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Abstract: The integration of artificial intelligence (Al) in ophthalmology is transforming
the field, offering new opportunities to enhance diagnostic accuracy, personalize treatment
plans, and improve service delivery. This review provides a comprehensive overview of
the current applications and future potential of Al in ophthalmology. Al algorithms, partic-
ularly those utilizing machine learning (ML) and deep learning (DL), have demonstrated
remarkable success in diagnosing conditions such as diabetic retinopathy (DR), age-related
macular degeneration, and glaucoma with precision comparable to, or exceeding, human
experts. Furthermore, Al is being utilized to develop personalized treatment plans by
analyzing large datasets to predict individual responses to therapies, thus optimizing
patient outcomes and reducing healthcare costs. In surgical applications, Al-driven tools
are enhancing the precision of procedures like cataract surgery, contributing to better re-
covery times and reduced complications. Additionally, Al-powered teleophthalmology
services are expanding access to eye care in underserved and remote areas, addressing
global disparities in healthcare availability. Despite these advancements, challenges remain,
particularly concerning data privacy, security, and algorithmic bias. Ensuring robust data
governance and ethical practices is crucial for the continued success of Al integration in
ophthalmology. In conclusion, future research should focus on developing sophisticated
Al models capable of handling multimodal data, including genetic information and patient
histories, to provide deeper insights into disease mechanisms and treatment responses.
Also, collaborative efforts among governments, non-governmental organizations (NGOs),
and technology companies are essential to deploy Al solutions effectively, especially in
low-resource settings.

Keywords: artificial intelligence; ophthalmology; machine learning; diabetic retinopathy;
age-related macular degeneration; glaucoma
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1. Introduction

Ophthalmology, the branch of medicine dedicated to studying and treating disorders
and diseases of the eye and visual system, stands at the forefront of medical innovation.
Over the past few decades, technological advancements have significantly transformed the
field, enhancing diagnostic accuracy, therapeutic outcomes, and overall patient care [1-3].
One of the most impactful technological advancements in recent years is artificial intelli-
gence (Al), which encompasses both machine learning (ML) and deep learning (DL). Al
involves the simulation of human intelligence processes by machines, particularly computer
systems. These processes include learning (the acquisition of information and rules for
using the information), reasoning (using rules to reach approximate or definite conclusions),
and self-correction [4,5]. ML, a subset of Al, enables systems to learn and improve from
experience without being explicitly programmed [6]. DL, a further subset of ML, utilizes
neural networks with multiple layers to analyze various factors of data [7]. In ophthalmol-
ogy, Al technologies have shown significant promise in transforming traditional practices.
This transformation is driven by the field’s heavy reliance on imaging and diagnostic data,
which are well suited for Al applications [4,8]. The ability of Al to process and analyze vast
amounts of data rapidly and accurately positions it as a revolutionary tool in eye care. For
example, a deep learning algorithm has been successfully used to analyze retinal images
from a fundus camera to detect early signs of diabetic retinopathy in clinical settings, while
machine learning models applied to OCT images have identified subtle retinal changes in
patients with AMD [9,10]. These Al applications are highly dependent on the quality and
consistency of imaging devices, such as fundus cameras and OCT devices, though they are
increasingly integrated with surgical systems like phaco machines to enhance procedural
safety [9,11].

One of the most profound impacts of Al in ophthalmology is in the realm of diagnostics.
Al systems, particularly those leveraging DL techniques such as convolutional neural
networks (CNNs), are adept at recognizing complex patterns in imaging data, which
is crucial for diagnosing various eye conditions [7,12]. Diabetic retinopathy (DR) is a
significant cause of blindness among working-age adults worldwide [13]. Traditional
diagnostic methods rely on the manual examination of retinal images, which can be time-
consuming and subject to human error. Al algorithms, however, have demonstrated the
ability to detect DR with high sensitivity and specificity [9,10]. Notably, the study by
Gulshan et al. highlighted an Al system capable of identifying DR in retinal images with
performance comparable to that of experienced ophthalmologists [10]. Such advancements
ensure that patients at risk of vision loss are identified and treated promptly, thus preventing
disease progression. Age-related macular degeneration (AMD) is another major cause of
vision loss, particularly among the elderly. Early detection and monitoring are critical in
managing AMD, and Al has proven to be a valuable tool in this regard [11]. Al models have
been developed to analyze optical coherence tomography (OCT) images, differentiating
between normal and pathological features with remarkable accuracy. For instance, research
has shown that Al algorithms can classify AMD stages from OCT scans, providing crucial
support for early intervention and personalized treatment strategies [11,14].

