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Abstract: 

This research develops a new product diffusion model for a product category that 

involves multiple brands and multiple generations. We examine our proposed model’s 

validity through the case of Japanese mobile telecommunications services. In this product 

category, the model and its results give evidence of the coexistence of brand competition and 

generation substitution and show the importance of considering the two influences 

simultaneously. It also enables the analysis of both these influences to the end of gaining 

additional insights into the process of new product growth. The model proves reliable in 

forecasting both the overall market dynamics of a product category and the market 

performance of the individual brands and generations that belong to it.  

Keywords: OR in marketing; new product diffusion; brand competition; technological 

substitution; mobile telecommunications service. 

1. Introduction 

Firms are placed under tremendous pressure by the constant threats presented by 

competitors and the rapid development of new technologies (Aytac et al., 2011). Examples of 

this abound: firms such as Motorola, Nokia, Blackberry, Apple, and Samsung have long been 

wrestling for position in the mobile phone market, stimulating the development of phones 

from early handsets with only basic calling features to today’s ‘smartphones’ that enable users 

to access the Internet and run sophisticated applications. At the same time, the video game 

industry has witnessed eight consecutive console wars, during which firms have developed 

ever more sophisticated consoles, from simple and dedicated devices with a few embedded 

games to those that integrate cutting-edge hardware components, increased connectivity, and 

improved motion sensing technologies. And, in the PC sector, rivals Intel and AMD have 

competed in the market through many generations of new CPU technologies. 

Firms that operate in the same product categories differ from each other in terms of their 

resources, innovativeness, and understanding of the market, which results in the 

differentiation of their products. These products, which are branded differently in the market, 

pose competitive threats to each other but, at the same time, can also effectively co-promote 

each other by driving forward the overall market and consumer appetites (Guseo et al., 2012; 

Libai et al., 2009b). As an example, by releasing the iPhone, Apple secured a tremendous share 
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of the phone market; however, its competitors (such as Samsung) leveraged the buzz 

generated by the iPhone to quickly follow suit with competing products (Libai et al., 2009b). 

Furthermore, different firms respond to technological development and market change in 

different ways. Generational shifts in product categories usually provide firms with 

opportunities to calibrate or redesign their products, which can bring major changes to the 

dynamics of the whole market (Kreng et al., 2013; Michalakelis et al., 2010; Stremersch et al., 

2010). For instance, due to the market success of its PlayStation, Sony replaced Nintendo as 

the industry leader in the 5th generation of the game consoles, and went on to dominate the 

next generation with its PlayStation 2 (Liu, 2010); however, by showcasing motion controls 

and appealing to casual gamers, the Wii console enabled Nintendo to reclaim market 

leadership in the 7th console war.  

Recognizing the significant influences they exert on marketing decisions in increasingly 

dynamic environments, brand competition and generational substitution have been widely 

researched in the new product diffusion literature (Bass, 2004; Chatterjee et al., 2000; Meade et 

al., 2006; Peres et al., 2010; van Oorschot et al., 2018). However, our review also showed that, 

while the coexistence of these two factors has been frequently observed in practice, the 

existing literature has made an insufficient effort to integrate them into one diffusion model 

suited to understand and forecast the market dynamics. Furthermore, as the incorporation of 

more types of influence will unavoidably increase both model complexity and the difficulties 

in parameter estimation, many of the recent diffusion models (e.g., Yan et al., (2011), Kiesling 

et al. (2012), Negahban et al. (2014), Stummer et al. (2015), and Samuel Sale et al. (2017)) make 

use of simulations to understand the phenomenon and to generate new insights, which can 

limit the models’ real-world relevance. Therefore, this study seeks to develop a diffusion 

model that can be used to explain and forecast the real-world diffusion phenomenon of multi-

brand and multi-generational products.  

Building on the multi-generational model of Norton and Bass (1987)—with additional 

consideration given to the cross-brand influence—this study offers a new product diffusion 

model that simultaneously captures the effects of competition between different brands and 

those of technological substitution between successive generations in a product category. The 

proposed model enables the quantified examination and analysis of these two influences 

through real-world data, and the disaggregation of the estimated market potential of the 

product category across individual brands and generations. We therefore expect our model 

to aid both the theoretical understandings of new product growth and marketing planning in 
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practice. We test the proposed model by means of data drawn from Japan’s 

telecommunications sector. Our empirical analysis indicates that the model can accurately 

explain and forecast the market dynamics of the Japanese mobile telecommunications services.  

The remainder of the paper is organized as follows. In section 2, we review the existing 

literature on new product diffusion models that consider brand competition and generational 

substitution, with a particular focus on the Bass model and its extensions. We then develop 

the new model in section 3 and we carry out model estimation based on data from the 

Japanese telecommunications industry in section 4. We then further validate the model’s 

predictive performance in section 5. Finally, we conclude this study in section 6.  

2. Literature Review 

At an aggregated level, the market dynamics of first-purchase demand—as a typical 

diffusion process—usually follow a bell shaped curve that eventually decays due to the 

saturation of the potential market: that is, after the curve reaches its peak, demand can be 

expected to decline (Griliches, 1957). Following this observation, a number of models have 

been proposed; some originating from the desire to provide a means to better understand the 

phenomenon, others simply driven from the desire to fit the real world data (Meade et al., 

2006). As the pioneering work in this field, the Bass model (Bass, 1969) represents this 

phenomenon by generalizing the two main drivers of new product growth as the innovation 

effect (which can also be explained as the customers’ inner intentions to adopt or as the mass 

media effect) and the imitation effect (which can also be explained as the influence of others 

in the social system, as the social contagion effect, or as the word-of-mouth effect); it can be 

explained in the following form: 

𝑑𝐹(𝑡)

𝑑𝑡
= (𝑝 + 𝑞𝐹(𝑡))(1 − 𝐹(𝑡)) (1) 

where 𝑝 is the coefficient for innovation, 𝑞  is the coefficient for imitation, and 𝐹(𝑡) is the 

market penetration level at time 𝑡. Solving Equation (1), we obtain: 

𝐹(𝑡) =
1 − 𝑒𝑥𝑝(−(𝑝 + 𝑞)𝑡)

1 + (𝑞 𝑝⁄ )𝑒𝑥𝑝(−(𝑝 + 𝑞)𝑡)
 (2) 

Note that, although the Bass model was developed to calculate the aggregated market growth 

of a product category, it serves as the conceptual foundation of the main body of literature on 

new product growth models (Chatterjee et al., 2000; Peres et al., 2010). 
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All markets are competitive and dynamic. Although a new product may enjoy a 

monopoly status in its market when (or soon after) it is launched, other firms will quickly 

market competing products. In terms of competitive product diffusion models, the main body 

of the literature considers a product brand’s market performance as the result of the 

combination of within-brand and cross-brand influences, and this phenomenon is modelled 

and studied by extending the Bass model to others that can be generalized to either Equation 

(3) or Equation (4) (Peres et al., 2010): 

𝑑𝑁𝑖(𝑡)

𝑑𝑡
= (𝑝𝑖 + 𝑞𝑖

𝑁𝑖(𝑡)

𝑚
+ ∑ 𝑞𝑖,𝑗

𝑁𝑗(𝑡)

𝑚
𝑗≠𝑖

) (𝑚 − 𝑁𝑖(𝑡)) (3) 

𝑑𝑁𝑖(𝑡)

𝑑𝑡
= (𝑝𝑖 + 𝑞𝑖

𝑁𝑖(𝑡)

𝑚𝑖
+ ∑ 𝑞𝑖,𝑗

𝑁𝑗(𝑡)

𝑚𝑗
𝑗≠𝑖

) (𝑚𝑖 − 𝑁𝑖(𝑡)) (4) 

The difference between the two is found in whether the market potentials of the competing 

brands overlap (Equation (3), e.g., Libai et al. (2009a)) or not (Equation (4), e.g., Parker et al. 

