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Abstract
Allergic diseases affect up to 40% of the global population with a substantial rise in food allergies, in particular, over the past 
decades. For the majority of individuals with allergy fundamental programming of a pro-allergic immune system largely 
occurs in early childhood where it is crucially governed by prenatal genetic and environmental factors, including their inter-
actions. These factors include several genetic aberrations, such as filaggrin loss-of-function mutations, early exposure to 
respiratory syncytial virus, and various chemicals such as plasticizers, as well as the influence of the gut microbiome and 
numerous lifestyle circumstances. The effects of such a wide range of factors on allergic responses to an array of potential 
allergens is complex and the severity of these responses in a clinical setting are subsequently not easy to predict at the present 
time. However, some parameters which condition a pro-allergic immune response, including severe anaphylaxis, are becom-
ing clearer. This review summarises what we currently know, and don’t know, about the factors which influence developing 
pro-allergic immunity particularly during the early-life perinatal period.
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Introduction

The prevalence of allergy has consistently risen in the past 
century, ranging between 10 and 40% of the world popula-
tion according to the World Allergy Organization (WAO), 
with 40–50% sensitization rates amongst school children to 
one or more common allergens [1]. Since the mid-1990s 
food allergies have risen sharply and hospitalizations for 
severe allergic reactions (anaphylaxis) in England and Wales 
rose by over 600% between 1992 and 2012 [2]. Food aller-
gic hospitalizations are highest in infants, underlining the 
critical conditioning of pro-allergic immunity in early child-
hood, including the perinatal period [2]. This is typified by 
recent findings demonstrating that tolerance to peanuts and 

subsequent peanut allergy risk reduction significantly takes 
place at 4–11 months compared to introducing peanuts at 
5 years of age [3, 4]. The immune system in early childhood 
obviously plays a pivotal role in the subsequent development 
of allergic disease.

Several genetic aberrations, such as filaggrin loss-of-
function mutations, are associated with allergy and it has 
long been known that the risks of developing allergies are 
partially hereditary, with a 30–50% chance of a child devel-
oping allergies with one allergic parent, which increases to 
60–80% with two allergic parents. But the example given 
above clearly shows that this genetic predisposition can be 
either mitigated or compounded depending on exposure to 
certain microorganisms, nutrients, chemicals, drugs and 
life-style factors. This review summarises what we cur-
rently know about the factors which influence developing 
immunity leading to allergy, particularly during the early-life 
perinatal period. However, while many genetic and environ-
mental determinants have been identified which moderate 
allergies, we know relatively little about the details of early 
human adaptive immune responses. Here, recent findings 
from animal models of allergy have shed light on some of 
the unknowns and these too are included in this review, in 
the hope that it will stimulate the unmet need for a better 
understanding of human perinatal pro-allergic immunity.
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Development of the perinatal immune 
system

Perinatal immunity undergoes striking changes because of 
differing fundamental requirements associated with each 
stage of development. Whereas the foetal immune system 
needs to tolerate maternal alloantigens and avoid inflam-
matory pathways which could hinder the normal develop-
ment of vital tissues and organs, the sudden exposure to 
environmental pathogens after birth requires robust innate 
and adaptive immunity to cope thereafter (reviewed in [5]).

Foetal immunity is largely mediated by the innate immune 
system, including neutrophils, monocytes, macrophages and 
dendritic cells, though with diminished functional proper-
ties, alongside reduced capacity for complement activation. 
Neutrophils, for example, display reduced migration through 
the endothelium and bactericidal functions, and phagocytic 
ability is also impaired until shortly after birth [6, 7]. Foetal 
and neonatal immune cells, such as plasmacytoid dendritic 
cells, display reduced levels of pro-inflammatory cytokines 
such as interferon (IFN)-α and -β, IL-12 and TNF-α, while 
producing more anti-inflammatory cytokines including 
IL-10 and TGF-β [8, 9]. Although diminished innate and 
inflammatory immune responses potentially render the foe-
tus susceptible to infections, they crucially help to avoid 
spontaneous abortions and damage to the developing lungs 
and other tissues [10].

