

Abstract—Teaching Object-Oriented Programming (OOP) as part

of a Computing-related university degree is a very difficult task; the

road to ensuring that students are actually learning object oriented

concepts is unclear, as students often find it difficult to understand

the concept of objects and their behavior. This problem is especially

obvious in advanced programming modules where Design Pattern

and advanced programming features such as Multi-threading and

animated GUI are introduced. Looking at the students’ performance

at their final year on a university course, it was obvious that the level

of students’ understanding of OOP varies to a high degree from one

student to another. Students who aim at the production of Games do

very well in the advanced programming module. However, the

students’ assessment results of the last few years were relatively low;

for example, in 2016-2017, the first quartile of marks were as low as

24.5 and the third quartile was 63.5. It is obvious that many students

were not confident or competent enough in their programming skills.

In this paper, the reasons behind poor performance in Advanced OOP

modules are investigated, and a suggested practice for teaching OOP

based on a complex case study is described and evaluated.

Keywords—Complex programming case study, design pattern,

learning advanced programming, object oriented programming.

I. INTRODUCTION

OP was formally introduced in 1967 by Ole-Johan Dahl

and Kristen Nygaard when they created the Simula

language at the Norwegian Computing Center. They

introduced a new way of modeling and programming complex

tasks. Nygaard identified that many people claimed to be

experts in OOP and in teaching OOP. However, Nygaard

formulates one of his favorite messages: “To program is to

understand” and promoted the use of complex examples to

teach object-oriented design and programming right from the

start [1]. He used the example of a crowded restaurant as a

case study with many interacting objects.

The problems of teaching students object oriented design

and programming is still difficult. This research investigates

the performance of students who have already done three

different programming modules, yet still struggle to grasp the

concepts of OOP and its advanced features such as

multithreading, and the use of Design Patterns.

This paper is structured as follows: it begins by introducing

some of the previous and current treads in teaching OOP, and

presents one of traditional case study used in teaching OOP.

Section III presents the proposed practice for teaching OOP at

the university level. In Section IV, the teaching plan is

evaluated, while the final section provides a summary and

conclusions.

II. PROGRAMMING AND TECHNOLOGY

A. Trends in Teaching OOP

According to Madsen [1] in the early 2000s, there were

hundreds of books published on OO. Nygaard found that most

of those books did not do a good job in teaching the

fundamental concepts of OO, so he started a project named

Comprehensive Object-Oriented Learning (COOL) to develop

first-class teaching material on object-oriented programming.

Currently, some of the widely used books in higher

education are using different approaches to teaching OOP. The

most popular approaches are based on whether to start

teaching Classes and Objects orientation from the start of the

course or postpone these concepts to a later time. These

approaches are namely identified as the “early objects

approach” and the “late objects approach”, respectively.

Authors of textbooks have not actually agreed on the best

approach, as it depends on the particular course and the whole

plan of the teaching programming in a certain institution. For

examples, the Deitel & Deitel textbook [2] on OOP has two

different versions, one is the objects-early approach and the

other adopted the objects-late approach. Barnes & Kolling

have identified their book [3] as “object first” to denote the

early introduction of objects.

Simple examples dedicated to presenting particular concepts

are used in teaching different programming languages.

However, case studies have long been an important component

of teaching. With the use of a case study, programs are written

to demonstrate a wider understanding of several concepts in

programming languages. Many textbooks provide case studies

as an optional programming challenge. Unfortunately, with

time limitation, such case studies are not normally attempted

and some textbooks have removed challenging case studies, or

replaced them with smaller case studies. For example, one

well-known case study used in teaching OOP is the Lift

Simulation. This was introduced in the early versions of Deitel

& Deitel programming textbooks such as [5], but has been

removed from later versions.

As developing complex software systems from scratch is

expensive, time consuming, and error-prone, Software Reuse

became the obvious solution that contributes to easy software

development. The use of Design Patterns has made it easier to

create reusable software components and provide for the

Understanding of the Programming Techniques by

Using a Complex Case Study to Teach Advanced

Object-Oriented Programming
M. Al-Jepoori, D. Bennett

O

production of software that can directly be reused or that are

open for extension to add new functionality to the software.