(1994)). Whereas the former setting leads to different brands competing for market share, the 

latter is more likely to lead to a steady-state condition in which competing products coexist in 

the marketplace by targeting different customer niches. In Equations (3) and (4), 𝑁𝑖(𝑡) is the 

cumulative number of users of brand 𝑖 at time 𝑡; 𝑝𝑖 and 𝑞𝑖 are the corresponding coefficients 

for the innovation and imitation effects for brand 𝑖 of its own (i.e., within-brand influence); 

and (more importantly) 𝑞𝑖,𝑗 is introduced to explain the cross-brand influence of brand 𝑗 on 

the diffusion rate of brand 𝑖. Parameter 𝑞𝑖,𝑗 is assumed and analysed in different ways in the 

existing literature: some studies (e.g., Savin et al. (2005) consider 𝑞𝑖,𝑗  to differ significantly 

between any two brands; others (e.g., Krishnan et al. (2000)) assume that within-brand 

influence equals cross-brand influence (i. e. , 𝑞𝑖,𝑗 = 𝑞𝑖); and others still (e.g., Libai et al. (2009a)) 

argue that cross-brand influence is not so important and can be ignored (i. e. , 𝑞𝑖,𝑗 = 0). The 

reported value of parameter 𝑞𝑖,𝑗  can also be positive, negative, or zero in different cases, 

indicating that brands can speed up, delay, or have no impact on each other’s market 

performance (Chatterjee et al., 2000). 

Furthermore, products are usually substituted by newer generations with more 

advanced attributes that can create new market potential and entice existing users to update, 

so that each successive substitution boosts market demand. Scholars have explored various 

approaches to modelling and studying the market performance of products that go through 

multiple generations. For instance, Mahajan and Muller (1996) modified the Bass model to 
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study the number of generations of IBM mainframes in use, and Kim and Srinivasan (2003) 

introduced a choice model to study customer purchase decisions based on the utility of 

different product generations. More recently, Tsai (2013) developed an extended Gompertz 

model suited to predict the market growth of generations of LCD TVs, Kreng and Wang (2013) 

constructed a dynamic system model suited to analyse the case of Nike Golf clubs, and Guo 

and Chen (2018) developed a new product diffusion model suited to study multi-generational 

product diffusion in the presence of strategic consumers. Despite these examples of progress, 

our review of the literature suggests that the Norton-Bass model (Norton et al., 1987) remains 

the most cited and tested multi-generational product diffusion growth model to date. The key 

concept embedded in this model is that later generations ‘plunder’ the customer bases of 

earlier versions with which they compete in the market. To illustrate this model, the units in 

use of two product generations in time period 𝑡 (i.e., 𝑆1(𝑡) and 𝑆2(𝑡)) can be explained by 

Equations (5) and (6):  

𝑆1(𝑡) = 𝐹1(𝑡)𝑚1(1 − 𝐹2(𝑡 − 𝜏2)) (5) 

𝑆2(𝑡) = 𝐹2(𝑡 − 𝜏2)(𝑚2 + 𝐹1(𝑡)𝑚1) (6) 

where 𝜏2 is the release time of the second generation; and 𝑚1 and 𝑚2 represent the market 

potential for the two generations respectively. In both equations 𝐹𝑙(𝑡) is the diffusion rate of 

a generation 𝑙 product at time 𝑡, which takes the form shown below, based on the Bass model. 

𝐹𝑙(𝑡) =
1−𝑒𝑥𝑝((−(𝑝𝑙+𝑞𝑙)(𝑡−𝜏𝑙)))

1+(𝑞𝑙 𝑝𝑙⁄ )𝑒𝑥𝑝((−(𝑝𝑙+𝑞𝑙)(𝑡−𝜏𝑙)))
, when 𝑡 > 𝜏𝑙 (7) 

𝐹𝑙(𝑡) = 0, when 𝑡 ≤ 𝜏𝑙 (8) 

In Equation (7), 𝑝𝑙  and 𝑞𝑙  are the coefficients for innovation and imitation for generation 𝑙, 

which is consistent with the Bass model.  

Despite their rich respective literatures, little attention has been dedicated to integrating 

brand competition and generation substitution into a single product diffusion model suited 

to understand and predict market dynamics, although some seemingly related models can be 

found. For instance, building on the Norton-Bass model, Kim et al. (2000) modelled the market 

dynamics of inter-related multiple-generation product categories; Jun et al. (2011) also 

developed a choice-based model that enables the differentiation of first-time and replacement 

purchase behaviours in competitive markets. It should also be noted that the two models of 

Kim et al. (2000) and Jun et al. (2011) were developed for contexts that differed both from each 
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other and from the purpose of this study. More specifically, Kim’s model was developed to 

study inter-related product categories (e.g., Pagers, Cellular Phones, and Cordless Telephones 

2), rather than competing brands in the same category, and the Jun-Kim model studies general 

replacement demand rather than generation substitution (i.e., in the absence of product 

upgrade). Although one may apply the multi-categories and multi-generational model 

developed by Kim et al. (2000) to multi-brand and multi-generational cases, its practical value 

can be constrained by the large number of parameters that need to be estimated. As in their 

paper, 16 parameters need to be estimated when studying the wireless telecom service 

industry in Hong Kong with three product categories of only one or two generations in use; 

i.e., Pagers (one generation), Cellular Phones (two generations), and Cordless Telephones 2 

(one generation). Furthermore, both of the above models deal with competition effects in ways 

that deviate from the models used in the main body of the competitive diffusion literature, 

which consider both within- and cross-brand influences on diffusion rates. Kim’s model 

considers the inter-category competition that mutually affects each product category’s market 

potential rather than the diffusion rate, while Jun and Kim employ a choice model to explain 

user purchase preferences between brands.  

3. The Suggested Model 

Let us assume that a product category is commercialized by different firms under 𝐾 

competing brands, and that the product category has gone through 𝐿 successive generations 

due to the development of the relevant technologies. In general, we can consider that, as each 

generation’s products perform better than those of their predecessors, those customers that 

use later generation products will not revert to using earlier generation ones.  
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Table 1: Summary of Notations in the Suggested Model 

Notation Interpretation 
𝐾 Number of competing brands in the product category; 

𝐿 Number of successive generations in the product category; 

𝜏𝑘,𝑙 Actual release time of brand 𝑘 generation 𝑙; 

𝑆𝑘,𝑙 Unit in use for brand 𝑘 generation 𝑙; 

𝑁𝑘,𝑙
𝑛𝑒𝑤 New users that brand 𝑘 generation 𝑙 has attracted; 

𝑁𝑖,𝑙−1,𝑘,𝑙
𝑢𝑝𝑔𝑟𝑎𝑑𝑒

 Users who have upgraded from brand 𝑖 generation 𝑙 − 1 to brand 𝑘 generation 𝑙; 

𝑢𝑘,𝑙,𝑖,𝑙+1 Substitution rate between brand 𝑘 generation 𝑙 and brand 𝑖 generation 𝑙 + 1; 

𝑥𝑘,𝑙 Diffusion rate of brand 𝑘 generation 𝑙; 

𝐹𝑘,𝑙 User understanding of the characteristics of brand 𝑘 generation 𝑙; 

𝑝𝑘,𝑙 Coefficient of innovation effect for brand 𝑘 generation 𝑙; 

𝑞𝑘,𝑙 Coefficient of imitation effect for brand 𝑘 generation 𝑙; 

𝑚𝑘,𝑙 New and unique market potential of brand 𝑘 due to the release of its 𝑙𝑡ℎ 

generation; 

𝑏 Coefficient for cross-brand diffusion effect; 

𝑐 Coefficient for cross-brand communication effect. 

 

𝑆𝑘,𝑙(𝑡) denotes the number of units from brand 𝑘 generation 𝑙 of this product category in 

use at time 𝑡. Ultimately, we can consider that 𝑆𝑘,𝑙(𝑡) may be influenced by three types of user 

dynamics. Brand 𝑘 generation 𝑙 could first, attract new users to the product category; and, 

second, attract upgraders from previous generation products (although, for simplicity, we do 

not consider ‘leapfrogging’ in this study). Third, users of brand 𝑘 generation 𝑙 (both new users 

and upgraders, as discussed above) are likely to further upgrade when a newer generation of 

the product category comes on to the market. To conclude, we can propose Equation (9) for 

𝑆𝑘,𝑙(𝑡): 

𝑆𝑘,𝑙(𝑡) = (𝑁𝑘,𝑙
𝑛𝑒𝑤(𝑡) + ∑ 𝑁𝑖,𝑙−1,𝑘,𝑙

𝑢𝑝𝑔𝑟𝑎𝑑𝑒(𝑡)

1≤𝑖≤𝐾

) (1 − ∑ 𝑢𝑘,𝑙,𝑖,𝑙+1(𝑡)

1≤𝑖≤𝐾

) (9) 

in which 𝑁𝑘,𝑙
𝑛𝑒𝑤(𝑡) indexes the number of new users that brand 𝑘 has attracted by time 𝑡 due 

to the release of generation 𝑙,  and 𝑁𝑖,𝑙−1,𝑘,𝑙
𝑢𝑝𝑔𝑟𝑎𝑑𝑒(𝑡) represents the number of users who have 

upgraded from brand 𝑖  generation 𝑙 − 1  to brand 𝑘  generation 𝑙  by time 𝑡 . Thus, 

