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Abstract
Artificial intelligence (AI) marks a frontier in histopathologic analysis shift towards the clinic, becoming a mainstream 
choice to interpret histological images. Surveying studies assessing AI applications in histopathology from 2013 to 2024, 
we review key methods (including supervised, unsupervised, weakly supervised and transfer learning) in deep learning-
based pattern recognition in computational histopathology for diagnostic and prognostic purposes. Deep learning 
methods also showed utility in identifying a wide range of genetic mutations and standard pathology biomarkers from 
routine histology. This survey of 41 primary studies also encompasses key regions of AI applicability in histopathology 
in a multi-cancer review while marking prospects to introduce AI into the clinical setting with key examples including 
Swarm Learning and Data Fusion.
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1  Introduction

In 2022, there were 20 million new cancer cases and 10 million cancer-related deaths recorded. The commonest incident 
tumour types were lung (12.4%), breast (11.6%), and colorectal (9.6%) while mortality was highest for lung (18.7%), 
colorectal (9.3%) and liver (7.8%) [1]. Accurate, rapid detection minimises mortality and morbidity. Identifying cancer 
type, tumour markers, and invasion is vital in precision oncology [2]. Biopsy remains the gold standard for confirming 
malignancy. In the modern era, the mainstay of histopathological analysis is digitised via whole slide imaging (WSI). 
Digitised histopathological analysis via whole-slide imaging (WSI) enables computational histopathology to extract 
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clinically relevant information using algorithmic models. Advances in Big Data, Machine Learning (ML), and AI hold 
immense potential for rapid cancer diagnosis [3].

Computational histopathology integrates raw data including medical records, “-omics” data, and radiological/patho-
logical imaging to highlight biologically and clinically relevant information [4]. Omics”(genomics, epigenomics, transcrip-
tomics, proteomics, and metabolomics) demonstrates increasing value, with AI essential for multi-omics data integration. 
Computational histopathology broadens the scope by characterising multi-omics aberrations via histopathologic images, 
predicting prognosis [5]. Sophisticated AI mechanisms maximise diagnostic potential, enabling time-efficient cancer 
characterisation, early detection, prompt treatment, and improved prognosis.

ML uses data and algorithms to learn from large datasets, self-improving to yield readable information without explicit 
programming (Fig. 1) [6]. The multifaceted nature of healthcare problems suits ML, implementing statistical and math-
ematical optimisation to exploit patterns and adapt output (Table 1) [7]. These introduce objectivity and remove interper-
sonal variability which often limits traditional histopathological analysis. Such approaches have already shown success 
in radiology [8, 9], endoscopy [10], and dermoscopy [11].

ML in computational histopathology is a recent development involving high-quality WSIs and progress in image 
development at reduced costs. AI in computational histopathology has shown exponential improvement in accuracy, 
with error rates in the classification of natural images decreasing from 25 to 4% in three years [12]. Deep learning (DL) 
methods have broad applications in cancer detection, quantification, and typing, from rudimentary single small-area 
analysis [13] to breast cancer (BC) segmentation [14], and glioma classification [15].

This article describes basic ML techniques, comprehensively assessing and critiquing their applications in computa-
tional histopathology in a multi-cancer survey to address current utilities and future outlooks.

2 � AI for quantifying tumour extent

2.1 � Supervised models

Supervised learning requires pre-training, with each data point possessing a corresponding output label or ground truth. 
This enables the algorithm to learn input–output relationships, allowing predictions on new, unlabelled data. This has 
utility in histopathological image classification for predictions based on visual features (Table 2).

Image classification such as detecting cells or nuclei is among the most successful tasks with DL techniques signifi-
cantly advancing digital pathology. Ciresan et al. developed convolutional neural network (CNN)-based pixel prediction 
for mitosis detection in H&E BC histology images [13]. Wang et al. formulated a cascade ensemble of CNN and handcrafted 
features for mitosis detection [16]. These methods utilise pixel-wise prediction tasks by sliding windows training networks 
on small image patches rather than entire WSIs. Trained pathologists annotate the image patches containing objects 
of interest (cells/nuclei). However, mitotic figures are often rare events creating class imbalance issues. CNNs trained on 

Fig. 1   diagram of ML con-
cepts with specific examples
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imbalanced datasets may favour the majority, non-mitotic class. Additionally, histopathological images exhibit variability 
and artefacts from staining and slide preparation methods reducing generalizability and output quality (Tables 3, 4).

Sirinukunwattana et al. used spatially constrained CNN (SC-CNN) for nuclei detection utilising hand-crafted features 
on 100 H&E stained colorectal adenocarcinoma images with 29,756 nuclei manually annotated by a pathologist [17]. 
This CNN analysed texture features demonstrating that CNNs were effective in automatically learning features: however, 
better performance was achieved when combining manually handcrafted features with raw data. Additional SC-CNN 
features included a colour deconvolution method to separate the haematoxylin channel [18] and a scattering coefficient 
to add texture information providing stable, invariant descriptors for classification [19].

Xu et al. employed a cutting-edge stacked sparse autoencoder (SSAE) algorithm for nucleus detection [20]. A radius 
of 6 pixels was considered the ground truth at the annotated epithelial nuclei centre. Any detection point within this 
area was the true positive. If multiple detection points were within the same ground truth area, only one was counted as 
positive. Figure 2 shows probability mapping results comparing SC-CNN and SSAE: detected results are shown as green 
dots against the yellow “ground truth”. Proximity mapping identified the maxima. SC-CNN missed some detected cells 
(highlighted in red). The detection accuracy of the deep CNN was improved by handcrafted features. Different quantita-
tive performance measures could be effective in capturing tumour nuclei appearance which could upscale other cells 
(e.g., immune/non-cancerous).

Ertosun et al. used CNN-based molecular classification frameworks using The Cancer Genome Atlas (TCGA) WSIs to 
grade gliomas from digital pathology images [15]. The dataset included Lower-Grade Glioma (LGG) Grades II and III, and 
Glioblastoma Multiforme (GBM) Grade IV [21]. TCGA WSIs yielded data structures cropped into “tiles or patches”, for parallel 
processing and to accelerate pre-processing. Following nuclear morphology-based studies in GBM [22, 23], nuclei were 
segmented during the pre-processing stage, but the individual nuclei were not cropped. Images were resized to scales 
suitable for DL on the graphics processing unit (GPU). However, the CNNs were not cost-effective for high-resolution 
images and had limited memory availability. Image size was adjusted to 256 × 256, considering memory capacity and 
time to train neural networks.