Glaucoma, often referred to as the “silent thief of sight”, is characterized by optic
nerve damage and is a leading cause of irreversible blindness [15,16]. Early detection and
continuous monitoring are essential for managing glaucoma. Al applications, particularly
those involving the automated analysis of OCT images and visual field tests, have shown
significant promise [17,18]. In the context of glaucoma, while traditional trend analysis
of visual field parameters relies on observing longitudinal changes, Al-based prediction
leverages complex patterns from multimodal data to forecast progression with greater sensi-
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tivity and specificity [17]. These Al tools assist ophthalmologists in detecting early signs of
glaucoma and tracking disease progression, facilitating timely and effective interventions.

In addition to its diagnostic capabilities, Al is revolutionizing the treatment and
management of ophthalmic diseases. Personalized medicine, which tailors treatment plans
to individual patient profiles, is significantly enhanced by Al’s ability to analyze extensive
datasets and predict treatment outcomes [19,20]. Al can analyze data from diverse sources,
including patient demographics, medical history, genetic information, and imaging data, to
develop personalized treatment plans [19]. In the context of ophthalmology, this capability
is particularly valuable. For example, Al-driven models can predict which patients with
DR are likely to respond to specific treatments, enabling more targeted and effective
interventions [9]. Moreover, advancements in Al-guided surgical tools—such as those that
stabilize the anterior chamber during cataract surgery or automate instrument calibration
in vitreoretinal procedures—have already been incorporated into routine practice, subtly
enhancing the ease and safety of surgical procedures [21].

Al is not only transforming clinical practice but also enhancing service delivery in oph-
thalmology. By automating routine tasks and optimizing workflows, Al can significantly
improve efficiency and patient care [21,22]. Al-powered screening programs are being
implemented to improve access to eye care [23,24], especially in remote and underserved
areas [25]. Mobile applications and teleophthalmology services utilize Al to screen for com-
mon eye diseases, such as DR and glaucoma [26,27], facilitating early detection and timely
referral to specialists. These programs are particularly beneficial in addressing disparities
in eye care access, ensuring that more people receive the necessary care. In clinical settings,
Al can streamline workflows by automating routine tasks, such as image analysis and
patient triage [9,22]. This not only enhances efficiency but also allows ophthalmologists
to focus on more complex cases, thereby improving the overall quality of care. Al-driven
systems can prioritize patients based on the severity of their conditions, ensuring that those
in urgent need receive prompt attention [20].

The rationale for this study is grounded in the transformative potential of Al to
revolutionize ophthalmic practices. Traditional diagnostic methods in ophthalmology,
often reliant on subjective interpretation and manual analysis, face limitations in terms of
efficiency and accuracy [9]. With the rising prevalence of eye diseases like DR, AMD, and
glaucoma, there is an urgent need for advanced diagnostic and treatment tools. Al-powered
screening programs and teleophthalmology services present significant opportunities to
address the global burden of eye diseases [26].

The objectives of this study are multifaceted, aiming to provide a comprehensive
overview of Al applications in ophthalmology, assess the benefits and challenges of inte-
grating Al into clinical practice, and explore future directions for Al-driven advancements
in the field. The main objective of this narrative review is to systematically evaluate the
current landscape of Al technologies in ophthalmology by addressing the following re-
search questions: (1) What are the specific Al tools and techniques currently employed in
ophthalmic diagnosis, treatment, and service delivery? (2) What benefits and challenges are
associated with their integration into clinical practice? (3) What future trends and directions
can be anticipated for Al-driven innovations in this field?

The novelty of this review lies in its holistic approach, examining not only individual
Al tools and techniques but also their integration across various data modalities to offer
more comprehensive insights into eye diseases and treatments. Furthermore, the study
emphasizes the role of Al in personalizing treatment plans, improving service delivery
through teleophthalmology, and addressing ethical and practical challenges associated
with Al implementation. By highlighting emerging trends and potential advancements,
this study aims to provide a forward-looking perspective that can inform both clinical
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practice and future research, ultimately contributing to the responsible and effective use
of Al in ophthalmology. Figure 1 below shows various applications of Al in ophthalmol-
ogy domains.
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Figure 1. Al applications in various ophthalmology domains.