In terms of early adaptive immunity, both CD4 + and 
CD8 + positive T cells are present in the thymus from the 
second trimester onwards, but their subsequent priming 
and activation is generally diminished. This may be due to 
reduced number and function of antigen presenting cells. 
For example, it was shown that cord blood myeloid-type 
dendritic cells (mDC) are reduced in number compared to 
adults and express less HLA class II as well as CD80 and 
CD86 on the cell surface [11]. Nonetheless, when activated, 
foetal CD4 + T cells are primarily skewed towards a regula-
tory (Foxp3 + CD25 +) T cell (Treg) phenotype upon stimu-
lation with alloantigens due to the effects of TGF-β, thereby 
crucially contributing to self-tolerance [12].

Although the foetal immune system is capable of elicit-
ing weak Th1 immune responses, its later development into 
the neonatal phase is highly skewed to Th2 immunity, espe-
cially upon foreign antigen activation [13]. This Th2-biased 
response continues after birth, and is explained in part by 
hypermethylation of the promotor region of IFNG gene in T 
cells, preventing transcription and skewing to Th1, whereas 
Th2-promoting regions are hypomethylated and poised for 
activation [14, 15]. The balance between early tolerogenic 
(Treg-mediated) immunity versus Th2 immunity has obvi-
ous repercussions with respect to the development of allergic 
diseases and other Th2-mediated pathologies.

Humoral adaptive immunity is also strikingly undevel-
oped, especially in utero and neonatal stages. B cell expres-
sions of CD80/86 and CD40 in infants aged under 2 months 
are reduced and are therefore less able to respond to activa-
tion by helper T cells in the presence of an antigen [16]. 
They also lack the capacity for affinity maturation of anti-
bodies due to limited somatic hypermutation [17]. At birth, a 
large proportion of B cells are of the B1 type, which secrete 
IgM specific to a limited range of antigens (and of low-affin-
ity), whereas B2 cells predominate several months after birth 
and are capable of producing a more diverse repertoire of 
immunoglobulins such as IgM, IgA as well as IgE. Interest-
ingly, IgE can also be detected in cord blood, especially in 
association with allergic disease. However, the source of IgE 
could be maternal, since the immunoglobulin can cross the 
placental barrier when complexed with IgG [18]. Whether 
this maternal IgE can then activate mast cells is currently an 
area of debate [19].

Mast cells and basophils are the primary drivers of aller-
gic reactions as they have the high-affinity receptor for IgE. 
Mouse studies have shown that mast cells appear in the skin 
during embryonic stages, but do not appear in other tissues 
until after birth [20, 21]. However, the skin mast cells that 
are present appear to be immature and unable to respond to 
IgE [19]. Conversely, results from both human and mouse 
have shown that basophils are present in circulation from 
birth [22, 23]. Furthermore, these basophils block the func-
tion of dendritic cells in newborn mice, thereby preventing 
the development of a Th1 immune response [23]. Taken 
together, the neonatal immune system is primed to respond 
to Th2 stimuli.

Genetic factors

Family history is a strong risk factor in the development 
of atopy and allergy, indicating a clear role for genetics in 
allergic disease. There are numerous genetic variations that 
have been associated with higher risk of allergy. Several 
of these variations are due to mutations in barrier proteins, 
especially in the skin. As the skin is often the first site of 
allergic inflammation, these have been widely studied. The 
most well-characterized is filaggrin (FLG). Mutations in this 
protein are associated not only with predisposition to atopic 
dermatitis, but also with allergic asthma, allergic rhinitis, 
and food allergy [24]. Mice with FLG mutations have also 
been commonly used to understand the role of this protein 
in allergic disease [25]. However, FLG mutations do not 
contribute to asthma development without the presence of 
atopic dermatitis, indicating a relationship between these 
two pathologies. This relationship is discussed below.