Ertosun et al. noted that LGG grade classification had a 71% accuracy when trained on independent data [15]. This 
performance was limited due to preparative protocol variations such as differences in microscopes, digitisation, and 
slide preparation; collectively called “batch effects”. WSI quality was thus marred by artefacts. GBM cases showed clear 
distinction due to their low survival probability. LGG Grade II and Grade III showed similarity with a 95% confidence 
interval (CI) overlapping separate survival curves. CNN modules performed similarly to observations from other studies 
demonstrating challenges in grading intermediate tumours with a strong survival overlap [24]. Although pathologists 
can distinguish LGG and GBM with similar accuracy, this study provides a valuable “second look” or teaching application.

Results could improve through a modular approach to optimise task components like GBM vs LGG diagnosis and 
determination of tumour grade separately. Global CNN architecture was used for tissue-level cancer localization and WSI-
level disease mostly for patch-based classification. This enhanced diagnostic quality statistics, simplifying train models 
despite limited data availability [15].

Zhang et al. used CNN and Recurrent Neural Networks (RNN) to generate clinical diagnostic descriptions and visual 
attention maps for urothelial cancer diagnosis, from a dataset of 913 images. Their novel WSI method translated gigapixels 
into a series of interpretable predictions, providing second opinions and demonstrating clinical applications. Their DL 
model matched the effectiveness of 17 pathologists, advancing low-cost, next-generation AI-enhanced diagnostics in 
pathology [25]. Graham took this further, proposing a unified FCN model to simultaneously identify nuclei in both hori-
zontal and vertical planes of pixels to determine nuclei separation in a 3-D manner in multi-tissue histology images [26].

Regression models with DL in histopathology map image patches to identify nuclear positions and estimate density 
maps to compare normal and tumour topologies. Graham et al. effectively applied these via CNN-based nuclei segmenta-
tion and classification across multiple cancers [26]. Their evaluation framework quantified nuclear segmentation using 
a new dataset of 24,319 annotated nuclei with class labels. Their model detected nuclear pixels and a post-processing 
pipeline simultaneously segmented nuclear instances to obtain corresponding nuclear types. The down-sampling factor 
was reduced from 32 to 8 using a stride size of 1 in the first convolution and removing max-pooling. The spatial dimension 
of the input was 270 × 270 pixels, with 80 × 80 output dimensions. Deep neural networks (DNNs) used feature extraction, 
inspired by pre-trained residual networks with ResNet-50 layers [27] ensuring robustness against input disruption [28].

Graham et al. evaluated instance segmentation performance using five datasets (CoNSeP, CPM-15, Kumar, CPM-17, 
and TNBC). A major challenge was limited useful data with associated class labels. For instance, CoNSeP contained over 
24,000 labelled nuclei from difficult samples highlighting the complexity of segmenting nuclei in WSIs despite abundant 
data. True nuclear segmentation performance was assessed but measurements often failed to reflect actual instance 
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segmentation performance. Other methods explored relationships of nuclear types in histology images but were limited 
to spatial analysis unavailable. segmentation. Despite challenges, the model did provide opportunities to explore spatial 
relationships [26].

Xu et al. employed multi-channel DNN models for gland segmentation and instance recognition using the GLaS 
challenge dataset in colon cancer consisting of 165 images [29]. Their image-to-image prediction fused multi-layered 
information including regional, locational, and boundary cues in histological images. Their model addressed complex 
feature design issues with CNNs altering channels to meet multi-level requirements. Instance segmentation enabled 
detailed image processing by distinguishing contour, location, class, and object count [29]. Traditional algorithms strug-
gle with complex problems, demonstrating demand for DL. Simultaneous Detection and Segmentation (SDS) proposes 
a framework to solve gland instance segmentation, hyper-column, and MNC (Multi-task Network Cascades) optimising 
and accelerating the feature extraction process. Xu et al. MNC framework optimised gland segmentation and gland 
instance simultaneously with a three-channel algorithm, each with different responsibilities.

Xu et al. [29] highlighted limitations in gland instance segmentation. The lack of gland-separating tissues makes seg-
mentation challenging: the algorithm may misidentify a single connecting pixel as part of the gland structure. Secondly, 
the algorithm’s separate instance recognition can lead to smaller prediction areas than the ground truth, reducing seg-
mentation performance despite accurate number and position (Fig. 3) [29]. Multichannel neural networks proved equal 
effectiveness as methods reported in the 2015 MICCAI Gland Segmentation Challenge [30] implying that the model’s 
generalisation ability enabled the algorithm to solve gland instance segmentation problems and also its adaptability 
for specific tasks. Baseline experiments confirmed superiority for instance segmentation.

Histological objects e.g. glands and nuclei, vary significantly based on size, shape, and colour with overlapping 
clumped areas complicating distinction from surrounding structures.. Beyond Xu et al. [29], other studies used Fully 
Convolutional Networks (FCN) to distinguish surrounding structures, leveraging multi-scale feature learning to address 
histology image variation [31]. Conventional FCN-based models are fundamentally designed to predict class labels as 
foreground or background but cannot identify individual object instances [32].

Gong et al. applied Self-Distilled Supervised Contrastive Learning (SDSCL) for CNN-based computer-aided diagnosis 
(CAD) on H&E images to enhance intrinsic feature representation [33]. Combining supervised and contrastive learn-
ing, they trained a CNN to self-distil, addressing limited sample availability. Four datasets (78 normal tissue, 72 benign 
lesions, 71 in-situ carcinoma, and 64 invasive carcinoma) were digitised and annotated by two pathologists. They utilised 
ResNet-18 pre-trained on ImageNet weights and a new TransPath algorithm; a CNN-transformer-based hybrid with a 
token-aggregating and excitation module. SDSCL was effective with limited training samples, achieving higher results 

Fig. 2   Column 1 – proximity map and detection row using SSAE. Column 2 – proximity map and detection with SC-CNN. Column 3 – pro-
posed approach. Columns 4–6 – Zoomed in image of Columns 1–3 respectively [20]
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using single classifiers, although slightly lower ones with multi-classifiers, offering a solution for scarce annotated data 
in clinical practice.

Abousamra et al. applied supervised DL to identify tumour-infiltrating lymphocytes (TIL) in gigapixel WSIs from TCGA 
[34]. Their dataset, spanning 23 cancers with 7983 WSIs, is the largest for TIL identification, addressing TIL heterogeneity 
across tissue samples. After selecting WSIs, labelling patches and annotating TIL-significant regions, they applied a DL 
model with three separate CNN architectures (VGG16, Inception-V4, and ResNet-34)to characterised samples as either 
Low, Medium, or High TIL based on the TIL-positive area ratio. The correlation between pathologist interpretation and the 
CNN score was observed. Pathologist annotations were combined with model predictions for cancers with scarce manual 
annotations, enhancing results. This approach offers utility in cancer immunotherapy, characterizing TIL abundance and 
spatial distribution to explore clinical significance and supporting pathology digitization in the future.