∑ 𝑁𝑖,𝑙−1,𝑘,𝑙
𝑢𝑝𝑔𝑟𝑎𝑑𝑒(𝑡)1≤𝑖≤𝐾  indicates the total number of upgraders that brand 𝑘  generation 𝑙  has 

attracted. Then, 𝑢𝑘,𝑙,𝑖,𝑙+1(𝑡) indicates the substitution rate between brand 𝑘 generation 𝑙 and 

brand 𝑘 generation 𝑙 +1; i.e., the percentage of brand 𝑘 generation 𝑙 users who have upgraded 

to brand 𝑖 generation 𝑙 + 1 at time 𝑡, so that ∑ 𝑢𝑘,𝑙,𝑖,𝑙+1(𝑡)1≤𝑖≤𝐾  measures the overall percentage 
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of brand 𝑘 generation 𝑙 users who have upgraded to the next generation. To view it from 

another perspective, we can expand Equation (9) to get:  

𝑆𝑘,𝑙(𝑡) = (𝑁𝑘,𝑙
𝑛𝑒𝑤(𝑡) + ∑ 𝑁𝑖,𝑙−1,𝑘,𝑙

𝑢𝑝𝑔𝑟𝑎𝑑𝑒(𝑡)

1≤𝑖≤𝐾

)

− (𝑁𝑘,𝑙
𝑛𝑒𝑤(𝑡) + ∑ 𝑁𝑖,𝑙−1,𝑘,𝑙

𝑢𝑝𝑔𝑟𝑎𝑑𝑒(𝑡)

1≤𝑖≤𝐾

) ∑ 𝑢𝑘,𝑙,𝑖,𝑙+1(𝑡)

1≤𝑖≤𝐾

 

(10) 

In this equation, (𝑁𝑘,𝑙
𝑛𝑒𝑤(𝑡) + ∑ 𝑁𝑖,𝑙−1,𝑘,𝑙

𝑢𝑝𝑔𝑟𝑎𝑑𝑒(𝑡)1≤𝑖≤𝐾 ) is the total number of users that brand 𝑘 

generation 𝑙  has attracted by time 𝑡 ; and the latter part—i.e., (𝑁𝑘,𝑙
𝑛𝑒𝑤(𝑡) +

∑ 𝑁𝑖,𝑙−1,𝑘,𝑙
𝑢𝑝𝑔𝑟𝑎𝑑𝑒(𝑡)1≤𝑖≤𝐾 ) ∑ 𝑢𝑘,𝑙,𝑖,𝑙+1(𝑡)1≤𝑖≤𝐾 —is the number of users who have abandoned the 

product due to upgrading by time 𝑡. Then (based on this latter part), we can easily develop 

Equation (11) for the number of upgraders from brand 𝑘  generation 𝑙  to each of the next 

generation brands: 

𝑁𝑘,𝑙,𝑖,𝑙+1
𝑢𝑝𝑔𝑟𝑎𝑑𝑒(𝑡) = (𝑁𝑘,𝑙

𝑛𝑒𝑤(𝑡) + ∑ 𝑁𝑖,𝑙−1,𝑘,𝑙
𝑢𝑝𝑔𝑟𝑎𝑑𝑒(𝑡)

1≤𝑖≤𝐾

) 𝑢𝑘,𝑙,𝑖,𝑙+1(𝑡) (11) 

It appears that the equation for 𝑁𝑢𝑝𝑔𝑟𝑎𝑑𝑒  is a recurrent function that, specifically, gives 

𝑁𝑘,1,𝑖,2
𝑢𝑝𝑔𝑟𝑎𝑑𝑒(𝑡) = 𝑁𝑘,1

𝑛𝑒𝑤(𝑡)𝑢𝑘,1,𝑖,2(𝑡) when 𝑙 = 1(because the first generation attracts no upgraders, 

𝑁𝑘,0,𝑖,1
𝑢𝑝𝑔𝑟𝑎𝑑𝑒(𝑡) = 0, ∀𝑖, 𝑘). After substituting Equation (11) into Equation (9) (or into Equation 

(10)), to solve 𝑆𝑘,𝑙(𝑡), we only need to know the answers to 𝑁𝑘,𝑙
𝑛𝑒𝑤(𝑡) and 𝑢𝑘,𝑙,𝑖,𝑙+1(𝑡), which we 

will discuss below.  

To model 𝑁𝑘,𝑙
𝑛𝑒𝑤(𝑡), we first consider that the release of each new generation of each brand 

ultimately creates a new and unique market potential. The setting of a respective market 

potential for each generation is widely accepted, but such setting for each brand receives 

mixed views (Peres et al., 2010). As indicated in our literature review, some scholars (e.g., Libai 

et al. (2009a)) considered a shared market potential in which all brands to compete, others (e.g., 

Parker et al. (1994)) suggested for each brand a respective market potential that cannot be 

accessed by others. Here, the new market potential for brand 𝑘 generation 𝑙 is denoted as 𝑚𝑘,𝑙. 

Then, we assume that those potential customers will eventually become users of the new 

brand, although they may temporally adopt other competing brands during the process—

making a temporarily shared market potential possible in the process. In other words, 

although the setting of 𝑚𝑘,𝑙  indexes the respective market potential for each brand, it still 

enables the market potential to be shared with others during the diffusion process in order to 
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capture the customer churn between brands. The above assumption also implies an eventual 

steady-state condition in which different brands coexist with their respective niche customers, 

who are attracted by their differentiated product offerings. Thus, as time approaches +∞:  

∑ 𝑆𝑘,𝑗(𝑡)

𝐿

𝑗=1

= ∑ 𝑚𝑘,𝑗

𝐿

𝑗=1

 (12) 

Then, if we let 𝑥𝑘,𝑙(𝑡) be the diffusion rate for brand 𝑘 generation 𝑙 at time 𝑡, the product will 

generate 𝑥𝑘,𝑙(𝑡)𝑚𝑘,𝑙 new users from its own market potential by time 𝑡. Beside within-brand 

adoption, we also follow the competitive product diffusion literature (Chatterjee et al., 2000; 

Peres et al., 2010) and allow for some market growth of brand 𝑘 generation 𝑙 from cross-brand 

adoption—i.e., where brand 𝑘  generation 𝑙  attracts users of other brands. Setting 𝑏  as the 

coefficient for the cross-brand diffusion effect—indicating the level of diffusion influence of one 

brand on its competitors’ markets1 - we have a model of 𝑁𝑘,𝑙
𝑛𝑒𝑤(𝑡) in the following form:  

𝑁𝑘,𝑙
𝑛𝑒𝑤(𝑡) = 𝑥𝑘,𝑙(𝑡)𝑚𝑘,𝑙 + ∑ (𝑏𝑥𝑘,𝑙(𝑡) (1 − 𝑥𝑖,𝑙(𝑡)) 𝑚𝑖,𝑙)

𝑖≠𝑘

 (13) 

in which (1 − 𝑥𝑖,𝑙(𝑡)) 𝑚𝑖,𝑙 indicates the unique market potential of brand 𝑖 generation 𝑙 that 

has not been penetrated by its own diffusion influence. When 𝑏 > 0, 𝑏𝑥𝑘,𝑙(𝑡) represents the 

actual diffusion rate of brand 𝑘  generation 𝑙  on the remaining market potential of other 

brands (i.e., those potential customers who have not adopted their designated products), 

hence, ∑ (𝑏𝑥𝑘,𝑙(𝑡) (1 − 𝑥𝑖,𝑙(𝑡)) 𝑚𝑖,𝑙)𝑖≠𝑘  indicates the total number of users that brand 𝑖 

generation 𝑙  has temporally plundered from its competing products. So, our model 

interpretation regarding the cross-brand diffusion effect could also account for customer 

switching during the process. Note that, in practice, the value of 𝑏 can also be negative or zero, 

as brand competition means that one brand can delay or have no impact on the market growth 

of others in different cases. Such setting of 𝑏 is consistent with the findings regarding the 

competition effect in the literature (Chatterjee et al., 2000).  

 
1 This study assumes constant values for cross-brand diffusion effect 𝑏, and for cross-brand communication 

effect 𝑐 (see Equation (16) and the corresponding model elaboration). In reality, however, the values can differ across 
generations and between brands. For instance, different brands may have different levels of influence over others due 
to brand awareness and brand reputation; such influences may change across generations and over time.  