2. Methodology

This narrative review employs a comprehensive literature review methodology to
gather, analyze, and synthesize existing research on the applications of Al in ophthalmology.
The methodology includes several key steps: defining the research scope, selecting relevant
databases, establishing inclusion and exclusion criteria, conducting a systematic search,
and analyzing and synthesizing the collected data.

2.1. Database Selection and Search Strategy

Relevant peer-reviewed articles, conference papers, and review articles were identified
using multiple scientific databases, including PubMed, Google Scholar, IEEE Xplore, and
ScienceDirect. The search strategy involved the use of keywords and phrases such as “Al in
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ophthalmology”, “machine learning in eye care”, “deep learning in ophthalmic diagnosis”,
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“Al in diabetic retinopathy”, “Al in glaucoma detection”, “teleophthalmology”, and “Al in
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personalized medicine for eye diseases”. Boolean operators (AND, OR) were employed to
refine and expand the search to capture a comprehensive set of relevant studies.

2.2. Inclusion and Exclusion Criteria

To ensure the relevance and quality of the reviewed literature, specific inclusion
and exclusion criteria were established. The included studies were those that met the
following criteria:

e  Focus on the application of Al in ophthalmology.

e  Are peer-reviewed and published within the last ten years (2013-2023) to ensure
contemporary relevance.

e Provide empirical data, case studies, systematic reviews, or meta-analyses on the use
of Al in diagnosing, treating, or managing eye diseases.

e  Discuss ethical, practical, or future-oriented aspects of Al in ophthalmology.

Studies were excluded if they met the following criteria:

e Do not specifically address Al applications in ophthalmology.
e  Are opinion pieces, editorials, or anecdotal reports without empirical data.
e  Are published in non-English languages, due to language constraints.

2.3. Systematic Search and Data Extraction

A systematic search of the selected databases was conducted using predefined key-
words and criteria. Titles and abstracts of the retrieved articles were screened for relevance,
and full-text versions of potentially relevant articles were obtained for detailed review. A
data extraction form was used to systematically collect information from each included
study, including study objectives, methods, Al techniques used, findings, benefits, chal-
lenges, and future recommendations.

2.4. Data Analysis and Synthesis

The extracted data were analyzed using qualitative synthesis methods. The studies
were categorized based on their primary focus: diagnostic applications, therapeutic appli-
cations, service delivery improvements, and ethical considerations. Within each category,
thematic analysis was conducted to identify common themes, trends, and gaps in the
literature. The findings were then synthesized to provide a comprehensive overview of the
current state of Al in ophthalmology, highlighting key advancements, benefits, challenges,
and future directions.