In addition to barrier genes, several mutations in genes 
that code for key immune processes are also implicated in 
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allergic disease. For example, genome-wide association 
studies (GWAS) studies have identified several susceptibil-
ity genes in asthma, allergic rhinitis, and atopic dermatitis. 
These include key Th2-associated cytokines such as IL-33 
and TSLP, as well as the IL-33 receptor [26, 27]. These 
cytokines are important in driving the Th2 response in aller-
gic disease. However, there are also genetic variations within 
the effector Th2 cells themselves. For example, single nucle-
otide polymorphisms in the IL13 gene have been found to 
be associated with increased risk of food allergy and greater 
levels of circulating IgE [28]. STAT6 is a transcription fac-
tor that drives IL-4-mediated responses, and variations in 
this gene have been linked to nut allergy [29]. Additionally, 
a variant in the IL-4 receptor associated with asthma has 
been shown to convert regulatory T cells into Th17 cells, 
thereby enhancing disease [30]. Other Treg variations have 
been found in cord blood, including IL10 polymorphisms 
[31]. It should be noted that individually, most gene variants 
have a low odds ratio when assessing allergy risk, however it 
is the interplay between genetics and environmental factors 
that is likely to drive disease.

Maternal factors affecting allergic disease

Allergic disease has long been thought to be due to allergen 
exposure after birth, however several recent studies have 
indicated that susceptibility can be traced to factors that 
occur in utero. While maternal antibody transfer has already 
been mentioned, several other maternal factors including 
diet, stress, and other environmental exposures have been 
shown to significantly increase allergy risk.

Stress

Maternal stress has recently been implicated in a number of 
childhood outcomes, although much of this has been linked 
to childhood behaviour [32]. The link between maternal 
stress and allergic disease has long been suspected by using 
a number of murine models of allergic disease [33]. This 
models have used both acute and chronic stress protocols, 
including direct delivery of corticosterone in drinking water 
[34] and have consistently found that maternal stress results 
in increased Th2 responses and airway hyperreactivity in 
offspring [35]. However, this has been more difficult to 
assess in humans, although several groups have investigated 
maternal stress and immune development. More recently, a 
systemic review and meta-analyses has shown an increased 
correlation between maternal stress and allergic disease [36]. 
This includes the finding that anxiety and depression during 
pregnancy resulted in increased risk of atopic dermatitis, 
allergic rhinitis, wheezing, and asthma, as well as increased 
circulating IgE levels, and that the risk was greatest when the 

maternal stress occurred during the third trimester [36]. The 
mechanism behind this is currently unclear but is likely due 
to the hypothalamic–pituitary–adrenal axis, whereby stress 
hormones such as cortisol and adrenaline are released into 
the abdomen, allowing for transmission to the foetus [37].

Diet

Maternal diet is another area of research that has undergone 
renewed interest in recent years when considering the devel-
opment of allergic disease. While maternal folate has long 
been understood in developmental processes, more recent 
work has also considered the role of this vitamin in immune 
development. While folate is necessary in the first trimester 
to prevent neural tube defects, current evidence suggests that 
excess folate in the third trimester may increase the risk of 
allergic disease. Much of this is due to its role as a methyl 
donor, which is needed for proper DNA and histone methyla-
tion to occur. Differential DNA methylation in both CD4 + T 
cells and antigen presenting cells from cord blood is altered 
in high- vs low-folate diets during the third trimester [38]. 
Neonatal CD4 + T cells from cord blood of infants born to 
women with very high folate levels also exhibit increased 
histone acetylation on GATA3 promotor regions. As histone 
acetylation is a known activating epigenetic mechanism, 
this may indicate a pre-disposition to Th2 responses [39]. 
A meta-analysis looking at folate levels found that the risk 
of respiratory allergic diseases was increased in pregnant 
women who took folate supplements [40].