To consider such scenarios, in Equation (13), 𝑏 shall be substituted with 𝑏𝑘,𝑙 to indicate the level of diffusion 

influence of brand 𝑘 generation 𝑙 on its competitors’ markets; similarly, in Equation (16), 𝑐 shall be substituted with 

𝑐𝑘,𝑙 to indicate the extent to which customer understanding of other products on the market will complement their 

understanding of brand 𝑘 generation 𝑙. Note that the consideration of such scenarios will significantly increase model 
complexity, requiring more data input and computing power for empirical analysis.  
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We consider each product’s users’ upgrading behaviours to be driven by the diffusion 

influences of its next generation offerings. For substitution between two generations of the 

same brand (i.e., upgrade from brand 𝑘  generation 𝑙  to brand 𝑘  generation 𝑙 + 1), we let 

𝑢𝑖,𝑙,𝑘,𝑙+1(𝑡) equal the diffusion rate of the later generation (Norton et al., 1987)—thus yielding 

Equation (14). For the substitution between two generations of different brands (i.e., upgrade 

from brand 𝑘 generation 𝑙 to brand 𝑖 generation 𝑙 + 1), we use Equation (15) for 𝑢𝑖,𝑙,𝑘,𝑙+1(𝑡). 

Here, 𝑥𝑖,𝑙+1(𝑡)  indexes the diffusion rate of brand 𝑖  generation 𝑙 + 1 , and (1 − 𝑥𝑘,𝑙+1(𝑡)) 

indicates the percentage of the unique market potential of brand 𝑘 generation 𝑙 + 1 that has 

not been penetrated by its own diffusion influences. The cross-brand diffusion effect 𝑏 in 

Equation (15) is consistent with its explanation in Equation (13). 

𝑢𝑘,𝑙,𝑖,𝑙+1(𝑡) = 𝑥𝑖,𝑙+1(𝑡), when 𝑖 = 𝑘  (14) 

𝑢𝑘,𝑙,𝑖,𝑙+1(𝑡) = 𝑏𝑥𝑖,𝑙+1(𝑡) (1 − 𝑥𝑘,𝑙+1(𝑡)), when 𝑖 ≠ 𝑘 (15) 

In Equations (13), (14), and (15), 𝑥𝑘,𝑙(𝑡)—the diffusion rate of brand 𝑘 generation 𝑙—is 

likely to increase over time, due to the customers’ increasing understanding of product 

characteristics. Building on the competitive diffusion literature, we consider the market 

growth of one product in a category to also be influenced by its direct market competitors, i.e., 

other brands’ products of the same generation. Therefore, the actual diffusion rate for brand 

𝑘 generation 𝑙 should be adjusted based on the influences of those brands that compete with 

it in the market, which leads us to use Equation (16) for 𝑥𝑘,𝑙(𝑡).  

𝑥𝑘,𝑙(𝑡) = 𝐹𝑘,𝑙(𝑡) + (1 − 𝐹𝑘,𝑙(𝑡)) 𝑐 ∑ 𝐹𝑖,𝑙(𝑡)

𝑖≠𝑘

 (16) 

In Equation (16), 𝐹𝑘,𝑙 (0 ≤ 𝐹𝑘,𝑙 < 1) represents customer understanding of the characteristics 

of brand 𝑘  generation 𝑙 . 𝑐  is defined as the coefficient for cross-brand communication effect, 

which explains the extent to which customer understanding of other products on the market 

will complement their understandings of their current product. As with parameter 𝑏, the 

value of parameter 𝑐  can be positive, negative, or zero, which means that the competing 

brands can have positive, negative, or no impacts on user understanding of a product.  

We consider user understandings of a product’s characteristics to be driven by the 

innovation and imitation effects, as generalized and described in the Bass model, so 𝐹𝑘,𝑙 can 

take the following form: 
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𝐹𝑘,𝑙(𝑡) =
1−𝑒𝑥𝑝(−(𝑝𝑘,𝑙+𝑞𝑘,𝑙)(𝑡−𝜏𝑖,𝑙))

1+(𝑞𝑘,𝑙 𝑝𝑘,𝑙⁄ )𝑒𝑥𝑝(−(𝑝𝑘,𝑙+𝑞𝑘,𝑙)(𝑡−𝜏𝑖,𝑙))
, when 𝑡 > 𝜏𝑖,𝑙 (17) 

𝐹𝑘,𝑙(𝑡) = 0, when 𝑡 ≤ 𝜏𝑖,𝑙 (18) 

where 𝑝𝑘,𝑙 and 𝑞𝑘,𝑙 are the corresponding coefficients for innovation and imitation effects; and 

𝜏𝑖,𝑙 is the actual release time of brand 𝑘 generation 𝑙. In terms of parameters 𝑝𝑘,𝑙 and 𝑞𝑘,𝑙, the 

multi-generational product diffusion model literature provides different views on whether 

their values change across generations. Some researchers (e.g., Norton and Bass (1987), 

Mahajan and Muller (1996), Kim et al. (2000)) argued that the difference in their values across 

generations should be minimal; others (e.g., Pae and Lehmann (2003)) suggested that 𝑝 and 𝑞 

should be considered independently for each generation; in between these two groups, a few 

researchers (e.g., Islam et al. (1997) and Jiang et al. (2012)) also proposed constant 𝑝  and 

independent 𝑞 across generations. For simplicity, this study adopts the first view, leading to: 

𝑝𝑘,1 = ⋯ = 𝑝𝑘,𝑙 = ⋯ = 𝑝𝑘,𝐿  (19) 

𝑞𝑘,1 = ⋯ = 𝑞𝑘,𝑙 = ⋯ = 𝑞𝑘,𝐿  (20) 

This decision can be supported by the work of Stremersch et al. (2010), who examined 39 

distinct technology generations of 12 products and concluded that, although newer product 

generations may show faster diffusion than older ones, such intergeneration acceleration 

occurs due to a shorter takeoff time driven by technology vintage (i.e., the passage of time), 

but not with respect to diffusion parameters 𝑝 and 𝑞. Indeed, independent 𝑝 and 𝑞 values 

across generations may further improve model accuracy, but will also increase model 

complexity, the required data inputs, and the computing power for empirical analysis. 

Researchers and practitioners should decide carefully after weighing the pros and cons.  

After substituting Equations (11) and (13) – (20) into Equation (9) (or Equation (10)), we 

have the proposed model. As an example, the complete model for a case with two brands and 

two generations can be represented in the following format: 

𝑆1,1(𝑡) = (𝐹1,1(𝑡)𝑚1,1 + 𝑏𝐹1,1(𝑡) (1 − 𝐹2,1(𝑡)) 𝑚2,1) (1 − (𝐹1,2(𝑡) + (1 − 𝐹1,2(𝑡)) 𝑐𝐹2,2(𝑡))

− 𝑏 (𝐹2,2(𝑡) + (1 − 𝐹2,2(𝑡)) 𝑐𝐹1,2(𝑡)) (1 − (𝐹1,2(𝑡) + (1 − 𝐹1,2(𝑡)) 𝑐𝐹2,2(𝑡)))) 
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𝑆2,1(𝑡) = (𝐹2,1(𝑡)𝑚2,1 + 𝑏𝐹2,1(𝑡) (1 − 𝐹1,1(𝑡)) 𝑚1,1) (1 − ((𝐹2,2(𝑡) + (1 − 𝐹2,2(𝑡)) 𝑐𝐹1,2(𝑡)))

− 𝑏 (𝐹1,2(𝑡) + (1 − 𝐹1,2(𝑡)) 𝑐𝐹2,2(𝑡)) (1 − (𝐹2,2(𝑡) + (1 − 𝐹2,2(𝑡)) 𝑐𝐹1,2(𝑡)))) 

𝑆1,2(𝑡) = (𝐹1,2(𝑡)𝑚1,2 + 𝑏𝐹1,2(𝑡) (1 − 𝐹2,2(𝑡)) 𝑚2,2)

+ (𝐹1,1(𝑡)𝑚1,1 + 𝑏𝐹1,1(𝑡) (1 − 𝐹2,1(𝑡)) 𝑚2,1) (𝐹1,2(𝑡) + (1 − 𝐹1,2(𝑡)) 𝑐𝐹2,2(𝑡))

+ (𝐹2,1(𝑡)𝑚2,1 + 𝑏𝐹2,1(𝑡) (1 − 𝐹1,1(𝑡)) 𝑚1,1) 𝑏 (𝐹1,2(𝑡)

