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Developing novel peptide hits into lead compounds can be challenging and requires a modified

approach compared to small molecules.  When screening for hits on difficult drug targets such as

orphan G-protein coupled receptors (GPCRs) or ion channels it is often necessary to go outside of

the Lipinski rule of five. These compounds are in libraries which could include natural products,

peptides, fragments etc. Finding the hit is the first step, and this then may be used as a tool to

rescreen small  molecules  libraries  with better  confidence.  But  often this  new hit  needs  to be

investigated as potential lead material to progress the project from a potentially stalled situation.

Unlike  synthetic  compound  libraries,  natural  product  hits  need  to  be  identified  and  then

characterised as the actual molecule is often unknown. Peptide libraries come from a range of

sources and they all have limitations and benefits. Venom peptides are often inherently stable due

to cysteine knots whereas other peptides may not be. This article will take on the challenges of the

hit-to-lead journey with these non-standard hits.

Towards the end of the 20th century there was a strong drive to uncover critical parameters that

would produce more  successful  drug candidates.   This  lead to the gold  standard of  developing

Lipinski rule of five compliant compounds, first published by Pfizer in 1997 (1). This was driven by the

large attrition rate of compounds in the clinic which was very costly in time and money. However,

rule of five compliant compounds have not managed to address all drug targets and a new approach

is needed.  With so called difficult targets such as orphan GPCRs, ion channels and non-receptor

targets it is often necessary to go beyond the Lipinski rule of five (2). Biologicals such as antibodies

and peptides have a greater opportunity for selectivity and thus reduced side effect profile due to

greater number of contact points with the target protein  (3). It is logical to investigate a peptide

inhibitor of a protein-protein interaction as they contain the same functional group chemistry as the

system to be perturbed. Peptide and antibody libraries can be screened using the same platforms

used for small molecules to identify hits as starting points for drug discovery projects.

When novel peptide hits are being investigated, the same rules of potency and selectivity need to be

assessed as for any other compound.  A hit from a natural compound library could a contain a

number of entities.  These need to be further separated out and single hits need to be confirmed

(dose response) and identified utilising mass spectrometry (4).  This information can be plugged into

structure activity relationships (SAR) tables to identify regions where variability is affecting potency

and or selectivity.  There is a benefit of venom peptides over some other libraries which comes from

closely related species often having single amino acid changes that can be used in SAR thus avoiding

the need for systematic mutation.  However, peptide scanning can still  be a useful technique  to

support the drug discovery process as source material for structure-activity relationship studies (5).

SAR is considered more challenging for peptides as they are complex molecules but the functional

unit, the amino acid, is also larger and thus the same principles can be applied. Also, peptide leads

can be synthesised easily, compared to small molecule natural products where the synthesis path

can  be  much  more  difficult  to  produce.   Peptide  SAR  can  be  used  to  improve  stability  and

pharmacokinetics  (PK)  as  for  other  molecules.   Peptide hits  can  also be  further  developed into

promising lead material through directed evolution.  This has been used to great effect for difficult



targets such as NaV1.7 (6). Directed evolution is achieved through cloning the peptide gene into an

expression vector, amplifying with error prone mechanisms and screening the resulting libraries. This

technique  has  many  benefits  over  SAR  as  the  random  mutations  can  identify  sequences  with

beneficial pharmacological properties that could not have been predicted through SAR. 

When transitioning from initial  hits  to leads it  is  important to have multiple chemical  series,  to

mitigate circumstances when a problem is associated with the lead series rather than the target.

Convergent evolution has provided a serendipitous collection of unrelated compounds that hit the

same targets. Venom systems of snakes, spiders and anemones are completely unrelated as they

share  no  common  venomous  ancestor,  yet  all  three  groups  contain  peptide  blockers  of  ASIC

channels  with  differing  selectivity  profiles.  Figure  1  shows  no  homology  between  the  peptide

sequences however they all have the potential to be developed as leads for ASIC channel targets.

Mambalgins demonstrate the power of natural variation to understand SAR as mambalgin 1 and 2

are both 57 amino acids, three finger peptides with four disulphide bonds that only differ by a single

amino acid.  Mambalgin-2 differs from Mambalgin-1 by a single amino acid at position 4 (tyrosine in

mambalgin-1 and phenylalanine in mambalgin-2) which confer different pharmacological properties

(7).

Some earlier venom derived drugs have come from pathology or venom biology rather than classic

drug discovery. Eptifibatide (Integrilin) which is derived from a peptide produced in the venom of a

rattlesnake, utilised in antithrombotic management is an example of this (8).  Echistatin is a potent

platelet aggregation inhibitor discovered in a viper (9).  Ziconotide (Prialt®) was developed as a pain

therapeutic from a  cone snail venom peptide ω-conotoxin MVIIA peptide approved in 2004 (10) and

Exenatide (Byetta®) a peptide called exendin-4 from the venom of the Gila monster lizard in the

treatment of diabetes was brought to market in 2005 (11).  

Screening of venom libraries for drug discovery have led to developments currently in clinical trials

which include Chlorotoxin, a peptide from a scorpion that blocks chloride channels and has been

used to image tumours  (12).  There are also new developments derived from spider venom, for

example in the treatment of epilepsy.  Inhibitors of a key antiepieptic drug target, the human ether à

go-go voltage-gated potassium channel 1 (hEAG1) have been developed from the spider peptides

Aa1a  and  Ap1a  which  target  both  the  activation  and  inactivation  gating  of  the  channel  (13).

Analgesic  efficacy  has  also  been  targeted  with  a  peptide  leads  Ca2a  targeting  NaV1.7  which  is

derived from spider venom (14).  

Most  drugs  are  developed  with  the  intention  of  oral  bioavailability,  due  to  greater  patient

compliance, so this is considered early in the drug discovery process (15). The general opinion is that

peptides are not stable in the gastrointestinal tract, however natural peptides have been shown to

have oral activity in mammals  (16) and insects  (17). Improved oral availability can be left to the

development  phase  as  there  are  many  technologies  such  as  formulation  with  excipients  or

conjugation  with  polymers  such  as  polyethylene  glycols  which  have  been  shown  to  solve  such

problems  (18).  Beyond  lead  development  peptides  can  be  further  developed  with  chemical

modifications such as cyclisation, non-natural amino acids and stapling (3).  All these modifications

have been shown by multiple authors to improve critical parameters such as absorption, plasma half

life and metabolism which all contribute to overall bioavailability.   

The Lipinski  compliant compounds have delivered many excellent drugs  however numerous key

targets  remain  unprosecuted.   To  address  these  difficult  drug  targets  will  require  a  different



approach and novel chemical entities including biologicals which are already showing promise in this

area.  The hit to lead process is comparable between small molecules and biologicals and thus many

of the technologies can be employed in development of novel therapeutics for the future.  
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