Conversely, prenatal exposure to various nutrients via 
maternal diet may protect from allergic disease during child-
hood, although a number of analyses on this front have been 
inconclusive. Most promising in vitamin D supplementation, 
where reduced risk of wheeze was seen in children before 
three years of age [41], while other dietary factors such as 
long-chain fatty acids seem to have limited effectiveness 
when taken prenatally [41]. Epidemiological data suggest 
that vitamin D exposure can be protective against allergic 
disease. These data are primarily from studies looking at 
allergy severity, especially food allergy. Studies have found 
more severe anaphylaxis in children further from the equa-
tor, where vitamin D levels are lower, as well as in children 
born in winter, compared to spring or summer [42]. More 
direct evidence comes from a study demonstrating higher 
confirmed oral-food challenge in infants with lower vitamin 
D levels in both peanut and egg allergy [43]. Recently, a 
15-year follow-up found maternal supplementation resulted 
in decreased asthma incidence in children up to 6 years old 
[44]. In this context, high vitamin D may promote regula-
tory T cell development and IL-10, offering protection from 
allergy [45].

Conflicting data exist on other maternal dietary inter-
ventions, such as fruit and vegetable intake, and the 
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development of childhood allergies, although a diet rich in 
probiotics such as yogurt consumption is correlated with 
lower allergic risk [46]. Interestingly, maternal consump-
tion of peanut, milk, and wheat during pregnancy is associ-
ated with decreased risk of allergies and asthma [47]. This 
has also been observed in animal models of peanut allergy, 
where low-dose peanut exposure during pregnancy and lac-
tation of female mice provided protection against peanut 
allergy in offspring [48]. This protection is mediated in part 
by enhanced DNA methylation at the IL4 promotor, thereby 
inhibiting Th2 responses [49].

Environmental exposures

The association of prenatal environmental chemical expo-
sure and adverse outcomes following birth have been stud-
ied in several contexts, including allergic disease. Bisphenol 
A, used in the manufacture of plastics, has been associated 
with an increased risk of asthma, especially when exposure 
occurs during the third trimester [50]. Addition exposure 
to perfluorochemicals, used in polymer coatings associated 
with water- and stain-resistant materials, has been linked 
with increased IgE and atopic dermatitis [51]. Although 
polychlorinated biphenyls have been banned in many places, 
these chemical compounds persist in the environment and 
prenatal exposure has been linked with asthma and atopic 
dermatitis [52]. Exposure to heavy metals such as nickel, 
chromium, lead, copper, mercury, and arsenic are also 
implicated in atopy development, and risks from exposure 
to these metals continue after birth (reviewed in [53]). One 
of the most important prenatal environmental exposures is 
to cigarette smoke. Numerous studies in humans and animal 
models have demonstrated a link between respiratory issues 
such as asthma following maternal smoking and have been 
comprehensively reviewed elsewhere [54, 55].

Commonly used medications used during pregnancy have 
also been associated with increased allergy risk. Paraceta-
mol, a commonly used analgesic and fever-reducer, has been 
linked to childhood asthma in longitudinal cohort studies 
[56]. During paracetamol metabolism, the antioxidant glu-
tathione is depleted, and insufficient glutathione may drive 
T cells to a pro-allergy Th2 phenotype [57]. Additionally, in 
utero aspirin exposure, while often recommended for a num-
ber of pregnancy-related conditions such as pre-eclampsia, 
is also associated with increased asthma risk [58].

Postnatal exposures linked to allergic 
disease

The postnatal period is a time of rapid immune development 
as interaction with microbes and other environmental factors 
drive maturation. While many of the factors that contribute 

to the development of allergic disease prenatally carry into 
early life, the first month to years of childhood present a 
separate set of challenges for the immune system. These 
exposures can either increase the risk of allergic disease, 
or can provide protection, often through the development 
of tolerance.

