SFRP1 
WIF1 
OGDHL 
DOK1 

Wnt pathway antagonist 
Wnt pathway antagonist 
Wnt Pathway antagonist 
AKT-Dependent Signaling and NF-κB Function 
Role in mitogenic signaling 

[181, 200] 
[201-203] 
[203, 204] 
[205] 
[206] 
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Table 2 A summary of studies exploring the effect of bioactive ingredients on 
cancers. 
 

Bioactive compound Epigenetic functions Reference  
(-)-epigallocatechin 3-
gallate (EGCG) 

Inhibitor of DNMT1 and 
HDAC 

[207] 

Genistein Inhibitor of DNMT1 [208] 
Apigenin Inhibitor of DNMT1, 

DNMT3a, DNMT3b, 
HDAC1, HDAC3 

[209] 

Delphinidin Inhibitor of DNMT, HAT, 
HDAC-3 

[210, 211] 

Kaempferol Inhibitor of DNMT3a, 
DNMT3b, HDAC1 

[212, 213] 

Naringenin Inhibitor of DNMT1, 
DNMT3a, DNMT3b, 
HDAC1 

[214, 215] 

Quercetin Inhibitor of DNMT1, 
HDAC. Down-regulation of 
histone demethylation 

[216-218]  

Xanthohumol Inhibitor of DNMT and 
HDAC 

[219-221] 
 

Resveratrol Inhibitor of DNMT3a, 
DNMT3b. SIRT1, SIRT2, 
and SIRT3 activity 
modulated (up- and 
downregulated). HAT 
inhibitor regulation of 
histone phosphorylation 

[222, 223] 

Luteolin Inhibitor of DNMT, HDAC [224] 
Magnolol 
 

Reduced the protein 
expression levels of 
HDAC2, HDAC3, and 
HDAC8 

[225] 

Polyphenol Mixture 
(PM) 

Decreased the protein 
expression levels of 
HDAC3 

[225] 

 
 
  



Targeting DNA methyltransferases in Non-small-cell lung cancer 

	

	 38	

Table 3 DNA methyl transferase inhibitors and combined therapies undergoing clinical 
trials for NSCLC. 

Drug Mechanism of action Clinical trial Phase 
Adjunctive therapy 
 
Decitabine 
 
 
Azacitidine 
 
 

 
 

Phosphorylated form is incorporated into 
DNA and inhibits methyltransferase 1 

 
Inhibition of DNA methyltransferase 
activity to transfer methyl groups to 

hemimethylated DNA  

 
 
NCT00019825 

 
 
 

NCT01281124 

 
 

I 
 
 
 

II 

Combined with chemotherapy 
 
Azacitidine, Entinostat, and 
Nivolumab 
 
5-azacitidine and Romidepsin 
 
5-Fluoro-2-Deoxycytidine and 
Tetrahydrouridine 
 
CC-486 with MK-3475 
 
CC-486 with nab-paclitaxel 
 
Nivolumab 
with decitabine 
 
Tetrahydrouridine-decibatine 
(THU-DAC) with 
pembrolizumab 
 

  
 
 
NCT01928576 

 
 
NCT01537744 

 
NCT00978250 

 
 
NCT02546986 

 
NCT02250326 

 
NCT02664181 

 
 

NCT03233724 

 
 

 
II 
 

 
I 
 

II 
 
 

II 
 

II 
 

II 
 
 

I/II 

Combined with epigenetic 
therapies 
 
Decitabine and Valproic Acid 
 
CC-486 and Vidaza 
 
Vorinostat and Gefitinib 
 
Panobinostat with Sorafenib 
 
Vorinostat and Bortezomib 

  
 

 
NCT00084981 
 
NCT02223052 

 
NCT01027676 

 
NCT01005797 

 
NCT00798720 

 
 

 
I 

 
I 

 
I 
 
I 
 

II 
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