+ (1 − 𝐹1,2(𝑡)) 𝑐𝐹2,2(𝑡)) (1 − (𝐹2,2(𝑡) + (1 − 𝐹2,2(𝑡)) 𝑐𝐹1,2(𝑡))) 

𝑆2,2(𝑡) = (𝐹2,2(𝑡)𝑚2,2 + 𝑏𝐹2,2(𝑡) (1 − 𝐹1,2(𝑡)) 𝑚1,2)

+ (𝐹2,1(𝑡)𝑚2,1 + 𝑏𝐹2,1(𝑡) (1 − 𝐹1,1(𝑡)) 𝑚1,1) (𝐹2,2(𝑡) + (1 − 𝐹2,2(𝑡)) 𝑐𝐹1,2(𝑡))

+ (𝐹1,1(𝑡)𝑚1,1 + 𝑏𝐹1,1(𝑡) (1 − 𝐹2,1(𝑡)) 𝑚2,1) 𝑏 (𝐹2,2(𝑡)

+ (1 − 𝐹2,2(𝑡)) 𝑐𝐹1,2(𝑡)) (1 − (𝐹1,2(𝑡) + (1 − 𝐹1,2(𝑡)) 𝑐𝐹2,2(𝑡))) 

where: 

𝐹𝑘,𝑙(𝑡) =
1−𝑒𝑥𝑝(−(𝑝𝑘,𝑙+𝑞𝑘,𝑙)(𝑡−𝜏𝑖,𝑙))

1+(𝑞𝑘,𝑙 𝑝𝑘,𝑙⁄ )𝑒𝑥𝑝(−(𝑝𝑘,𝑙+𝑞𝑘,𝑙)(𝑡−𝜏𝑖,𝑙))
, when 𝑡 > 𝜏𝑖,𝑙 

𝐹𝑘,𝑙(𝑡) = 0, when 𝑡 ≤ 𝜏𝑖,𝑙 

In practice, the parameters to be estimated for the model are as follows: 𝐾 parameters for 

𝑝 and for 𝑞; 𝐾 × 𝐿 parameters for 𝑚; one parameter each for 𝑏, and for 𝑐, so the total number 

of parameters to be estimated is 2𝐾 + 𝐾𝐿 + 2. Thus, for instance, 10 parameters will need to 

be estimated for a product category with two brands and two generations, and 20 parameters 

will need to be estimated for a product category with three brands and four generations. 

When both 𝑏 = 0 and 𝑐 = 0, the influences regarding brand competition in our proposed 

model (i.e., the cross-brand diffusion and cross-brand communication effects) are both 

eliminated, leaving us with 𝑥𝑘,𝑙(𝑡) = 𝐹𝑘,𝑙(𝑡), 𝑢𝑖,𝑙−1,𝑘,𝑙(𝑡) = 𝑥𝑘,𝑙(𝑡) = 𝐹𝑘,𝑙(𝑡) (when 𝑖 = 𝑘), and 

𝑢𝑖,𝑙−1,𝑘,𝑙(𝑡) = 𝑥𝑘,𝑙(𝑡) = 0 (when 𝑖 ≠ 𝑘), so that Equation (9) becomes simplified to: 

𝑆𝑘,𝑙(𝑡) = (𝐹𝑘,𝑙(𝑡)𝑚𝑘,𝑙 + 𝑁𝑘,𝑙−1,𝑘,𝑙
𝑢𝑝𝑔𝑟𝑎𝑑𝑒(𝑡)) (1 − 𝐹𝑘,𝑙+1(𝑡)) (21) 

Then substituting Equation (11) into Equation (21), we can obtain: 
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𝑆𝑘,𝑙(𝑡) = (𝐹𝑘,𝑙(𝑡)𝑚𝑘,𝑙 + 𝐹𝑘,𝑙(𝑡)𝐹𝑘,𝑙−1(𝑡)𝑚𝑘,𝑙−1

+ 𝐹𝑘,𝑙(𝑡)𝐹𝑘,𝑙−1(𝑡)𝐹𝑘,𝑙−2(𝑡)𝑚𝑘,𝑙−2 + ⋯

+ 𝐹𝑘,𝑙(𝑡)𝐹𝑘,𝑙−1(𝑡)𝐹𝑘,𝑙−2(𝑡) … 𝐹𝑘,1(𝑡)𝑚𝑘,1) (1 − 𝐹𝑘,𝑙+1(𝑡)) 

(22) 

where 𝐹𝑘,𝑙(𝑡) remains in the form of Equations (17) and (18). Note that Equation (22) actually 

indicates 𝐾 -independent Norton-Bass models, each of which explains one brand in the 

product category. Therefore, we can conclude that, if we exclude the brand competition 

elements, our model is consistent with the Norton-Bass model. We see this as an important 

advantage of our model, due to the Norton-Bass model’s wide acceptance and application—

by linking it and comparing it with the Norton-Bass model, our new model can offer findings 

and insights not presented in prior studies. 

4. Empirical Analysis 

4.1. The Data – the Japanese Mobile Telecommunications Industry 

In most countries or regions, mobile telecommunications services are provided by 

multiple network providers using different network standards or marketing strategies. For 

instance, people in the US can choose between network options that include Verizon Wireless, 

AT&T, T-Mobile, and so on, while the UK market is mainly dominated by EE, O2, Vodafone, 

and 3. Meanwhile, as a typical growing IT industry, the mobile telecommunications sector has 

witnessed several generational changes in its core technologies, which are commonly known 

as 1G, 2G, 3G, and 4G standards. Each generation has offered significantly improved utility 

over its predecessor— for instance, the 2G network uses digital signals rather than the 

analogue ones used by the 1G, which can provide greater penetration and extra data services 

for mobiles (e.g., SMS text messages).  

The Japanese mobile telecommunications industry is one of the most advanced in the 

world. Japan has successfully developed and commercialized four generations of mobile 

networks—it was the first in the world to launch 1G mobile phone services (in 1979), and 

among the first to release commercial 2G, 3G, and 4G networks (in 1993, 2001, and 2010). In 

terms of standards, service providers, and phone manufacturers, Japan also has a relatively 

self-contained and self-sufficient domestic mobile telecommunications industry (Kushida, 

2002)—for instance, PDC (Personal Digital Cellular) is a 2G mobile network standard 

developed and used exclusively in Japan. These characteristics mean that adopting Japan’s 
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industry as our study setting enabled us to exclude the influence of global diffusion (e.g., 

Albuquerque et al. (2007)) from our analysis.  

During our studied period, the Japanese mobile telecommunications market was 

dominated by three network providers: NTT DoCoMo, au, and Softbank. Although EMOBILE 

also operated in the Japanese market, it had a market share of less than 3% at most, and thus 

was too small to consider. The data we employed in this study was sourced from the 

Telecommunications Carriers Association of Japan, and includes the numbers of service 

subscribers differentiated by network providers and by product generations (see Figure 1). 

The data was updated monthly during our studied period (January 1996 - November 2010) 

which mainly covered the market dynamics of the 2G and 3G services. For NTT and au, the 

data set also contains some aggregated data for 1G and 2G subscriptions. Further details 

pertaining to the data set can be found in Table 2. 

Table 2: Data 

Company 
Available 
Product 

Data 
Data Period Description 

NTT 1G+2G (1996.01 – 2000.10) 
58 Data Points 

Established in 1952 as a state-owned 
monopoly corporation, NTT was the world’s 
largest telecommunications company in 
terms of revenue.  
NTT used PDC and WCDMA as its 2G and 
3G standards during our study period.  

2G (2000.11 – 2010.11) 
121 Data Points 

3G (2001.10 - 2010.11) 
110 Data Points 

au 1G+2G (1996.01 – 2000.10) 
58 Data Points 

au was formed by a series of mergers of 
several corporations, including DDI, KDD, 
and IDO.  
In contrast to NTT and Softbank, au used 
CDMAOne and CDMA1X for its 2G and 3G 
standards.  

2G (2000.11 – 2010.11) 
121 Data Points 

3G (2002.04 - 2010.11) 
104 Data Points 

SOFTBANK 2G (1996.01 – 2010.02) 
170 Data Points 

Originally founded in 1981 as the mobile 
phone division of Japan Telecom, it acquired 
several local companies from DPG and DT 
Gina in a major merger in 1999. Before 
becoming Softbank Mobile in 2006, the 
consolidated firm was called J-PHONE and 
then Vodafone Japan.  
The company used the same 2G and 3G 
standards as NTT. 