The real movement in software design patterns started in 1994

after the publication of the book “Design Patterns: Elements of

Reusable Object-Oriented Software” [6]. Design Patterns aid

the development of reusable software [7]. Therefore, it is

important that Design Patterns are taught as part of teaching

programming.

B. Using Lift Simulation as a Case Study and Eclipse as

IDE

Nevison & Wells [8] stated that:

“Well-chosen case studies can provide the complexity

to motivate object-oriented Programming while also

providing a context where concepts can be presented in a

reasonably simple setting within the more complex

environment.”

Many textbook and software developers such as Karg [9]

have recommended the case study of “Elevator Simulator”

design and implementation. This cases study can be used in the

different stages of learning; it can be made simple enough to

implement basic concept, and complex enough to implement

advanced program with diverse requirement that involves

using many advanced features of OOP and Design Patterns.

Since the introduction of this case study in the 1990s, it has

been used in many textbooks such as that of Deitel & Deitel

[5] and the book that introduces the Greenfoot Integrated

Development Environment (IDE) [4].

Different IDEs provide different way of implementing the

Lift Simulators. Greenfoot for example, makes it easier to

implement a Graphical User Interface (GUI) and provides help

in understanding the different concepts in programming.

Eclipse and Microsoft Visual Studio on the other hand, helps

programmers learn the basics of programming without relying

on visual GUI; such IDEs are currently the GUI of choice for

teaching Java at the university level. IntelliJ has been

recommended by the product recommendation community

Kearney [10] as the top IDE for Java development; however,

IntelliJ can be costly. Eclipse is free and it uses a custom

compiler, which is often faster than the normal Java compiler,

especially for incremental compilation. Eclipse is more suited

for real world applications where high performance is

required, it also many useful plugins such as ObjectAid for

creating UML diagram and WindowBuilder for using GUI

components. Bluej [3] and Greenfoot [4] are mainly used at

schools and colleges as they make it easier to visualize objects

and their interaction. This helps in early introduction of

objects. Greenfoot also provides high-level classes that help in

quick development of Games and animations.

III. PRACTICE FOR TEACHING OOP AT UNIVERSITY LEVEL

COURSES

Currently, there are four modules at the university, in which

programming is taught at the different levels as follows:

1) Year 1: There are two modules in year 1; Introduction to

programming module, and Application Development

module - the aims are to develop the students’

understanding of the fundamental programming concepts

required by all programming paradigms. As well, to

provide students with the problem-solving skills to design,

implement, test and debug a software solution to a given

simple problem. The modules also prepare students to

take a specification and implement a reasonable solution

using stepwise refinements and identification of common

elements to create functional decompositions.

2) Year 2: Object-Oriented Programming - the major aim is

to demonstrate a practical and theoretical understanding of

the Object-Oriented paradigm of programming. This

module also includes data structures, and more complex

algorithms.

3) Year 3: Advanced Programming - the major aim is to

understand the software design process using the mega

pattern Model-View-Controller (MVC) and other design

patterns, implement advanced software programming

features, employ efficient execution based on sound

algorithmic design, and to produce design documentation

and carry out software testing.

Based on the above strategy, it has been noted that many of

the students attending Year 3 Advanced Programming find it

difficult to understand Design Patterns. Many students find

themselves unable to develop complex algorithms, and

implement advanced programming features. Therefore, it

seems possible that an early objects approach may be more

appropriate to follow than late the objects approach. As the

evidence for and against the adoption of early-objects is non-

conclusive, the late-objects approach is used for other reasons

in the institution. However, as this does not solve the issue

with students struggling with the topics in the class, a different

approach to the compartmentalised teaching of concepts as

separate topics is used.

The following new strategy has been adopted to solve the

problem with advanced programming as it stands. The

intention is to consolidate the basic knowledge the students

have acquired in the first two years of the degree program, and

build on this basic knowledge to prepare students for the job

market. This involved:

• Providing a comprehensive revision about the basic syntax

of Java as the student used C# in the first two years.