Sarker et al. used a CNN-based BC classification method using fused mobile-inverted bottleneck convolutions 
(FMB-Conv) with dual-squeeze and excitation (DSE) [35]. Their method of classification was robust: initially binary 
(benign or malignant) and then multi-class (adenosis, fibroadenoma, phyllodes tumour, tubular adenoma, carcinoma, 
lobular carcinoma, mucinous carcinoma, and papillary carcinoma) subtypes. Their model outperformed ResNet101, 

Fig. 3   Case 1 – glands are sep-
arated from the background, 
but many instances are not 
recognized. Case 2 – instances 
are labelled but many gland 
pixels are neglected [30]
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InceptionResNetV2, and EfficientNetV2 networks on the BC BreakHis dataset. Attention mechanisms captured relevant 
features including cell structure, textural patterns, and morphology information, ignoring irrelevant background pixels. 
The model achieved high confidence rates but was limited by artefacts (blurriness, improper cell boundaries) in low-
quality images.

CNN-based pixel prediction methods such as those by Ciresan et al. [13] and Wang et al. [17] utilised small image 
patches for mitosis detection but struggled with class imbalance, heterogeneous datasets, and staining artefacts. Siri-
nukunwattana et al. [18].improved nuclei detection by combining handcrafted features with CNNs while Xu et al. [30] 
used SSAE for nucleus detection, refining probability mapping techniques. SSAEs better-tackled issues around gener-
alizability and enhanced detection sensitivity through the compression of high-dimensional histopathological image 
data into lower-dimensional features. They also learned hierarchical patterns from majority and minority classes making 
them better at handling class imbalance. However, CNNs with handcrafted features had enhanced performance through 
better incorporation of domain knowledge. Zhang et al. [26] integrated CNN-RNN models in urothelial cancer diagnosis 
to generate diagnostic descriptions while Graham et al. [27] enhanced instance segmentation with FCN-based methods 
for nuclei detection. Xu et al. [30] further improved gland segmentation using multi-channel DNNs but faced challenges 
in separating gland structures. Gong et al. [34] introduced SDSCL for CNN0based CAD for feature representation in data 
scarcity while Abousamra et al. [35] applied supervised DL to identify TILs in the largest dataset of its kind to support 
immunotherapy research.

Within the current landscape of supervised learning, key challenges persist due to class imbalances: rare events like 
mitosis detection suffer especially, leading to CNNs favouring non-mitotic classes. Varying staining and preparation proto-
cols further affect generalizability which is compounded due to processing complaints that demand down-sampling and 
patch-based approaches. Future directions should emphasise WSI processing to help cancer grading, tumour localisation, 
and feature extraction at a large scale. Advancing architectures may also enable fine-grained subtype classification more 
accurately with the future of supervised learning in computational histopathology lying in hybrid approaches combining 
CNNs, transformers, contrastive learning, and domain-specific handcrafted features for maximized diagnostic accuracy.

2.2 � Weakly supervised models

Hou et al. used multiple-instance Learning (MIL) to combine evidence from multiple patches sampled from the same 
image [36]. Their framework integrated MIL with CNNs, treating patches as instances with only image-level labels. The 
algorithm identified discriminative patches in high-resolution images, using Gaussian smoothing (edge detection 
and noise reduction) [37]. Applying this to WSIs from TCGA, they classified glioblastoma and LGGs with 97% accuracy, 
although subdividing LGGs demonstrated a much lower accuracy of 57.1%.

Jia et al. built an end-to-end learning system using a MIL framework connected with deep weak supervision (DWS) to 
segment cancerous regions in histopathology images [38]. They introduced constraints for positive instances to utilise 
additional weakly supervised information, enhancing the learning process. This method outperformed pathologists and 
could be applied across various histopathology imaging applications.

Liang et al. used weakly supervised DL for image segmentation by reiterative learning, proposing a neural network 
with overlapped region forecasts in gastric cancer to automate segmentation [39]. This method demonstrated superior 
performance without further manual annotation to train simple networks on weakly annotated biomedical images. 
Using two different patch extraction methods, predictions could be integrated, with weak annotations for improved 
data quality, achieving 91.09% mean accuracy, validating its cost-reduction potential. Figure 4 taken from Liang et al. [39] 
demonstrates their results but highlights the need for improved recognition of smaller cancerous regions and addressing 
“over-fitting” caused by excessive iterative learning.

Wang et al. used recalibrated multi-instance deep learning (RMDL) for whole-slide gastric image classification, utilising 
a two-stage framework, that accounted for varying instance contributions for final image-level label predictions [40]. 
RMDL captured instance-wise dependencies, recalibrating based on fused-features coefficients. Using a whole-slide 
gastric histopathology dataset with detailed pixel-level annotations, experimental results demonstrated RMDL outper-
formed other methods by > 4%, exceeding Liang et al. through considering each instance’s impact [40]. However, large-
scale annotation efforts and the need for compression methods to accelerate detection remain areas for improvement.

Challenges in histopathology arise through image-analysis variability. Standard instance-level aggregation methods, 
like voting or pooling, cannot guarantee accurate image-level predictions due to instance-level label misclassifications. 
Hou et al. used expectation–maximisation with CNN to output patch-level predictions trained via logistic regression for 
glioma subtype classification [41]. Campanella et al. used RNN to integrate semantically rich features across patch-level 



Vol:.(1234567890)

Review	  
Discover Oncology          (2025) 16:438  | https://doi.org/10.1007/s12672-025-02212-z

instances for final slide-level diagnosis [42]. The global–local detection method, popular in MIL, is clinically relevant for 
histopathological diagnosis by discriminating cancerous instances [43]. However, instance-level predictions often lacked 
validation, relying instead on heatmap visualisation due to annotation challenges.

MIL is one of many weakly-supervised learning methods. Others include models using minimal annotations at specific 
points [44, 45], bounding boxes [46], and partial pixel-level cancerous region annotations [47]. These methods propose 
variants to facilitate cost effectiveness and feature encoding strategies to derive labels from weaker annotations enabling 
fully supervised model training in a weakly-supervised manner.

Weakly-supervised learning is limited compared to fully-supervised learning. Guo et al. used a two-stage, weakly-
supervised nuclei segmentation model requiring only nuclear centroid annotation demonstrating competitiveness. 
It combined segmentation networks, attention mechanisms, and low-level feature constraints outperforming other 
weakly-supervised methods, suggesting that further improvement is necessary for non-centroid points in histopathol-
ogy segmentation [48].