3G (2002.12 - 2010.11) 
96 Data Points 

  

Data are monthly based; 838 data points in total; 
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Figure 1: Mobile Telecommunications Service Subscribers in Japan (Units in 𝟏𝟎𝟕) 

4.2. Model Estimation 

For parameter estimation, we employed a genetic algorithm (Venkatesan et al., 2004), as 

this technique has been reported to give a higher probability of reaching optimum global 

solutions when the targeted model is inherently nonlinear and contains a large number of 

parameters (Del Moral et al., 2001). The application of this technique for new product diffusion 

models had been examined by Venkatesan et al. (2004). After substituting Equations (11) (13) 

– (18) into Equation (9) (or into Equation (10)), we estimated the parameters in the latter by 

minimizing the function 

∑ ∑ ∑ (�̂�𝑘,𝑙(𝑡) − 𝑆𝑘,𝑙(𝑡))
2

𝑇

𝑡=0

𝐿

𝑙=1

𝐾

𝑘=1

 (23) 

where 𝑆𝑘,𝑙(𝑡)  was the actual number of subscribers of brand 𝑘  generation 𝑙  at time 𝑡  and 

�̂�𝑘,𝑙(𝑡) was the data predicted by the model. We ran the genetic algorithm tool in MATLAB 

with the following settings. The population size of the estimation was set as 500 (i.e., 500 

sample solution vectors were generated for each iteration); the probabilities of crossover and 

mutation were set at the software’s default values; and the estimation stopping rule was as 

follows: terminate if there is no improvement (less than 1E-12) in the objective function for 

100 consecutive generations. We then ran the case estimation for 100 times repeatedly. The 
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reported values in this study are those that produced the best fit from the 100 estimation 

repeats, and the standard deviations were those obtained from the 100 repeat estimates.  

Our suggested model requires the estimation of 17 parameters for the case of three brands 

and three generations; i.e., nine parameters for the unique market potential (i.e., 𝑚) of each 

generation of each brand; three parameters for 𝑝 and three for 𝑞, since three brands were 

studied; plus parameters 𝑏 and 𝑐. In fact, the parameter number could be further reduced for 

this case. We set the market potential of each brand’s first generation as a minimal value in 

the estimation (𝑚1,1 = 𝑚2,1 = 𝑚3,1 = 0.0001 × 107 ), as the historical data showed that the 

market penetration of the first generation was extremely low in the Japanese market (and also 

in those of other countries) compared with that of the following generations. We also used the 

Norton-Bass model to estimate and fit the aggregated data in terms of generations. The 

reported total market potential for the first generation was approximately0.0001 × 107, which 

confirmed our assumption and indicated a nominal impact on the overall dynamics of the 

studied telecommunications market. Therefore, the number of parameters actually estimated 

in our empirical study was 14. In addition, as NTT and Softbank used the same 

telecommunication standards during the studied period, these two brands could be 

considered as having the same innovation and imitation effects (𝑝1 = 𝑝3 and 𝑞1 = 𝑞3), which 

would further reduce the number of parameters to 12. Therefore, we estimated the suggested 

model with both settings and compared the results.  

4.3. Model Fit Results and Discussions 

Figure 2 provides a graphical representation of our proposed new model’s fit to the actual 

data under the 14 parameter setting, due to the similar performance between the two settings. 

The graphical results indicate that our suggested model provides an excellent fit to the actual 

data. Table 3 reports the model fit statistics of both settings using the Sum of Squared Errors 

(SSE) and Mean Absolute Error (MAE) methods.  

Overall, the comparison shows that, under the 14 parameter setting, the suggested model 

(i.e., independent 𝑝 and 𝑞 values for NTT and Softbank) only performs slightly better than it 

does under the 12 parameter one (i.e., same 𝑝 and 𝑞 values for NTT and Softbank). Under the 

former, the reported values of 𝑝1 and 𝑞1 are similar to the values of 𝑝3  and 𝑞3: 0.0035 and 

0.0550, compared to 0.0047 and 0.0537. This confirms our assumption that NTT and Softbank 

could be assigned similar 𝑝 and 𝑞 values (i.e., 𝑝1 = 𝑝3 and 𝑞1 = 𝑞3) in order to reduce model 

complexity.  



P a g e  | 18 

As the new model was developed based on the Norton-Bass one, with additional 

consideration given to the cross-brand diffusion and communication effects, we also 

introduced the Norton-Bass model as a benchmark. To be more specific, we used the latter 

model to fit the market dynamics of NTT DoCoMo, au, and Softbank, respectively, under the 

assumption that no brand competition existed. A new product diffusion model incorporating 

brand competition (see examples in our literature review) could also have been suggested as 

a benchmark; however, without giving further consideration to customer dis-adoption 

behaviours (in this case, due to product upgrading), such a model would not have effectively 

explained why the cumulative number of users started to decline after certain time points (i.e., 

when a new generation was introduced). As indicated in our literature review, although the 

multi-categories and multi-generational model developed by Kim et al. (2000) could have been 

considered as another benchmark, this would have required 24 parameters (for three brands 

and three generations) to be estimated and would have needed additional data inputs for the 

market potential of each product (e.g., through individual Bass model estimation and expert 

interviews, as in those authors’ paper), making the implementation impractical.  

Table 3 also reports the comparison of the fit statistics of our model with those of the 

Norton-Bass one; this was effected by fitting the latter to the actual data for each of the 

generations of our studied brands, respectively. As we adopted the same setting—i.e., 𝑚𝑘,1 =

0.0001—the Norton-Bass model required the estimation of four parameters for each brand (i.e. 

𝑝𝑘, 𝑞𝑘, 𝑚𝑘,2, and 𝑚𝑘,3), thus also requiring a total of 12 parameters to be estimated for our 

study case. The comparison results indicate that, under both settings, our new model offers a 

better fit than the Norton-Bass one, with significant improvements along both measures: SEE 

is reduced by more than 45%—from 25.7289 × 1014 to 12.4326 × 1014 and to 13.9544 × 1014 

and MAE is reduced by more than 25%—from 0.1338 × 107  to 0.8292 × 1014  and to 

0.1001 × 107 . In terms of individual generations and brands in the product category, the 

suggested model proved to be superior in most cases, although the Norton-Bass one produced 

more accurate results for au3G and for NTT1G2G in terms of MAE.  
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Table 3: Model Parameter Estimates and Fit Statistics 

Estimated Parameters (14 parameters) 

NTT  au  

𝑝1 
0.0035 

(0.0015) 
𝑝2 

0.0440 
(0.0019) 

𝑞1 
0.0550 

(0.0055) 
𝑞2 

0.0001 
(0.0000) 

𝑚1,2 
3.9727 

(0.0210) 
𝑚2,2 

1.2114 
(0.0039) 

𝑚1,3 
1.5898 

(0.0021) 
𝑚2,3 

1.8415 
(0.0065) 

SOFTBANK    

𝑝3 
0.0047 

(0.0019) 
𝑏 

-0.1903 
(0.0027) 

𝑞3 
0.0537 

(0.0057) 
𝑐
 

-0.2901 
(0.1064) 

𝑚3,2 
1.9268 

(0.0023) 
  

𝑚3,3 
1.2465 

(0.0116) 
  

Values in brackets are the standard deviation of the 100 repeats; 
Unit in 107 for market potentials; 
 

Model Fit 

Fitted Curves 
Norton-Bass Model 

Suggested Model  
(14 parameters) 

Suggested Model  
(12 parameters) 

SSE MAE SSE MAE SSE MAE 

NTT1G2G 4.8227 0.2221 4.0326 0.2231 4.4125 0.2275 

NTT2G 6.9832 0.1875 2.9683 0.1355 2.7051 0.1255 

NTT3G 4.4171 0.1724 0.8737 0.0742 0.9315 0.0725 

au1G2G 2.0492 0.1602 0.3642 0.0736 0.4419 0.0784 

au2G 2.2949 0.1136 1.1183 0.0815 1.1623 0.0826 

au3G 0.4835 0.0543 1.2877 0.1007 1.1311 0.0950 

SOFTBANK2G 4.3970 0.1404 1.5251 0.0823 2.8418 0.1118 

SOFTBANK3G 0.2813 0.0443 0.2627 0.0382 0.3281 0.0450 

OVERALL 25.7289 0.1338 12.4326 0.8092 13.9544 0.1011 

The unit for SSE results is 1014;  
The unit for MAE results is 107; 
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Figure 2: Model Fit: Suggested Model (14 parameters), Norton-Bass Model and Actual Data (Units in 𝟏𝟎𝟕) 
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We can derive some further findings from our model fit results and we provide the below 

discussions based on the first setting of the suggested model. First, the telecommunication 

standards adopted by NTT and Softbank received poorer market responses than the au one 

in terms of the innovation effect (𝑝1 = 0.0035 and 𝑝2 = 0.0047, as opposed to 𝑝2 = 0.0440). 