3. Al in Ophthalmic Diagnosis

Table 1 below highlights the diverse applications of Al in ophthalmic diagnosis,
emphasizing the technology, key systems, accuracy, clinical applications, advantages,
and challenges for various eye conditions. Al algorithms for glaucoma predict disease
progression and assist in timely intervention [28]. ML models streamline cataract diagnosis
by automating assessment and grading from slit-lamp images [29,30]. DL models for retinal
vein occlusion (RVO) enhance diagnostic precision, reducing manual analysis [31,32]. Al
integration of genetic data with imaging for retinitis pigmentosa offers comprehensive
disease insights [33,34]. Al-powered corneal topography for keratoconus ensures early
detection and better treatment outcomes [35]. Al applications in ocular surface diseases
improve patient management and reduce workload [36]. For uveitis, Al combines imaging
and clinical data for early detection and tailored treatment plans [37,38]. Despite these
advancements, challenges like data privacy, algorithmic bias, workflow integration, and
model generalizability persist across applications [39].
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Table 1. Al in ophthalmic diagnosis.
Condition Al Technology Clinical Application Advantages Challenges
. High diagnostic Data privacy,
DR CNNs Automatgd screefung accuracy, reduced algorithmic bias,
from retinal images A . . .
screening time integration with EHR
Classification of AMD . Early detect19n, Training in diverse
AMD DL : improved patient datasets, regulatory
stages from OCT images .
outcomes compliance
Al algorithms for Early dlz-agnos1s and ) . . Data accuracy,
. ) monitoring through Timely intervention, .
Glaucoma OCT and visual field . C handling large
amalysis automated analysis of reduced vision loss datasets
OCT and visual fields
Diagnosis and grading of Automated Integration into
Cataract ML models cataracts from slit-lamp assessment, clinical workflows,
images standardized grading user training
Detection and Accurate diagnosis, Ensuring model
RVO DL models classification of RVO from reduced need for generalizability, data
OCT images manual analysis sharing
L Genetic data Combined genetic and Comprehensive Ethical
Retinitis . . . . . . o . . . .
Piomentosa integration with imaging analysis for early  insights into disease considerations, data
& imaging Al diagnosis mechanisms privacy
Early detection from Early intervention, Ensuring algorithm
Al for corneal . . .
Keratoconus corneal topography improved treatment fairness, handling
topography .
images outcomes complex data
. Detection and monitoring Improved patient Data integration,
Ocular Surface ML and image of ocular surface o
. . o . management, reduced maintaining data
Diseases analysis conditions from slit-lamp .
o workload privacy
and tear film images
- Al for imaging and Diagnosis gnd monitoring Early detection, Data.comple.x1ty,
Uveitis . from multimodal imaging tailored treatment ensuring unbiased
clinical data .. .
and clinical data plans algorithms

Abbreviations—Al: artificial intelligence; DR: diabetic retinopathy; CNNs: convolutional neural networks; EHR:
electronic health records; AMD: age-related macular degeneration; DL: deep learning; OCT: optical coherence
tomography; ML: machine learning; and RVO: retinal vein occlusion.

3.1. Diabetic Retinopathy

DR is a leading cause of blindness worldwide, primarily affecting individuals with
diabetes [40,41]. It is characterized by damage to the blood vessels of the retina, which can
lead to vision impairment and, ultimately, blindness if left untreated. Early detection and
timely intervention are crucial to preventing vision loss [40]. However, traditional methods
for diagnosing DR rely on manual examination of retinal images by ophthalmologists,
which can be time-consuming and prone to variability [33,40].

Al algorithms, especially CNNs, have demonstrated remarkable accuracy in detecting
DR from retinal images. CNNs are well suited for image analysis tasks due to their ability
to automatically learn and extract features from raw image data, enabling them to identify
patterns and anomalies indicative of DR [42,43]. Numerous studies have shown that Al
can achieve sensitivity and specificity comparable to, or even surpass, human experts
in detecting DR [10,42—45]. One of the most notable Al systems for DR detection is the
EyeArt Al system. EyeArt has been extensively validated in clinical settings and has shown
over 90% sensitivity in detecting referable DR, which refers to cases that require further
evaluation by an ophthalmologist [42,46]. A pivotal study involving EyeArt demonstrated
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its ability to accurately identify DR in a diverse patient population, highlighting its potential
as a reliable screening tool [46]. However, it is important to note that according to WHO
criteria for a valid screening program, a system must achieve at least >80% sensitivity
and >95% specificity; while EyeArt demonstrates sensitivity over 90%, its specificity has
been reported in some studies to fall below the 95% threshold [42,46]. The system’s high
sensitivity ensures that most cases of referable DR are detected, thereby reducing the risk
of missed diagnoses and facilitating early intervention.

Another prominent Al model is the system developed by Google Health, which utilizes
DL techniques to analyze retinal photographs [10,12]. This Al model has been trained on
a large dataset of retinal images labeled by expert ophthalmologists. In a recent study,
the Google Health model achieved sensitivity and specificity rates comparable to those of
board-certified ophthalmologists [10,47]. The model’s ability to accurately identify both
referable and non-referable DR underscores its potential to enhance screening programs
and improve access to eye care, particularly in resource-limited settings.