Zheng et al. [49] applied a weakly supervised “human–machine fusion” model in renal cell carcinoma (RCC) histopa-
thology, demonstrating superiority in clear-cell RCC classification. A Self-Supervised Clustering-constrained-Attention 
Multiple-instance (SSL-CLAM) model automatically detected diagnostically valuable subregions. Independent diagnoses 
by a junior pathologist (A) and expert uropathologist (B) on 445 WSIs repeated five times showed SSL-CLAM achieved 
an average accuracy of 0.787 (95% CI 0.772–0.801) (A) and 0.856 (B) (95% CI 0.843–0.867), highlighting human–machine 
fusion’s advantage. Further prospective trials are necessary, however, to validate this strategy’s effectiveness. SSL-CLAM 
is not yet suitable for independent diagnostics, but has an adjunct utility: requiring standardised slide preparation for 
better output.

MIL-based approaches (Hou [36], Jia [38], Wang [40]) showed efficacy for histopathological classification and segmen-
tation but required enhancements for instance-level variability and small region recognition, often requiring additional 
supervision constraints or being prone to overfitting. Comparatively, weakly-supervised models that applied reiterative 
learning [39] also faced challenges like overfitting and dependency on structured annotations. While Human–Machine 
Fusion [49] has the potential to aid pathologist decision-making, standardised protocols are necessary before independ-
ent application. Importantly, weakly supervised learning methods offer cost-effective alternatives to fully supervised 
models, although they currently require improvements in validation and efficiency. Future work could emphasise data 
augmentation and knowledge distillation approaches to balance annotation costs while enhancing human–machine 
fusion through interactive AI systems to enable more reliable collaboration. However, the increasing use of AI would 
require prospective clinical trials and governance approval with standardised processing pipelines and structured com-
pliance guidance with benchmark metrics for essential real-world use.

Fig. 4   Qualitative segmentation results on the dataset: top row – visualisation of the model, bottom row – visualisation of the ground truth. 
a-c well-segmented samples. d Gaps between cancerous areas with dense, small regions are ignored. e area of inflammation and necrosis 
are misdiagnosed in the lower region [39]
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2.3 � Unsupervised models

Xu et al. employed unsupervised DL using an SSAE for nuclei detection on high-resolution histopathological images of 
BC [20]. This method learned high-level features from pixel intensities alone to identify distinct nuclei features. A sliding 
window operation represented image patches obtained via the auto-encoder and was fed into a classifier categorising 
each patch as nuclear or non-nuclear. The SSAE achieved an improved F-measure of 84.49% and an average AUC-PR(Area 
Under Precision-Recall curve) of 78.83%, outperforming several other nuclear-detection strategies. Focussing specifically 
on extracting nuclear boundaries, this approach could enhance segmentation models such as watershed [50], active 
contour [51], and region-growing approaches [52]. Xu et al.’s framework enabled cell-by-cell graph feature development 
to assess cellular topology in tumour histology [20].

Hu et al. applied label-free unsupervised classification with interpretable visualisation for bone marrow (BM) cellular 
components [53]. They exploited cell elements using BM datasets combining nuclei segmentation with cell-level visual 
representation to highlight cellular varieties (Fig. 5) [53]. Using a unified Generative Adversarial Network (GAN) with 
a formulation of loss of function inherits both WGAN-GP (Wasserstein Generative Adversarial Network with Gradient 
Penalty) and InfoGAN (Information Maximising Generative Adversarial Network). They performed unsupervised classifi-
cation and interpretable visualisation by maximising mutual information. However, improvements of the segmentation 
method and computational efficiency are needed. Additional information, including clinical trial and gene expression 
information, is required to re-evaluate risks after annotating relevant genetic variants.

Bulten et al. [54] used unsupervised learning to create a self-clustering convolutional adversarial autoencoder for 
prostate cancer (PC) classification without prior training. The clustering adversarial autoencoder (CAAE) clustered tissue 
during training, eliminating the need for post-processing methods like K-means or t-SNE. Trained on patches extracted 
from 94 registered WSI pairs (54 training, 40 test)post radical prostatectomy, PC was identified by the presence of epi-
thelial markers and absence of basal cell markers. The CAAE achieved an F1 score of 0.62 when discriminating tumour 
vs non-tumour outperforming the control (H&E to H&E; 0.52) demonstrating that the reconstruction task had benefit in 
learning cross-domain mapping. A flaw was the dependence on sample quality: with noisy, heterogeneous data limiting 
results. Future work should expand the autoencoder’s field to visualise whole images instead of patches.

Sari et al. presented an unsupervised learning model to classify histopathological tissue by quantizing salient sub-
regions via feature extraction from image data [55]. Restricted Boltzmann machines (RBMs) defined hidden unit node 
activation values in the final RBM as features, clustering colon tissue images for representation and classification. The 
LearnDBN primary model was used to learn the deep belief network of RBMs and define the local deep feature. The 
secondary model, LearnClusteringVectors, clustered vectors onto local deep features. H&E-stained datasets with 1644 
images (510 normal, 859 low-grade (LGC) cancerous and 275 high-grade cancerous) with a further subset of the first with 
low-grade cancerous was sub-categorized to solve difficult sub-categorization; labelling them into five classes: normal, 
LGC 1, LGC 1/2, LGC 2, and high grade. The results were promising, although challenges included potential misclassifica-
tion for large, non-epithelial regions and requiring low magnification when utilised as a whole-slide scanner.

Recently, Sheikh et al. applied unsupervised learning for WSI diagnosis with stacked autoencoders processing multiple 
image descriptors (histograms of oriented gradients, local binary patterns, and fused heterogeneous features) [56]. Latent 

Fig. 5   Overview of the pipeline: A nuclei segmentation performed on histopathology images. B trained GAN architecture, clustering per-
formed using a learned auxiliary network. C Image-level prediction based on cell proportions. D generator G can generate an interpretable 
representation for each category [53]
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vectors were extracted from individual autoencoders and fused feature representations were used for classification. 
Training with additional descriptors helped identification of intricate cellular structure, out-performing state-of-the-art 
approaches, achieving the highest accuracies of 87.2 and 94.6 for ICIAR2018 and Dartmouth datasets respectively. The 
model also classified breast and lung cancer types comparable to pathologist visualisation. However, the model was 
limited in determining optimal patch size for robust representations in the bottleneck space and separating morphologi-
cally heterogeneous regions in sub-multi-level tumours due to unbalanced data (31 WSIs), affecting the feature fusion 
stage. Future works should utilise larger, balanced patch datasets to improve robustness.