• Use one of the well-known case study that has been used

in many text books as optional exercise - in this case the

Lift Simulation, a.k.a. “Elevator Simulation” in American

text books. This case study can be made simple enough to

demonstration basic concepts in Java, and complex

enough to include most of the advanced features of Java

including Multi-threading and Design Pattern. Kölling

provided partial solution for this case study in [4], the

view of implementation in Greenfoot is presented in Fig. 1.

Deitel and Deitel also provided an old sample solution of

such simulation using GUI and text messages in the early

editions of OOP books published before 2000 in both Java

and C++ textbooks [5]. The solution provided for Lift

Simulation was written with code duplication, and design

pattern were not fully implemented. The case study has

been removed from Deitel & Deitel books in the later

versions of the C++ and Java books. Therefore, we use the

assignment of List Simulation of special lift environment

and functionality with a particular scenario; students have

to study the delivered lectures, and follow lecturer

guidelines to be able to design and implement a suitable

solution for this particular scenario.

Fig. 1 Lift Simulation using Greenfoot- Barnes and Kolling [4]

• The implementation of Lift Simulation was done

throughout the module week-by-week in four contact

hours every week; two hours of lecture sessions that was

followed by a further two hours’ tutorial session. Table I

shows the outline of the work done using the Lift Case

Study.

• The students were required to design the class diagram,

then start coding, and testing the project assuming a

building of two floors only. They were required to provide

text view reporting on every event triggered by the

different actor classes in the model, and as well, GUI view

to provide an animated view of the simulated lift. The

solution uses the Model-View-Controller (MVC)

architectural design pattern. As MVC is a mega pattern,

this involved at least using Observer, strategy and

composition pattern.

The students were asked to work week-by-week, following

the project plan and in the two-hour tutorial session every

week, formative feedback was given to each student

individually. Office hours were efficiently utilized by students

for discussion and extra formative feedback as well; these

office hours were mainly used by students who required extra

help.

TABLE I

IMPLEMENTATION PLAN

Week
2-hours tutorial session every week mainly used to work on

case study in class

1
Revising Java basic syntax including control structures, data

structures and interfaces

2 Study assignment brief and produce Class Diagram

3 The initial Person class implementation and testing using studs

4
MVC project. Coding initial observer for the text based view,

tested for Events triggered by objects of class Person

5 Using Multi-threading for Person Class

6 Programming the lift class, Door class and Button class

7
Synchronized objects and methods- controlling events coding

and testing

8 Using Singleton and Iterator design pattern

9 Simple GUI for Controller to generate more person objects

10 Work on Simulated GUI

11 Testing and documentation

IV. EVALUATION AND ANALYSIS OF TEACHING PLAN

Although the 2016-2017 assignment was different from the

2017-2018 assignment, as it did not completely rely on OOA

and coding, nearly 30% of the assessment included writing an

essay like report. However, evaluation is made by comparing

students’ performances with the previous year’s assessment

results as per Figs. 2 and 3 that show many important

improvements.

Fig. 2 shows that in 2017-2018:

• The number of student who fail the module are much

lower than previous year.

• The number of non-submissions is also reduced.

• The percentage of students who scored a First is 21.1

much higher than the 14.6 in the previous year.

• The percentage of the total number of students who passed

is 75%, which is higher than the 65.9% of last year.

Fig. 3 shows that in 2017-2018:

• The Median is exactly 50%.

• A larger distribution of marks as the maximum mark is

much higher than the upper quartile.

• The average mark is higher than the previous year average.

Although the T-Test, did not show a significant

improvement in the results, the assessment in 2017-2018 was

far more challenging than the assessment in 2016-2017, hence,

the smallest improvement in the result is regarded as a

significant achievement.

In general, the outcome is that, students’ performance was

remarkably improved; they produced high quality design,

implementation and documentation. Many students went above

the required implementation as they enjoyed the fact that they

were creating the simulation in an incremental way, testing

each unit of code and experiencing real-world practices in

software development

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

fail 3rd 2-2 2-1 first NON
Submission

Total Pass

Percentage of Marks 2016/17 vs 2017/18

2016-2017 2017-18

Fig. 2 Percentage of Marks 2016-2017 vs. 2017-2018

0

10

20

30

40

50

60

70

LQ Median UQ UQ-LQ Max-UQ Average

Statistical comparison

2016-2017 2017-2018

Fig. 3 Statistical Comparison

V. CONCLUSION AND FUTURE WORK

This paper reported on the authors experience in teaching

Object Oriented Programming using Design Pattern and

advanced OOP features. The use of case study to incrementally

implement the required features has been very successful.

