Optimising neonatal x-ray quality: results of an audit

N. Woznitza^{1,2}, N. Hayes¹, N. Malisheva¹, D. McGuinness¹

1 - Radiology Department[,] Homerton University Hospital, London, UK 2 - Allied Health Department, Canterbury Christ Church University, Kent, UK

INTRODUCTION

- Babies who require specialist neonatal care present diagnostic and therapeutic dilemmas to the treating clinicians^{1,2}
- X-ray imaging is a tool frequently used to assist clinical management^{1,2}

- The effects of ionizing radiation on this vulnerable population are well documented¹
- Quality assurance (QA) programs are an established method to maximise diagnostic quality while keeping radiation exposure to a minimum²

AIMS

- To examine the film quality of x-rays produced at a tertiary referral neonatal unit in the United Kingdom
- To establish inter- and intra-observer variation when applying a film quality checklist

METHODS

- 174 x-rays were randomly selected from a large, tertiary neonatal service over a 3 month period (10% workload)
- Film grading system developed by Cook *et al.*³ was used

- Two radiographers, after bespoke training, independently rated each x-ray for quality using pre-defined criteria
- Observer agreement was determined using Kappa (K) statistic

RESULTS

- □ 100 of 172(59%) of x-rays were rated high quality (average score≥27) [Image 1 3]. 2 cases not rated by both Observers.
- □ Nearly all x-rays had appropriate density (165 of 174 x-rays)
- Rotation was the most common cause of reduced image quality [Image 4]
- Correct use of lead protection produced most discrepancies between observers [Image 5]
- Observer agreement was fair⁴ for overall x-ray quality; K = 0.23 (p<0.01) [Table 1]</p>
- Observer agreement was variable for individual film quality criteria (Weighted K= 0.12 - 0.92,all p<0.05) [Figure 1]

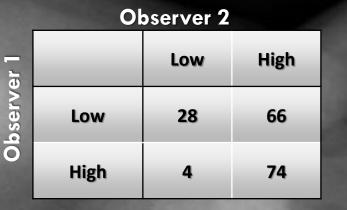


Table 1. Proportion of images rated high & low quality by each observer

Weighted Kappa

Image 4. CXR with marked rotation

both observers

Image 2. High quality AXR

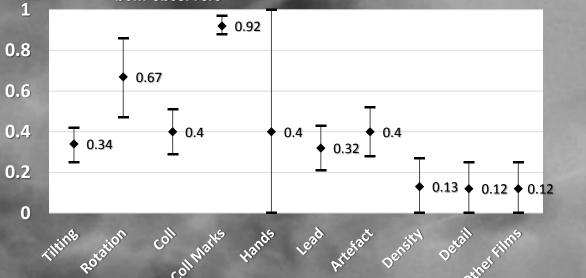


Image 3. Poor quality AXR

SCBU

60/1.6

Image 5. CXR without appropriate lead protection

Figure 1. Observer Agreement (Kappa statistic) for each element of image quality

ICLUSIONS CO

Identifying of common patterns assists in maintaining high standards Targeted training allows radiographers to accurately assess image and minimizes radiation exposure quality with a moderate degree of reliability

EFERENCES

1 – DeMauro et al 2011 Imaging of the Newborn Cambridge University Press. 2 – Dougeni et al 2007 Br J Radiol 80(958): 807-815.

3 - Cook et al 2001Br J Radiol 74(887): 1032-1040. 4 – Landis & Koch 1977 Biometrics 33(1): 159-174