Nam et al. evaluated a pre-operative CT-based DL model using unsupervised learning cluster analyses to identify his-
topathologic risk factors in 1667 patients with resected Stage I-IV lung adenocarcinoma [57] in a retrospective study. The 
model showed associations with aggressive adenocarcinoma subtype (odds ratio (OR), 1.03; P = 0.03), venous invasion 
(OR, 1.0, P = 0.02), and visceral pleural invasion (OR, 1.08, P < 0.001) when adjusted for clinical T category and radiologic 
nodule type. The model also predicted patient survival and identified associations with histopathologic and metabolic 
findings from preoperative chest CT scans demonstrating utility when identifying histopathologic findings indirectly and 
for survival prediction. Key limitations included single-centre data, retrospective design, and sole analysis of epidermal 
growth factor receptor (EGFR) mutations. However, it highlighted the possibility of using unsupervised learning to enable 
post-operative survival prediction but required multi-centre studies for validation.

Niehues et used attention-based self-supervised learning in colorectal cancer (CRC) demonstrating success in identify-
ing biomarkers from WSI (including microsatellite instability (MSI), BRAF, KRAS, NRAS, and PIK3CA) outperforming previ-
ous approaches [58]. An attention-based approach combines global features and minimises artefacts; demonstrating 
efficient DL prediction and location of biomarkers in WSIs cost-effectively. However, its success is limited to identifying 
MSIs; with KRAS, NRAS, and PIK3CA not achieving clinically relevant ranges. Nonetheless, it demonstrates independent 
transformation of unsupervised learning into supervised learning through the auto-generation of labels.

Hosseini et al. addressed real-world data imbalances by modifying existing DL models [59]. Their approach transferred 
knowledge from label-rich sources to unannotated targets using focal loss functions to tackle class imbalance challenges 
and co-training with pseudo-labelled target data. Applying this to PC images, they classified them into low-cancerous 
and high-cancerous regions, assigning labels to unlabelled data, selecting high-compatibility targets for training and 
demonstrating efficacy on public datasets.

Fetisov et al. propose a novel unsupervised meta-learning-based segmentation method which corresponded to clas-
sification tasks and eliminated the need for patch-level annotation [60]. It determined the relative importance of tissue 
regions while utilising the PANDA dataset for unsupervised segmentation, capable of detecting malignant regions with a 
0.79 patch-based AUC (area under the curve). This fully unsupervised model aids machine learning approaches in cancer 
histopathology utilising segmentation as a feedback mechanism to identify regions needing scrutiny. The precision of 
segmentation, however, was limited by patch size.

Wang et al. [61] introduced a Transformer-based SSL strategy, Semantically-Relevant Contrastive Learning (SRCL) with 
an integrated hybrid CNN-Transformer (CTransPath) to improve feature extraction in histopathology. A 15 million patch, 
30,000 WSI dataset was used for pretraining and the model was validated on five tasks: patch retrieval, classification, 
weakly-supervised WSI image classification, mitosis detection, and colorectal adenocarcinoma gland segmentation. 
Combining CNN’s local texture extraction and the global feature-learning ability of Transformers improved classification 
and segmentation performance. This also allowed further generalisation of downstream tasks allowing universal feature 
extraction for histopathology. However, it came with a high computational cost burden, making deployment challenging 
in low-resource settings. There was also potential for incorrect positive pairing: while SRCL selects semantically similar 
patches, false positives may still occur that could reduce the effectiveness of contrastive learning.

Dippel et al. [62] introduced RudolfV for digital pathology which integrated pathologist knowledge into the develop-
ment process. Using a diverse dataset of 103,849 WSIs from various labs, with various staining protocols (H&E and non-
H&E) the authors curated a semi-automated process using the DINOv2 framework and evaluated RudolfV on multiple 
public and internal benchmarks to demonstrate competitiveness. RudolfV has applications in digital pathology (cancer 
detection, tissue classification, and biomarker scoring) and biomedical research to serve as a foundation for the devel-
opment of diagnostic tools and insights into disease mechanisms. However, computational complexity and significant 
overlap through the use of multiple datasets uses significant resources which limit accessibility for smaller labs and risk 
overlapping data with the pre-training dataset that may potentially inflate performance metrics. Future outlooks could 
focus on scaling the dataset to handle more complex tasks and integrate the model into clinical workflows to assist 
pathologists in real-world diagnostic settings. RudolfV may benefit from extending the model to address rare diseases 
with limited utility to further enhance its clinical practice and integration into clinical workflows.
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From these selected examples, we can ascertain that unsupervised learning has significant capacity in computational 
histopathology aiming to reduce manual annotation dependency and enhance feature extraction. Recent advances 
including contrastive learning, GANs, and hybrid CNN-Transformer architectures have led to advances in nuclei detection, 
cancer classification, biomarker identification, and segmentation. Unsupervised learning possesses adaptability for mul-
tiple pathology tasks, potential for survival prediction and clinical integration, and enhanced segmentation approaches 
which improve methods like watershed, active contour, and region-growing. However, unsupervised learning currently 
has limited interpretability (thus requiring clinical validation) and higher false-positive rates where methods like SRCL 
and contrastive learning introduce incorrect positive pairing which reduces classification accuracy. Finally, the patch-
based approach loses broader spatial relationships which are identified through WSI analysis.

Future research should emphasise WSI analysis with multimodal AI integration to combine pathology images with 
genomics, radiology, and clinical metadata while addressing class imbalance issues with balanced datasets for improved 
generalisation. Unsupervised learning has the potential to play an important role in AI-assisted pathology workflows 
supporting diagnostics, research, and clinical decision-making but is currently limited due to expense and limited reli-
ability when resources are scarce.

Transfer learning remains the predominant method in digital pathology, leveraging knowledge from one domain 
to another (source to target), to address limited target training data [63]. It emphasises transferring knowledge with or 
without labelled data, spanning all levels of supervision. In histopathology, ImageNet pre-trained models such as VGG-
Net [64], InceptionNet [65], ResNet [66], MobileNet [67], DenseNet [68], and other variants are commonly used (Table 5).

Tsuneki et al. [69] used transfer learning to classify prostate adenocarcinoma needle biopsy WSIs into adenocarci-
nomatous and benign lesions. Among three trained models, TL-colon poorly ADC-2 (20x, 512) demonstrated superior 
performance with ROC-AUCs of 0.967–0.978, 0.737–0.910 and 0.987 on TUR-P and TCGA datasets. Automation could 
reduce the interpretative burden on pathologists, minimise missed cancer foci, and systematically handle substantial 
WSI volumes without fatigue-associated bias. Further validation could potentially transform precision oncology.