The hygiene hypothesis

The hygiene hypothesis was developed in the late 1980s in 
an attempt to explain the exponential increase in allergic 
diseases in the second half of the twentieth century [59]. 
This hypothesis suggests that a clean environment that lacks 
exposure to microbes early in childhood increases the risk of 
allergic disease by modulating the maturation of the immune 
systems away from a Th2 bias. While this hypothesis origi-
nally identified infections as a driver of allergic disease, 
more recent work has focused instead on the role of com-
mensal bacteria in the development of the immune system. 
This has been supported by population-based observations. 
Initial studies focused on farm populations, where it was 
noted that children raised among farm animals (particularly 
cattle) had lower levels of atopy and allergy [60]. This has 
been further refined to show that direct contact with farm 
animals in early life is protective against allergic disease, 
even among populations with similar genetic backgrounds 
[61]. Further studies demonstrated that having pets is also 
protective; those studies went on to analyse microbes in the 
dust of houses and found a greater diversity in those houses 
with indoor/outdoor pets [62]. Indeed, the development of 
the gut microbiome and its associated metabolites is now 
thought to play an important role in the development of the 
immune system and protection from allergic disease [63]. 
This hypothesis is further supported by observations that 
vaginal delivery results in a lower risk of allergy compared 
to caesarean section, as the initial bacteria that colonize the 
newborn infant are derived from either the vaginal tract 
or the skin [64]. Infants born vaginally often have a more 
diverse microbiota, which is important in the development of 
balanced and/or tolerogenic responses early in life [65]. This 
revised focus of the hygiene hypothesis may offer a chance 
for early-life intervention in atopic individuals.

Microbiome

As discussed above, the focus of the hygiene hypothesis 
has recently been on the development of the microbiota 
early in life. Data from children monitored for several 
years after birth suggest that the gut microbiota composi-
tion at one month old predicts future atopy and asthma 
later in life [63]. Several studies have looked not only at 
the microbiome composition, but also the metabolites pro-
duced by commensal microbes in response to diet and the 
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development of the immune response. These studies have 
focused on Clostridiales species and dietary fibre intake 
and have found that fibre consumption in the presence of 
Clostridiales results in the production of short-chain fatty 
acids [66].

Thorburn et al. demonstrated that short-chain fatty acids 
such as acetate, which can cross the placenta, promote T 
regs and subsequently prevents the development of allergic 
airways disease in mice [67]. This underlines the notion that 
maternal diet plays a substantial role in the risk of develop-
ing asthma alongside epigenetic input. Arpaia et al. observed 
similar Treg-promoting effects were also observed with the 
short-chain fatty acids butyrate and propionate [68]. Poly-
unsaturated fatty acids (PUFAs), such as omega − 3 fatty 
acids which are commonly found in fish oils, may also have 
protective effects since they decrease dendritic cell function 
by modulating NF-κB activity [69]. In contrast, PUFAs such 
as omega-6, common in vegetable oils, have been shown 
to be associated with increased risk of asthma [70]. How-
ever, this association was observed to be sex-specific since 
male children were at highest risk of developing asthma (or 
wheeze) if maternal asthma was present alongside a high 
plasma ratio of omega-6 vs. omega-3 PUFA [70].

Other studies have shown that Lactobacillus species 
promote a diverse microbiota that preferentially produces 
favourable metabolites, such as short-chain fatty acids, 
and decrease Th2-associated cytokine production [71]. 
Short-chain fatty acids also regulate the immune response 
through epigenetic programming through changes in his-
tone acetylation and DNA methylation [72, 73]. These pro-
cesses also promote Treg function and help to maintain local 
hyporesponsiveness.