Comparative studies have further underscored the efficacy of Al in DR detection. For
example, a study comparing the performance of several Al models, including EyeArt and
Google Health’s system, found that these Al tools consistently outperformed traditional
manual grading by ophthalmologists in terms of both speed and accuracy [12,42,45]. These
findings suggest that Al can serve as a valuable adjunct to human expertise, enabling more
efficient and reliable screening processes. In real-world applications, Al systems for DR de-
tection have been deployed in various settings, from urban hospitals to rural clinics [12,46].
The scalability and accessibility of Al technologies make them particularly advantageous
for large-scale screening programs. For instance, in India, where the prevalence of diabetes
is high and access to specialized eye care is limited, Al-based screening initiatives have
been implemented to identify patients at risk of DR [47]. These programs leverage Al to
analyze retinal images captured by mobile screening units, providing immediate feedback
and referral recommendations [10,43]. The integration of Al in such programs has demon-
strated significant improvements in screening coverage and diagnostic accuracy, ultimately
contributing to better patient outcomes.

3.2. Age-Related Macular Degeneration

AMD is a leading cause of vision loss, particularly among older adults. It affects the
macula, the part of the retina responsible for central vision, leading to progressive vision
impairment and, in severe cases, blindness [48]. Early and accurate diagnosis is crucial for
managing AMD and preventing severe visual deterioration. Traditional diagnostic methods
include clinical examination and imaging techniques, such as OCT [49,50]. However, these
methods can be time-consuming and require significant expertise.

Al systems have been developed to classify AMD stages from OCT images with re-
markable accuracy. These systems utilize DL algorithms, such as CNNSs, to analyze the
intricate details of retinal images and distinguish between normal and pathological fea-
tures [45,51]. By processing large volumes of data, Al models can learn to identify the subtle
signs of early AMD, intermediate stages, and advanced forms of the disease, including both
dry and wet AMD [11,52]. In clinical validation studies, the DL system achieved diagnostic
accuracy comparable to that of experienced retinal specialists [12,53]. This level of precision
highlights the potential of Al to assist in early detection and monitoring, enabling timely
interventions that can slow disease progression and preserve vision.

The integration of Al into AMD diagnosis provides substantial support to ophthal-
mologists. Al models can rapidly analyze OCT scans and flag images that exhibit signs of
AMD, prioritizing patients who need immediate attention [44,50]. This triage capability
reduces the diagnostic burden on ophthalmologists, allowing them to focus on patients
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with more complex cases [11,52]. For instance, studies have shown that Al-driven analysis
of OCT images can significantly decrease the time required for initial screenings, freeing up
resources and improving the efficiency of eye care services [12,54]. Additionally, Al systems
can provide continuous monitoring for patients with AMD. By comparing sequential OCT
images, Al can detect subtle changes that may indicate disease progression or response to
treatment [52,55].

In real-world clinical settings, Al systems for AMD detection and classification have
shown promising results. For example, the Moorfields—DeepMind collaboration developed
an Al system capable of diagnosing a wide range of retinal diseases, including AMD, from
OCT scans [12,56]. The system was tested in clinical practice and demonstrated high accu-
racy, often exceeding that of human experts. This collaboration highlighted the potential
for Al to be integrated into routine clinical workflows, providing reliable and scalable
diagnostic support. Another significant application is the use of Al in large-scale screening
programs. In regions with limited access to specialized eye care, Al-powered screening
tools can facilitate early detection of AMD and other retinal diseases [11,57]. Mobile screen-
ing units equipped with OCT devices and Al analysis capabilities can reach underserved
populations, providing immediate feedback and referral recommendations [58,59]. These
programs have shown success in identifying individuals at risk and ensuring they receive
timely and appropriate care.

3.3. Glaucoma

Glaucoma is a group of eye conditions characterized by damage to the optic nerve,
often associated with elevated intraocular pressure [16,60]. It is one of the leading causes of
irreversible blindness worldwide [60,61]. Early detection and continuous monitoring are
crucial to prevent significant vision loss, as the damage caused by glaucoma is typically
asymptomatic in the early stages. Al applications have shown great promise in improving
the diagnosis and management of glaucoma through the automated analysis of OCT
images and visual field tests [62,63]. Studies have demonstrated that Al systems can
reliably identify glaucomatous changes in the optic nerve head and retinal nerve fiber
layer [28,64]. For instance, an Al model developed by researchers at Moorfields Eye
Hospital and DeepMind was trained on a large dataset of OCT images and demonstrated
performance comparable to that of expert ophthalmologists in diagnosing glaucoma [12,55].
This model could detect structural abnormalities associated with glaucoma and provide
diagnostic suggestions with high sensitivity and specificity. By automating the detection of
glaucoma-related changes, Al systems can assist ophthalmologists in identifying patients
at risk of glaucoma earlier than conventional methods [28,63].