Noorbakhsh et al. [70] used transfer learning to quantify tumour cellularity (TC) to assess tumour burden (TB) in BC 
measuring response following neoadjuvant therapy. Transfer learning outperformed pathologist review (93% to 81%) 
surpassing hand-engineered approaches prone to misclassification of malignant nuclei. Three TC scoring methods were 
tested: visual interpretation of TB, a pathologist-mimicking approach (identifying malignant: benign cells and stroma), 
analysing cell proportions, and automated feature extraction using deep CNN. limited due to being time-consuming and 
human fatigue. Automated techniques produced TC scores similar to trained pathologist reviews and performed better 
when identifying healthy tissue and cancerous patches, addressing the limitations of traditional manual evaluation.

Due to the vast number of features used for decision-making, class-specific discriminative regions via activation 
maps identify regions responsible for presentations. Mahmood et al. [71] used Faster-Regional CNN (FR-CNN) to create a 
multi-stage mitotic-cell-detection method using ICPR (International Conference on Pattern Recognition)-2012 and ICPR-
2014. Activation maps and routing through different layers of trained ResNet-50 and DenseNet-201 classifiers allowed 
multi-dimensional layers to present as a single image. Layering allows a combination of simple (colour, edges etc.) and 
deeper complex features and significantly impacts decision making. Figure 6 demonstrates the characteristic activation 
maps of mitotic vs non-mitotic [71].

Advances in DL decrease the gap between pathologists and computer performance. Significant variation in mitotic cell 
size highlights FR-CNN for efficient feature extraction. Mitotic scores, reflecting tumour proliferative activity, are obtained 
by counting mitotic figures in hotspots [72–74]. DL, however, is highly reliant on large datasets necessitating data aug-
mentation with smaller sample sizes. posing challenges distinguishing variation between mitotic and non-mitotic cells. 
Currently, pathologists outperform AI in decision-making suggesting FR-CNN is best suited as an augmentative tool.

Pantanowitz et al. [75] trained an AI model to detect mitoses using 320 breast invasive ductal carcinoma images. 24 
readers were assessed 140 high-powered fields with and without AI comparing accuracy and efficiency. AI intervention 
improved precision and sensitivity, with 87.5% identifying more mitoses and 54.2% demonstrating lower rates of false 
positives. AI completed tasks 27.8% faster, enhancing accuracy and efficiency in invasive breast carcinoma quantification.

Kather et al. [76] used DL to infer genetic mutations, molecular tumour subtypes, gene expression signatures, and 
biomarkers from routine histology in across > 5000 patients. 14 common solid tumour types were tested: breast (BRCA), 
cervical (CESC), colorectal (COAD and READ), gastric (STAD), head and neck (HNSC), hepatocellular (LIHC), lung adenocar-
cinoma (LUAD), lung squamous (LUSC),melanoma (SKCM), pancreatic (PAAD), prostate (PRAD), renal cell chromophobe 
(KICH), renal cell clear cell (KIRC), and renal cell papillary cancer (KIRP). Their workflow retrained a deep neural network 
for each target using identical parameters. Following WSI scanning and patient-level cross-validation (splitting the cohort 
into three partitions, neural networks trained on two partitions, and evaluated on the third), deep neural networks 
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predicted molecular status for each tile with the percentage of positive-predicted tiles for each class displayed as a prob-
ability score for each patient. Their method detected subtle patterns aiding classification, identifying basal BRCA subtypes, 
high/low proliferation LUADs, and STAD but was limited due to reduced data availability for a multi-cancer approach.

Despite being widely utilised in digital pathology, the effectiveness of transfer learning can vary and is dependent on 
numerous factors including task complexity, dataset size, and computational constraints.

High computational cost especially in real-time clinical applications remains a significant burden. Figueira et al. [77] 
proposed a method for lung, breast, and colon cancer detection using domain adaptation networks (ABDA-Net) com-
bined with ResNet50 as a feature encoder with their method achieving an 86.61% accuracy on the lung cancer dataset. 
Their cross-domain adaptation technique uses adversarial learning to transfer knowledge between datasets integrated 
supervised learning (for domain training) and unsupervised learning (for domain adaptation) in a multi-modal approach. 
Further work could integrate multiple data types beyond histopathology while also integrating clinical and patient-
specific data. Fusion with genomics (multi-omics integration) could enable molecular subtyping of tumours and improve 
tumour classification and prognosis prediction by linking tissue morphology with underlying genetic mechanisms using 
neural networks to integrate structured genomic representation. Fusion with radiology (radio-pathomic) could integrate 
imaging with DL fusion models to link imaging phenotypes, molecular markers, and histopathology data to improve 
tumour staging and therapy planning. While Figueira et al. [79] proposed a method for cross-domain adaptation of 

Fig. 6   Activation maps from different parts of (a), (b) ResNet-50 and (c), (d) DenseNet-201 with mitotic and non-mitotic cell images. Mitotic 
cells were demonstrated at (a) and (c) and non-mitotic cells shown at (b) and (d) [71]
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histopathological images only, true multimodal extension would incorporate clinical, genomic, and radiologic data to 
enable personalised tumour diagnosis and treatment prediction making the AI system more clinically relevant.

3 � The future of AI in computational histopathology

Overall, AI application to histological image analysis has gained momentum, with AI application for WSI normalisation, 
identification of ROIs and overall classification of images into specific classes. Combining digital histopathology and AI 
presents an opportunity, in the current paradigm, as an aid to pathologists’ tasks with a final long-term goal of minimis-
ing pathologist input maximally.

3.1 � Data fusion

Clinical and histopathological characteristics alone cannot reliably predict carcinoma progression. Integration of multi-
source data is vital for tailored diagnosis, with molecular features gaining increasing value in identifying cancer type, 
progression, demographics, and prognosis. AI algorithms enable extensive information extraction from WSIs including 
proteomics, immunohistochemistry (IHC), genetic and epigenetic data, spectroscopic images, and large-scale imaging 
(MRI, CT, etc.). This could aid in predicting features of poorer prognosis and progression in malignant cancer e.g. through 
integrating current knowledge about molecular mechanisms in cancer metastasis. Furthermore, -omics research can be 
combined with spectroscopy for identification and localization of pathophysiological cell and tissue alterations. Path-
omic fusion [78] offers end-to-end multimodal fusion of histology image and -omics (mutations, copy number variations 
(CNV), RNA-Seq etc.) data to predict survival. Combining deep learning with datasets from available databases; including 
information such as WSIs, genotypic, and transcriptomic data; using multimodal fusion (MMF) to allow faster prediction 
on an efficient individual-to-individual basis.