The importance of the microbiota in allergic disease is 
also highlighted by several observations regarding the use of 
antibiotics, especially early in life when the microbiome is 
still developing. Antibiotic use is common in the first three 
years of life, and studies in humans and mice are beginning 
to uncover the ways in which antibiotics during this time 
can perturb development [74]. In a neonatal mouse model, 
antibiotic exposure resulted in a decrease in intestinal beta 
diversity [75]. A longitudinal study in children up to three 
years of age found that antibiotic use resulted not only in 
less diversity, but also in an increase in antibiotic resist-
ant genes [76]. A very large retrospective study of nearly 
800,000 showed that early-life antibiotic use correlated with 
the development of a variety of allergic conditions, and that 
exposure to more than one class of antibiotics increased this 
risk [77]. Moreover, even maternal antibiotic exposure in 
pregnancy was demonstrated to be significantly associated 
with respiratory allergic diseases in early childhood [78]. 
While antibiotic use is often critical and lifesaving, these 
studies may serve to make more informed decisions about 
antibiotic class and duration in the future.

The dual allergen hypothesis

The link between atopic dermatitis and food allergy has long 
been recognized, and is termed the dual-allergen hypothesis. 
This states that sensitization to food allergens may occur 
through skin exposure, as opposed to oral exposure [79]. 
This is supported by the observation that many children react 
to food on first known oral exposure [80]. As atopic derma-
titis is a Th2-mediated disease that results in production of 
IL-33 and TSLP, which are known to drive IgE-mediated 
food allergy, the idea that allergen sensitization could occur 
through the skin has received a great deal of attention [81]. 
Murine studies have suggested a role for IL-33 in the cross-
talk between the skin and the intestine in this route of sen-
sitization [82].

Atopic dermatitis affects up to 12 percent of infants, and 
is often associated with mutations in skin barrier genes [83]. 
In those infants, the incidence of food allergy is up to six 
times higher than infants without eczema [84]. However, 
these skin barrier mutations do not increase the risk of food 
allergy independently of atopic dermatitis, indicating a role 
for environmental factors in this association. Recently, deter-
gent exposure has been an area of active research regarding 
epithelial barrier function [85]. While detergents alone are 
unlikely to contribute to allergy development, studies have 
shown that detergents such as SDS can enhance sensitivities 
over a threshold level to detect disease [86]. Previous experi-
ments in mice have also found that the presence of SDS 
can enhance immune responses in the lymph node, possibly 
though increased dendritic cell trafficking [87]. Detergents 
can also impact skin barrier function, so even in the absence 
of mutations in barrier genes, atopic dermatitis can develop 
[88]. Similar disruptions in lung and intestinal barrier func-
tion have been found following detergent exposure [89, 90].

Early life exposure to allergens

As mentioned above, maternal ingestion of foods such as 
peanut may provide a degree of protection from allergy in 
infants. These recent findings are in contrast to previous rec-
ommendations that suggested avoidance of allergens during 
pregnancy and breastfeeding. Similarly, older guidelines rec-
ommended avoidance of peanuts in children thought to be 
high-risk for the development of peanut allergy. However, 
ongoing studies pointing to the importance of developing 
early-life tolerance resulted in many rethinking this advice 
[91]. The most well-known study to date has been the LEAP 
study (Learning Early about Peanut Allergy). This study 
found that infants at high risk for developing peanut allergy, 
such as those with eczema or with egg allergy, were signifi-
cantly less likely to develop peanut allergy when peanut was 
introduced early into the diet [92]. This study demonstrated 
that oral tolerance to food antigens could be induced by early 
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exposure. Furthermore, a follow-up study (LEAP-On), found 
that this tolerance was sustained even after peanut consump-
tion was stopped [93].