Visual field testing is another essential component in diagnosing and monitoring glau-
coma. It measures a patient’s peripheral vision and helps identify functional loss caused by
optic nerve damage [65,66]. Traditional visual field tests often rely on trend analysis—using
statistical methods such as linear regression to evaluate changes in visual field parameters
over time—which can be subjective and influenced by patient performance, leading to
variability in results. In contrast, Al-based prediction leverages complex pattern recognition
from the entire dataset, including nonlinear trends, to forecast disease progression with
greater sensitivity and specificity [63,67]. ML algorithms can analyze patterns in visual
field data to detect early glaucomatous changes and predict disease progression [68]. One
significant study by Medeiros et al. demonstrated that an Al algorithm could predict the
future progression of visual field loss in glaucoma patients with high accuracy [69]. The
algorithm analyzed longitudinal visual field data, identifying patterns that indicated the
likelihood of disease progression. This predictive capability allows for more proactive
management of glaucoma, enabling timely interventions to prevent further vision loss.
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Al tools for glaucoma diagnosis and monitoring have been validated in clinical settings,
showing substantial benefits in improving patient care [12,17]. For example, Al-powered
platforms that integrate OCT analysis and visual field data have been implemented in
ophthalmology clinics to assist clinicians in making more informed decisions [69]. These
platforms provide a comprehensive assessment of glaucoma, combining structural and
functional data to offer a holistic view of the disease [18,61]. In community screening pro-
grams, Al systems have been used to identify individuals at risk of glaucoma, particularly
in underserved areas where access to specialist eye care is limited [25,70]. This approach
has been shown to increase the detection rates of glaucoma and facilitate earlier treatment.

4. Al in Treatment and Management
4.1. Personalized Treatment Plans

Al models, particularly those based on ML and DL techniques, have shown remark-
able ability in predicting disease progression and treatment outcomes. By analyzing diverse
data sources such as patient demographics, genetic information, imaging data, and treat-
ment histories, Al can generate precise predictions tailored to individual patients [22,71].
Researchers have developed models that analyze retinal images and other relevant data to
forecast the likelihood of disease worsening [9,10,45]. These predictions enable ophthal-
mologists to tailor treatment plans according to the specific needs of each patient, such as
adjusting the frequency of monitoring visits or the type of interventions.

Similarly, in AMD management, Al-driven models can analyze OCT images along
with clinical data to predict how patients will respond to various treatments, such as
anti-vascular endothelial growth factor (anti-VEGF) injections [11,51,72]. Studies have
shown that Al can identify patients who are likely to benefit from specific therapies and
those who may require alternative treatment strategies [1,22,57]. This capability allows
for more targeted and effective interventions, improving patient outcomes and reducing
unnecessary treatments.

Al’s ability to analyze complex datasets and recognize patterns that may not be
apparent to human clinicians plays a crucial role in optimizing therapeutic strategies.
By continuously learning from new data, AI models can refine their predictions and
recommendations, ensuring that treatment plans remain up to date with the latest clinical
insights and patient responses [12,22,71]. Al models can predict which patients are at higher
risk of rapid disease progression and require more aggressive treatment, such as early
surgical intervention, versus those who can be managed with less intensive therapies [58,73].
This individualized approach helps in allocating resources more efficiently and improving
the quality of care.

The application of Al in personalizing treatment plans has shown promising results in
improving patient outcomes and reducing treatment costs. By accurately predicting disease
progression and tailoring interventions, Al helps in achieving better clinical outcomes
with fewer complications [45]. Early and precise interventions can prevent the progression
of eye diseases, reducing the need for more extensive and costly treatments later on. In
addition to clinical benefits, Al-driven personalized treatment plans can lead to significant
cost savings for healthcare systems [45,74]. By optimizing the use of resources and mini-
mizing unnecessary treatments, Al contributes to more efficient healthcare delivery. For
instance, Al models can help determine the optimal frequency of anti-VEGEF injections for
AMD patients, reducing the number of injections needed while maintaining therapeutic
efficacy [52,72]. This not only lowers treatment costs but also improves patient compliance
and satisfaction.
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4.2. Surgical Applications