As this effect wields greater influence during the initial diffusion stages, the estimation result 

reported here may partly explain why au’s product sales had taken off much faster than those 

of NTT and Softbank. However, NTT and Softbank’s mobile telecommunication standards 

had benefited more from the imitation effect (𝑞1 = 0.0550 and 𝑞3 = 0.0537, as opposed to 

𝑞2 = 0.0001), which had outweighed their take-off disadvantages in later stages. Second, the 

reported values of the 𝑚𝑘,𝑙  parameter indicate that the release of new generations had 

constantly increased each brand’s market potential. Second, the estimation of 𝑚𝑘,𝑙 shows that 

NTT had established its leadership in the market based on the success of its 2G service (𝑚1,2 =

3.9727 × 107, 𝑚2,2 = 1.2114 × 107 , and 𝑚3,2 = 1.9268 × 107 ). Although au had caught up 

during the 3G service standard war (𝑚1,3 = 1.5898 × 107, 𝑚2,3 = 1.8415 × 107, and 𝑚3,3 =

1.2465 × 107 ), NTT had retained the larger market share due to its customer base, long-

accumulated from previous generations. 

Third, the reported cross-brand diffusion and cross-brand communication effects are 

both negative. Thus, the estimation result suggests that, in the Japanese wireless 

communications market, brand competition has a negative impact on both product diffusion 

rates and actual market growth. Perhaps this is because the coexistence of different network 

service standards in the market confuses, rather than enhancing, customer understandings, 

delaying their decisions to adopt and upgrade. Some additional insights into the initial 

diffusion stages of each product, which were not available by analysing prior diffusion 

models, can be provided by the reported estimation of 𝑏 and 𝑐. We know that the value of 𝐹2,𝑙 

was significantly higher than 𝐹1,𝑙 and 𝐹2,𝑙 during each generation’s initial stage, because: 1) 

parameter 𝑝 was the most important for the value of 𝐹 during this period; and 2) 𝑝1 &𝑝3 < 𝑝2. 

When 𝑐 < 0, we can easily see from Equation (16) that the value of 𝑥2,𝑙(𝑡) (i.e., the diffusion 

rate of the au products) should be significantly higher than 𝑥1,𝑙(𝑡)  and 𝑥3,𝑙(𝑡)  (i.e., the 

diffusion rates of the NTT and SOFTBANK products) during this period. Although the market 

growth of all three brands had been delayed by cross-brand diffusion effects ( 𝑏 < 0  in 

Equation (13)), we could have expected that au would have suffered less delay than  either 

NTT or SOFTBANK. In other words, the negative values of parameters 𝑏 and 𝑐 can provide 

further explanations as to why NTT’s and SOFTBANK’s products had recorded a 
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comparatively slower initial growth, while au’s had taken off much more quickly. The curves 

presented in Figure 2— particularly those of NTT3G, au3G, and SOFTBANK3G—support 

these findings. 

5. Model Validation Based on Predictive Performance 

To further examine the predictive validity of our proposed model, we followed an 

approach similar to that of Decker et al. (2010); i.e., to first divide the data set into a calibration 

period and a forecasting one. The calibration period data were then used to estimate the model 

parameters used to predict market growth in the forecasting period. We maintained the 

parameter setting in the model fit analysis; in particular, we adopted the setting that 

considered NTT and Softbank as having the same innovation and imitation effects (𝑝1 = 𝑝3 

and 𝑞1 = 𝑞3), because they used the same telecommunications standards during the studied 

period and because the setting and assumption had been empirically supported in our model 

fit analysis. We acknowledge that this setting may have slightly weakened the forecasting 

performance of the suggested model. However, it did enable the estimation of 12 parameters 

by the model and the benchmark; by using the same number of estimated parameters, a better 

sense was made of how the new model compared with the Norton-Bass one.  

The estimation techniques were consistent with those used previously in the model fit 

analysis. We conducted six sets of tests to forecast the performance of the market’s three main 

network services during the period studied using different forecasting periods (data points)—

for 5, 10, 15, 20, 25, and 30 months ahead—which yielded the NTT3G, au3G, and 

SOFTBANK3G forecast curves. As they had been widely accepted in previous studies of new 

product diffusion models, we introduced the Mean Absolute Percentage Error (MAPE) and 

Mean Absolute Error (MAE) to demonstrate the model’ predictive performance. These two 

values are based on scale-dependent measures and percentage errors, respectively (Hyndman 

et al., 2006). As a third measure, we also introduced the median absolute percentage error 

(MdAPE), which had been recommended by Armstrong et al. (1992) and Tashman (2000) over 

MAPE. To gain a better sense of our model’s forecasting performance for the overall market 

dynamics, we also calculate the MAPE, MAE and MdAPE for the three curves over the whole 

duration of each of the forecasting periods.  

Table 4 reports the results, showing that our proposed model performed well in all six 

forecasting periods, and showed itself capable of accurately predicting market dynamics even 
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in the longest term forecasting (30 months ahead) (𝑀𝐴𝑃𝐸 = 5.016%). We also compare our 

model’s forecasting results with those of the Norton-Bass one, and Table 4 provides the two 

models’ comparative predictive results. In terms of individual brands, the Norton-Bass model 

performed better in predicting au3G’s market growth, but the new model demonstrated 

superior performance in the cases of NTT3G and SOFTBANK3G—a finding that echoes the 

model fit results, where the Norton-Bass model also exhibited better performance in the au3G 

case. In terms of each forecasting period, the Norton-Bass model shows modest superiority 

over the suggested model over relatively short forecasting periods, as shown by the results 

for the five months ahead period. However, as the forecasting periods lengthen, the suggested 

model becomes increasingly superior. In the 30 months ahead forecasting period, its reported 

MAPE, MAPE and MdAPE are 5.016%, 0.1695, and 0.0552, significantly better than those 

produced by the Norton-Bass model (9.854%, 0.3536, and 0.1055).  

Table 4: Model Performance in Forecasting I 

Predicted 
Periods 

Predicted 
Curves 

Forecasting Performance 

Norton-Bass Model Suggested Model 

MAPE MAE MdAPE MAPE MAE MdAPE 

5 Periods NTT3G 3.300% 0.1811 0.0324 0.638% 0.0350 0.0057 
au3G 0.802% 0.0258 0.0082 5.523% 0.1773 0.0553 

SOFTBANK3G 1.249% 0.0289 0.0125 0.999% 0.0238 0.0092 
OVERALL 1.784% 0.0786 0.0177 2.387% 0.0787 0.0234 

10 Periods NTT3G 4.542% 0.2459 0.0447 1.385% 0.0747 0.0129 
au3G 0.692% 0.0221 0.0068 6.550% 0.2088 0.0651 

SOFTBANK3G 3.547% 0.0799 0.0398 1.134% 0.0106 0.0116 
OVERALL 2.927% 0.1160 0.0304 3.023% 0.0980 0.0299 

15 Periods NTT3G 6.371% 0.3395 0.0611 2.505% 0.1329 0.0218 
au3G 0.575% 0.0182 0.0056 8.079% 0.2553 0.0803 

SOFTBANK3G 6.846% 0.1504 0.0710 2.386% 0.0504 0.0259 
OVERALL 4.597% 0.1694 0.0459 4.323% 0.1462 0.0427 

20 Periods NTT3G 8.339% 0.4385 0.0820 3.527% 0.1846 0.0373 
au3G 0.503% 0.0158 0.0053 9.526% 0.2991 0.0972 

SOFTBANK3G 9.770% 0.2110 0.1054 3.653% 0.0776 0.0385 
OVERALL 6.204% 0.2218 0.0642 5.569% 0.1871 0.0577 

25 Periods NTT3G 11.215% 0.5800 0.1116 4.695% 0.2417 0.0484 
au3G 0.444% 0.0138 0.0042 10.873% 0.3395 0.1151 

SOFTBANK3G 13.318% 0.2823 0.1552 5.828% 0.1208 0.0598 
OVERALL 8.326% 0.2920 0.0903 7.132% 0.2340 0.0744 

30 Periods NTT3G 14.447% 0.7368 0.1495 3.767% 0.1908 0.0399 
au3G 0.565% 0.0174 0.0048 8.141% 0.2534 0.0925 

SOFTBANK3G 14.550% 0.3066 0.1622 3.140% 0.0643 0.0331 
OVERALL 9.854% 0.3536 0.1055 5.016% 0.1695 0.0552 

The unit for MAE results is 107.  
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Table 5: Model Performance in Forecasting II 