Students had clearly understood the problem at the beginning

of the module; this created an environment that encouraged

students to implement the material they learned week by week.

The experiment of changing the way OOP and Design Pattern

concepts was introduced and the way formative feedback was

given to every student, has made it easier to identify design

and coding mistakes at early stages, and help the students

improve their work. However, this was a difficult and time-

consuming task for the lecturer to check students’ attempts

every week and provide formative feedback. Most review was

done outside tutorial sessions to prepare feedback and discuss

it with the students. Changing the way the programming

module is delivered in the first two years of the degree

programme to objects-early may help this group of students

understand the advanced concepts, and helps lecturers by

reducing the frequency of feedback required. However, even

with a new programme design, this may not be possible owing

to the shared nature of the first year modules across many

different programmes, most of which do not lead to a pure

software development pathway. For example, our Computer

Forensics and Security students do more scripting-based

development in later years within the Linux environment,

where OO is not part of their required skillset. This means that

the most important element is to develop the students’

algorithmic thinking in the early modules and an objects-early

approach may not support this as well. However, schools in the

UK have recently changed their programs, they now include a

compulsory Computer Science stream, we may find that the

algorithmic skill set becomes part of the students’ capabilities

before joining our university and an early objects approach

may be more suitable. In the meantime, the approach

undertaken may be useful in alleviating issues with the final

year understanding of more complex topics.

REFERENCES

[1] Madsen, O. (2002), In Memory of Ole-Johan and Kristen Nygaard,

Journal of Object Technology,Vol. 1, no. 4, September-October 2002

[2] Deitel, P., Deitel, H., (2015), Java How To Program (Early Objects)

(10th Edition), Pearson (2017), ISBN-13: 9780133807806.

[3] Barnes, D., Kölling, M., (2016). Objects First with Java A Practical

Introduction using BlueJ. Sixth Edition, Pearson, 2016. ISBN (US

edition): 978-013-447736-7. ISBN (Global Edition): 978-1-292-15904-

1.

[4] Barnes, D., Kölling, M., (2016), Object-Oriented Programming in Java

with Games and Simulations, Second edition, Pearson, 2016, ISBN-10:

013-405429-6, ISBN-13: 978-013-405429-2.

[5] Deitel, P., Deitel, H., (2000), C++ How To Program, Pearson.

[6] Freeman, E., Robson, E., Sierra, K., & Bates, B. (2004), Head First

Design Patterns, O’Reilly Media

[7] Gamma, E., Vlissides, J., Johnson, R., Helm, R., (1994), Design

Patterns Elements Of Reusable Object-oriented Software, Addison-

Wesley.

[8] Nevison, C., Wells, B., (2004), Using a maze case study to teach:

object-oriented programming and design patterns, Proceedings of the

Sixth Australasian Conference on Computing Education, p.207-215,

January 01, 2004, Dunedin, New Zealand.

[9] Karg, S., (1996), available from,

http://www.angelfire.com/trek/software/elevator.html, last accessed on

20/12/2017.

[10] Kearney,S., (2017), available from:

https://www.slant.co/topics/10229/~ides-for-java-on-windows, last

accessed on 20/12/2017.

Muna Al-Jepoori holds an MSc degree in computer science (1982 - Aston

University-UK) and a PhD degree in computer science (2009 -Bradford

University-UK), she worked as manager of several computer centres before

started working in higher education. In 1997, Muna started lecturing at

Amman University in Jordan, Sultan Qaboos University in Oman, and

University of Kent in UK and currently she is a Senior Lecturer at Canterbury

Christ Church University – Computing since 2014.

David Bennett holds a BSc (hons) Computer Science from the University of

Exeter and a DPhil from the University of York. He is currently a Senior

Lecturer at Canterbury Christ Church University. Previously he worked in

industry for Philips Sound and Vision and Planit International in Software

Development.