Chen et al. [78] developed a multimodal data fusion method for pan-cancer integrative histology-genomic analysis 
using DL; demonstrating improved prognostic models for most cancer types, jointly examining WSIs and molecular 
profiles from 14 cancer types. Using a weakly-supervised DL algorithm, Chen et al. fused heterogenous modalities to 
identify prognostic features. MMF algorithms combine H&E WSIs and molecular profile features (mutation status, copy-
number variation, RNA-Seq expression etc.) to measure and explain relative risk of cancer death. They demonstrated that 
MMF applied to AI tasks (including survival-outcome prediction, histopathology features, and molecular features) using 
weakly-supervised learning allowed predicting interactions and identifying low-risk/high-risk patients. The study used 
a 6,592 giga-pixel WSI dataset from 5,720 samples across 14 cancer types from TCGA with specific training for each type. 
This allowed investigation of local and global image-comics and quantification of tissue microarchitecture to identify 
shifts in feature importance between unimodal and multimodal [78]. Figure 7 demonstrates this [78].

Chen et al. [78] demonstrated proof-of-concept from multiple data sources to identify correlative features driving 
prognosis, enabling future work using larger multi-modal cohorts. Robust characterization and spatial organisation to 
address micro-problems including intra-tumoral heterogeneity, immune cell presence, and morphological variation is 
necessitated to maximise opportunities for data fusion and integration.

3.2 � Swarm learning

Access to relevant data is a major drawback for many medical applications due to strict privacy regulations. Full anonymi-
zation of data is challenging, but connecting follow-up information with a specific data point is possible. Smart contracts 
and blockchain technology could securely share data based on authentication, allowing expert opinions or running 
samples on other diagnostic systems. This approach benefits computational pathology through secure, efficient role-
based data sharing.

Saldanha et al. [79] attempted to integrate blockchain technology into imaging-based cancer molecular diagnosis 
tackling the limitation of large data size requirements and barriers to data via a decentralised multicentric model train-
ing: Swarm Learning (SL). This pilot highlighted the predictive accuracy of BRAF mutational status and microsatellite 
instability (MSI). Using small datasets in medical AI is challenging as prediction performance increases with larger training 
datasets. Saldanha et al. [79] demonstrated that SL enables AI-based prediction of BRAF and MSI status in CRC and for 
other image classification tasks in computational pathology.
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Training AI models with small datasets can be as effective as using a large dataset; potentially lowering hardware 
requirements, reducing cost burden which is beneficial in low/middle-income countries. However, the study con-
cluded that their model did not improve precision and accuracy for the two tasks specifically: dependency on local 
models was suspected to be the cause of their advantages necessitating future studies, necessitating future studies 
to ensure tangible benefits of blockchain and AI integration The study may be limited as differential privacy was 
not explicitly investigated but allows potential for future incorporation. Swarm learning provides a key step forward 
in medical AI by allowing multiple devices to implement pattern recognition code with open-source software, fea-
sible across multiple healthcare institutions. Saldanha et al. [79] provide clear guidelines to establish SL in routine 
workflows.

SL may face challenges related to data heterogeneity, computational demands, and model generalization [80]. Dif-
fering institutional protocols may lead to domain shifts across datasets. SL instead relies on distributed, locally trained 
models, making aggregation to a generalizable global model difficult. This also raises a risk of bias with non-identically 
distributed data. Institutions with differing patient demographics, limited data size, limited cancer subtypes, or sample 
distributions can bias the model leading to poor convergence and inconsistent performance when applied externally. 
This may also lead to overfitting on institutional-specific patterns where the model learns site-specific artefacts rather 
than general pathology features, therefore failing on external datasets. There is scope for hybrid approaches combining 
SL with self-supervised learning and domain adaptation to enhance model robustness and clinical applicability.

3.3 � Interpretability

Clinicians often resist adopting new AI technology due to lack of understanding, even with evident benefits. “Black-box” 
essentially describes the challenge of explaining AI models. Bhattacharjee et al. explored explainable computer vision 
(XCV) using a DL model to classify, differentiate, and PC [81]. To demonstrate transparency of their model decision-making 
they presented three techniques: Activation Layer Visualization (ALV), Local Interpretable Model-Agnostic Explanation 
(LIME), Shapley Additive exPlanations (SHAPE and Gradient-weighted Class Activation Mapping (Grad-CAM). XCV is 
described as “AI in which the results of the black-box model can be understood by humans’’. Their Light-Dense CNN 
(LDCNN), modified from light-weight CNN (LWCNN) classifies H&E-stained images of PC showing superiority for tissue 
image classification and cancer detection. Their work warrants further research applied to other cancers and real-life 
health scenarios.

Fig. 7   A Patient data in digitised high-resolution H&E histology. B Explanations per-patient as heatmaps. Red = high attention regions (con-
tributing to predicted risk score). C Global morphological patterns extracted via cell quantification of high-attention regions in low and 
high-risk patient cohorts. D Explanations per-patient using attribution-based interpretability in integrated gradients. E Global interpretabil-
ity for molecular features showing feature value and magnitude of gene attributions across all patients. F Kaplan–Meier analysis for patient 
stratification [78]
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3.4 � three‑dimensional (3D) histopathology

Technological advances now allow imaging of large tissue samples in 3-D mimicking H&E slides. This approach can 
detect diagnostically significant tissue that’s difficult to see in 2-D sections, such as lympho-vascular invasion, mini-
mal residue, and tertiary lymphoids [82]. In PC, 3-D imaging better characterises the heterogeneous and irregular 
nature of the tumour microenvironment (TME); aiding therapy through a superior understanding of immune cell 
migration [83]. However, the complexity and large data volume make 3-D histopathology interpretation challenging. 
A recent study trained AI to handle 3-D image sections slice-by-slice, outperforming current 2-D histopathology AI 
applications [84].

3.5 � Vision transformers (ViTs)

ViTs provide a DL designed for image classification tasks, using a transformer architecture that divides images into 
patches, processes through the transformer layers, and captures global relationships for effective pattern recogni-
tion. Chen et al. combined CNN and ViT using a parallel dual-branch network (DBNet) based on ResNet to capture 
local and global elements in histological images; showing improvement over state-of-the-art CNN models. through 
a multi-scale ViT approach for gastric cancer identification in histological images to produce diagnostic predictions 
by combining global and local features [85, 86].

Vorontsov et al. [87] implemented Virchow; a ViT model with 632 million parameters trained on 1.5 million H&E 
WSIs, significantly larger than prior models, processing massive datasets to create generalizable embeddings for 
diverse downstream tasks in pathology. Virchow demonstrated an AUC of 0.949 in pan-cancer detection across 17 
common cancer types and 0.937 for rare cancers outperforming current state-of-the-art models. For biomarker 
detection, the Virchow model demonstrated consistently high performance for MSI in colon cancer (AUC 0.972; 95% 
CI 0.950–0.989), fibroblast growth-factor receptor (FGFR) in bladder cancer (AUC 0.902; 95% CI 0.862–0.941) and for 
EGFR in lung cancer (AUC 0.853; 95% CI 0.804–0.891). Vorontsov et al.’s model enables cancer, detection, subtyping, 
and biomarker prediction simultaneously while demonstrating adaptability for common and rare cancers. Their multi-
view self-supervised learning model captured a broad range of pathological features including tissue morphology, 
nuclear, atypia, and inflammatory responses. However, their dataset was sourced from a single institution (MSKCC) 
potentially limiting generalisability from other institutions. They also acknowledged the need for aggregator archi-
tecture and training procedures given that their embeddings were generated at the tile-level. Nevertheless, they 
demonstrated that pan-cancer prediction remained robust from external sites, on out-of-distribution data, and on 
rare cancer types.