Fit 
Periods 

Predicted 
Curves 

Forecasting Performance 

Norton-Bass Model Suggested Model 

MAPE MAE MdAPE MAPE MAE MdAPE 

174 Periods 5 Periods 1.784% 0.0786 0.177 2.387% 0.0787 0.0234 
10 Periods --- --- --- --- --- --- 
15 Periods --- --- --- --- --- --- 
20 Periods --- --- --- --- --- --- 
25 Periods --- --- --- --- --- --- 

169 Periods 5 Periods 3.269% 0.1247 0.0316 3.236% 0.1107 0.0308 
10 Periods 2.927% 0.1160 0.0304 3.015% 0.0974 0.0299 
15 Periods --- --- --- --- --- --- 
20 Periods --- --- --- --- --- --- 
25 Periods --- --- --- --- --- --- 

164 Periods 5 Periods 4.945% 0.1768 0.0509 5.012% 0.1666 0.0506 
10 Periods 4.833% 0.1745 0.0487 4.697% 0.1572 0.0476 
15 Periods 4.597% 0.1694 0.0459 4.323% 0.1462 0.0427 
20 Periods --- --- --- --- --- --- 
25 Periods --- --- --- --- --- --- 

159 Periods 5 Periods 5.166% 0.1858 0.0527 5.227% 0.1739 0.0532 
10 Periods 5.968% 0.2107 0.0599 5.791% 0.1917 0.0580 
15 Periods 6.203% 0.2193 0.0662 5.780% 0.1922 0.0586 
20 Periods 6.204% 0.2218 0.0642 5.569% 0.1871 0.0577 
25 Periods --- --- --- --- --- --- 

154 Periods 5 Periods 6.082% 0.2158 0.0616 6.201% 0.1972 0.0633 
10 Periods 6.771% 0.2383 0.0658 6.525% 0.2091 0.0651 
15 Periods 7.646% 0.2662 0.0756 7.049% 0.2269 0.0702 
20 Periods 8.107% 0.2822 0.0827 7.190% 0.2333 0.0742 
25 Periods 8.326% 0.2920 0.0903 7.132% 0.2340 0.0744 

149 Periods 5 Periods 5.156% 0.2008 0.0510 2.635% 0.0912 0.0270 
10 Periods 6.520% 0.2427 0.0679 3.686% 0.1249 0.0378 
15 Periods 7.524% 0.2750 0.0811 4.236% 0.1427 0.0457 
20 Periods 8.607% 0.3095 0.0855 4.795% 0.1606 0.0499 
25 Periods 9.355% 0.3348 0.0966 5.011% 0.1681 0.0543 

The unit for MAE results is 107.  

 

To further support the above findings and in order to provide a more comprehensive 

comparison, in Table 5, we report the new model and the benchmark’s overall forecasting 

performance of the curves under more fitting periods and predicted periods (Tashman, 2000). 

For instance, we maintain the forecasting origin as 149 fit periods and report the models’ 

forecasting performance for 5, 10, 15, 20, and 25 predicted periods (i.e., a fixed-origin 

approach); and we successively update the forecasting origin from 149 fit periods to 174 fit 

periods and report the models’ forecasting performance for 5 predicted periods (i.e., a rolling-

origin approach). The reported data again affirm the superior predictive performance of our 
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suggested model in long-term forecasting; they also provide further evidence for the 

significance of considering brand competition and generational substitution simultaneously 

when modelling and analysing new product market performance. For instance, in terms of 

the 25 predicted periods under 149 and 154 fitting periods, the reported MdAPE values by the 

new model are 0.0543 and 0.0744, compared with the those reported by the Norton-Bass 

model (i.e., 0.0966 and 0.0903). Again, given our model setting in the forecasting analysis, it 

is important to note that, compared with the Norton-Bass model, its improved predictive 

ability is not based on increased numbers of estimation parameters, as we used same numbers 

for both models in this forecasting analysis. 

6. Conclusions 

It is critical for firms to understand, monitor, and predict the market growth of their new 

products (Tseng, 2008) in order to realize their full commercial potential and create 

competitive advantage over their rivals. In today’s competitive market, products can mostly 

be differentiated by numbers of competing brands and successive generations; we offer a new 

product diffusion model for this context.  

This study offers several original implications for both theory and practice. First, 

although the prior literature had emphasized and analysed the impacts of brand competition 

and of generational substitution on the market performance of new products, it had only dealt 

with each separately (Bass, 2004; Chatterjee et al., 2000; Meade et al., 2006; Peres et al., 2010; 

van Oorschot et al., 2018). Building on prior diffusion studies, our model considers customer 

upgrading between successive generations; enables customer switching between competing 

brands; and recognizes the cross-brand diffusion and communication effects on the market 

growth process. Based on the suggested model and its empirical analysis, we are able to affirm 

the simultaneous coexistence of both brand competition and generation substitution, and the 

importance of appreciating this coexistence to understand the overall market dynamics of 

product categories and the market performance of individual brands and generations. In 

addition, we argue that our model can provide valuable empirical evidence to help managers 

quantify these influences and thus aid their decision-making. For instance, by applying our 

model to the case of Japanese telecommunications services, we observed and assessed a 

significant and negative impact of brand competition on the growth of new product category 

users, and on the process of generation substitution.  
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Second, one of the main abilities of new product diffusion models is to estimate potentials 

for market forecasting and planning (Bass, 2004; Peres et al., 2010). As conventional diffusion 

models are often homogeneous in terms of brands and/or generations, their estimated market 

potential results are usually also aggregated. However, in real-life practice, firms may be more 

concerned about the market potential of specific products. Through the estimation of 𝑚𝑘,𝑙., 

the suggested model valuably satisfies the need to segment and specify products’ estimated 

market potential in terms of market niches for each brand and each generation.  

Third, the new model reverts to the Norton-Bass one (Norton et al., 1987) when the cross-

brand diffusion and cross-brand communication effects are eliminated, which is an important 

advantage, as the Norton-Bass model remains the most cited and widely applied multi-

generational product diffusion model to date. Moreover, the superior performance of the new 

model over the Norton-Bass one in the empirical analysis provides further evidence of the 

validity and significance of the coexistence of brand competition and generation substitution.  

Fourth, the complexity of the diffusion context increases with the introduction of more 

influences, such as multi-brand and multi-generation. Therefore, many recent new product 

diffusion models sacrifice their forecasting abilities and rely on simulations (Nejad, 2016) to 

understand the phenomenon. By applying it to the Japanese telecommunications services 

market, we have shown that our suggested model is capable of providing reliable forecasting 

for each brand, each generation, and for overall market dynamics, The new model 

demonstrates especially accurate and reliable performance when the forecasting period is 

relatively long. The model and its results also highlight the need for firms to adjust their 

marketing strategies according to any market changes resulting from both the entry/exit of 

competing brands and technological industry advances. This study can therefore serve as a 

valuable reference to help firms make important decisions regarding the marketing of 

multigenerational products in a competitive market.  

Last but not least, we built our model based on the conceptual foundation of prior new 

product diffusion models (i.e., multigenerational diffusion and competitive diffusion models) 

that had been applied in various high-technology industries such as computing, display 

monitors, telecommunications, and home entertainment. We therefore expect our new model 

to have extensive application potential in those industries, and perhaps in many others that 

involve both brand competition and technological substitution.  
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6.1. Limitations and Future Directions 

Although we view this study as an important step in the new product growth literature, 

it does have limitations that indicate areas for further research. First, we implemented the 

proposed new model in a case drawn from the telecommunications industry—future studies 

should thus introduce more empirical data to extend its validity and its results to other 

product categories and to other industries. Second, the introduction of strategic and 

managerial variables (e.g., price and advertisement) could further enhance the new model’s 

accuracy and thus its wider value (Feng et al., 2019; Samuel Sale et al., 2017). A potential 

starting point could involve replacing Equations (17) and (18) by using the generalized Bass 

model (Bass et al., 1994). Third, future research could also study ‘leapfrogging’ behaviours to 

widen the value of the suggested model, either by introducing new coefficients for 

leapfrogging (e.g., Mahajan et al. (1996)), or by re-structuring it based on the generalized 

Norton-Bass model (Jiang et al., 2012).  
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