Since the publication of the LEAP study, a number of 
other clinical trials using other foods have been conducted 
with some promising, though mixed, results. Several of these 
studies have used early introduction of egg, as this is a com-
mon food allergy early in life. While most studies did show 
a decrease in the incidence of egg allergy, most were not 
statistically significant (reviewed in [94]). One study that 
did demonstrate a significant protection focused on those 
infants with eczema and combined egg introduction with 
eczema treatment. However, other groups found that many 
infants were already sensitized to egg at four to six months 
of age, indicating that early egg introduction may not be 
viable for several groups [95]. A larger trial, Enquiring 
About Tolerance (EAT trial), aimed to introduce the most 
common food allergens at three months of age alongside 
breastfeeding. These allergens included peanut, egg, cow’s 
milk, sesame, whitefish, and wheat. While this study did 
find that early introduction was safe in a general population, 
it did not find significant differences in the development of 
food allergies [94]. However, a follow-up study that focus 
solely on high-risk infants, such as those with a food sensi-
tization or eczema, did find a lower level of allergy to one 
or more foods [96]. The results of the EAT follow-up study, 
along with the clinical trial for egg introduction in high-
risk infants with eczema, suggest that early introduction of 
allergens may be beneficial in those infants that are likely 
to develop food allergies, but that the effect in the general 
population may not be as pronounced.

Viral infections

Several respiratory viral infections have been associated 
with asthma exacerbations, however there is also a poten-
tial role for early-life viral infections in the development 
of allergic lung disease. The most well-studied of these is 
respiratory syncytial virus (RSV). This viral infection is 
the leading cause of bronchiolitis in children, and infects 
nearly all infants by two years of age [97]. Several studies 
have found that severe RSV infection requiring hospitaliza-
tion increases the risk of developing asthma by three- to 
five-fold [98]. Early in life, RSV infection results in a Th2 
or Th17 skewed response, as opposed to the Th1 response 
often elicited by viral infection. This is driven primarily by 
release of the alarmins, especially TSLP, from the airway 
epithelium, which activate a Th2 response through CD4 + T 
cells and type 2 innate lymphoid cells [99]. Clinical studies 

have shown that children with severe disease have a damp-
ened Th1 response compared to those with mild disease, and 
that this immune signature persists following recovery from 
infection [100]. Follow-up studies in animal models have 
demonstrated that RSV infection of neonatal mice results 
in long-term TSLP expression and enhanced Th2 responses 
to allergen models even several weeks after infection [101]. 
While there is a debate as to whether the association between 
RSV and asthma is causative or due to similar underlying 
Th2 biases in the immune system, the long-term immuno-
logical changes seen after RSV infection suggest that there 
may be a causative role in the development of wheeze and 
asthma. Furthermore, mouse models have found that early-
life infection with RSV results in changes in the microbiome, 
resulting in less diversity in both the lung and gut microbiota 
following infection [102]. A systemic review of the literature 
also found difference in both the gut and lung microbiome in 
RSV-infected patients compared to healthy controls [103]. 
While these results are difficult to analyse as samples from 
infected patients were not available prior to acquiring RSV, 
they do suggest that further longitudinal studies such as birth 
cohorts may benefit from collected microbiome samples 
upon RSV infection of infants.

Concluding remarks

Allergic diseases have diverse phenotypic manifestation 
but are all connected by an underlying Th2-driven immune 
response. A number of genetic factors underly the ability 
of the immune response to switch toward an anti-allergic 
Th1 phenotype, although genetics alone do not account for 
the increase in allergy over the last 50 to 70 years. Instead, 
the interaction of environmental factors prior to birth and 
in early life with underlying genetic susceptibility drives 
this complex family of pathologies. The immune system is 
Th2-skewed at birth and early in life, increasing the risk for 
developing atopy and allergy. Understanding the multiple 
factors that contribute to disease may lead to the implemen-
tation of preventative strategies, which are preferable to 
treatment after disease has been established. These factors 
are summarised in Fig. 1. This approach has already been 
met with some success in early peanut introduction in high-
risk children. While this approach has not been universally 
successful, the collective increase in knowledge of early-life 
risk factors is likely to provide more positive results in the 
future.
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