Chen et al. [88] introduced a general-purpose foundation model trained on 100 million images from over 100,000 
diagnostic H&E-stained WSIs across 20 major tissue types. Their model (UNI) outperformed previous state-of-the-art 
models including CTransPath and REMEDIS across 34 representative tasks of varying diagnostic difficulty while also 
introducing novel capacities including resolution-agnostic classification and few-shot learning with superior gener-
alizability. UNI introduced a prompting-based classification approach (MI-SimpleShot) which enhanced slide-level 
disease identification, increasing data efficiency through high accuracy achieved with reduced labelling. When com-
pared to the 4-shot performance of UNI with other models, other models needed up to eight-fold training examples 
per class to achieve the same output [86]. The model possesses limitations in segmentation tasks and multimodal 
integration – key areas for further improvement. Their Vision Transformer Large (ViT-L) is not inherently optimised 
for dense prediction tasks such as segmentation: unlike CNNs, ViTs lack inductive biases for spatial structure, instead 
processing images as patches which limits their ability to capture fine details. Combining ViT with CNN-like hierarchi-
cal structures could offer a solution for improved segmentation in a hybrid model.

Lu et al. developed a multi-modal generative AI copilot for human pathology that combined a ViT (trained on 100 
million images) with a large language model and then fine-tuned on 456,000 + visual-language pathology instructions 
which covered 999,202 question–answer pairs [89]. They evaluated their model (PathChat) against GPT-4 V, LLaVA-
Med (a biomedicine-specific multi-modal large language model (MLLM)), and LLaVA 1.5 (a general purpose MLLM) 
to cover 54 diagnoses in 11 major pathology fields. Notably, their model had a 7.1% accuracy without context which 
improved to 89.5% with clinical data outperforming GPT-4 V significantly (26.9% without context and 53.8% with 
it). Their model had utility in pathology question benchmarking, generating more accurate and preferred responses 
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compared to other AI models as ranked by seven expert pathologists especially in microscopy analysis. Path Chat also 
has utility in education and clinical assistance, serving as a real-time pathology tutor and decision-support tool How-
ever, it had limited clinical and ancillary knowledge, being outperformed by GPT-4 V in general medical knowledge 
and biomarker analysis while also requiring an expensive deployment model with large computational resources. 
Currently, it cannot process WSIs instead relying on selective regions of interest (ROIs). Nevertheless, it represents a 
step in integrating AI copilots into pathology workflows with a future outlook to becoming an essential assistant in 
pathology, possessing utility in resource-limited settings and for pathologists-in-training.

3.6 � Bias mitigation

Vaidya et al. [90] addressed demographic bias causing misdiagnosis in computational pathology models and investigated 
the performance disparities of DL across different demographic groups highlighting that publicly available datasets (e.g. 
TCGA) exhibited significant gaps with underrepresented demographic groups in key tasks such as cancer subtyping and 
mutation prediction. They notably identified performance gaps in cancer subtyping between white and black patients. 
The difference in AUROC was 3.0% for breast cancer, 10.9% for lung cancer, and 16.05 when identifying IDH1 mutations 
for gliomas.

Vaidya et al. [90] further concluded that unsupervised vision foundation models trained on large datasets reduced 
performance disparities between groups but did not eliminate gaps, necessitating further bias mitigation efforts. Site 
stratification would hold out certain sites during training to prevent models from incorporating certain site-specific biases 
which may show mixed results. Stain normalisation to reduce variability was also suggested – however, it only improved 
performance selectively. Test Set Resampling was used to ensure equal representation of demographic groups – never-
theless, performance disparities persisted suggesting complex causes of bias. Analysis beyond race (including income, 
insurance status, and age) still showed persistent disparities further highlighting the need for more comprehensive 
mitigation strategies. This study highlighted the necessity for enhanced regulatory oversight to require demographic-
stratified performance for AI models in healthcare to ensure equitable outcomes. It also underscored the need for further 
research to understand the complex interplay between demographic factors especially in intersectional contexts.

Distribution shifts occur when data distribution changes, thus affecting ML models. Kulinski et al. [91] proposed a 
novel, practical framework to explain distribution shifts using interpretable transport maps to offer a balance between 
detail and interpretability. They provided actionable insights to aid human operators in making informed decisions. 
Computational histopathology presents distribution shifts through numerous sources of variation: staining protocols, 
scanner differences, or tissue preparation methods across hospitals and labs. These can impact the performance of ML 
models for cancer detection and tissue classification. The framework provided by Kulinski et al. [91] uses k-cluster trans-
port to reveal how different subgroups of histopathology can be affected by distribution shifts which allow targeted data 
augmentation and domain adaptation techniques. This provides more interpretable mapping to produce actionable 
insights which can help improve the robustness and generalizability of machine learning models. Challenges persist, 
however, especially when handling complex content-based shifts and maintaining the interpretability of explanations. 
Further research should emphasise more domain-specific interpretable methods and causal explanations to utility in 
histopathology.

Demographic-dependent performance disparities and distribution shifts from varying protocols remain significant 
sources of bias which are especially problematic in sensitive fields like computational histopathology. Although significant 
strides are made to mitigate these, future research is needed to understand the complex interplay between demographic 
factors that produce variation and to develop fairer models that are less sensitive to biased features while providing 
actionable insights for reducing bias.

4 � Conclusion

In summary, AI has made significant strides in cancer research, particularly in diagnosis and prognosis, with multiple 
models performing complex functions with increasing accuracy. Despite broad applications, considerable potential 
for further advancement remains. Challenges persist in transitioning AI technologies from research to clinical settings, 
with significant privacy concerns. This review offers a comprehensive overview of various AI models in computational 
histopathology from 35 studies. Supervised, weakly -supervised, unsupervised, and transfer learning approaches have 
demonstrated depth and proficiency. Through critical analysis of their strengths and limitations, we provide insights into 
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future perspectives and emerging technologies. Moving forward, we aim to explore additional subcategories of learning 
methods and offer comparisons between deep and shallow learning techniques.
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