Al is transforming ophthalmic surgery by enhancing precision, reducing complica-
tions, and improving patient outcomes through robotic-assisted surgery and Al-guided
instruments [75-77]. These advanced technologies provide real-time feedback, assist in
making accurate incisions, and optimize various surgical procedures, such as cataract
surgery [77,78]. Traditional cataract surgery involves manually removing the cloudy lens
and replacing it with an artificial lens. This procedure requires steady hands and precise
movements, as even minor deviations can lead to complications [78]. Robotic-assisted
surgery is revolutionizing the field of ophthalmology by providing surgeons with enhanced
control and precision. Al-powered robotic systems can assist in performing intricate sur-
gical tasks that require a high degree of accuracy [79,80]. One of the key advantages
of robotic-assisted surgery is its ability to reduce human error [76,81]. Robotic systems
equipped with Al algorithms can stabilize the surgical instruments and perform precise
maneuvers, minimizing the risk of errors. In addition, modern phaco devices are designed
to automatically regulate fluidics to maintain a stable anterior chamber during cataract
surgery, which reduces intraoperative fluctuations and protects the corneal endothelium.
Furthermore, features such as real-time intraoperative imaging overlays and automated
fluid management systems have been seamlessly integrated into everyday surgical prac-
tice, providing subtle yet significant improvements that enhance surgical safety and ease
without drawing undue attention from the surgeon.

Al-guided instruments are another significant innovation in ophthalmic surgery. For
example, in retinal surgery, Al-guided instruments can assist surgeons in making precise
incisions and accurately positioning implants [75,82]. Al algorithms can analyze intraop-
erative data, such as imaging and sensor information, to provide surgeons with critical
insights [77,80]. This real-time analysis helps in identifying optimal incision sites, avoiding
critical structures, and ensuring proper alignment of surgical instruments.

Cataract surgery is one of the most common ophthalmic procedures, and Al is playing
a crucial role in enhancing its precision and outcomes. Al-powered robotic systems can
assist in various stages of cataract surgery, from preoperative planning to intraoperative
execution [77,82]. Preoperative planning involves creating a detailed map of the patient’s
eye to guide the surgical procedure [75]. Al algorithms can analyze diagnostic images and
generate a precise surgical plan, including the optimal size and location of the incisions
and the appropriate power and position of the intraocular lens [83,84]. This personalized
approach ensures that the surgery is tailored to the individual patient’s anatomy, leading
to better visual outcomes. During the surgery, Al-guided instruments provide real-time
feedback to the surgeon, helping them make accurate incisions and perform delicate
maneuvers [85]. For instance, femtosecond laser-assisted cataract surgery utilizes Al to
control the laser, making precise corneal incisions and fragmenting the cataract with high
accuracy [82,85]. This technology reduces the risk of complications, such as capsular tears
and corneal astigmatism, and shortens the recovery time for patients.

Al-assisted ophthalmic surgery offers several benefits in terms of reducing complica-
tions and improving recovery times. By enhancing surgical precision and minimizing hu-
man error, Al technologies help lower the incidence of postoperative complications [81,84].
Moreover, Al can contribute to faster recovery times by ensuring that surgical procedures
are performed with minimal trauma to the surrounding tissues [75]. Precise incisions
and optimized surgical techniques reduce inflammation and promote quicker healing [85].
Patients undergoing Al-assisted cataract surgery often experience faster visual recovery
and improved overall satisfaction.
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5. Al in Ophthalmology Service Delivery

Al is revolutionizing service delivery in ophthalmology by automating routine tasks,
optimizing workflows, and enhancing efficiency in patient care [86]. These advancements
are particularly impactful in screening programs, where Al-powered solutions improve
access to eye care, especially in remote and underserved areas [8,87]. Table 2 below outlines
various Al applications in ophthalmology service delivery, detailing the technologies, key
systems, clinical applications, advantages, and challenges associated with each area, includ-
ing screening programs, teleophthalmology, workflow optimization, patient monitoring,

decision support systems, resource allocation, and patient engagement.

Table 2. Al in ophthalmology service delivery.

. K linical
Service Area Al Technology ey Systems/ c mea Advantages Challenges
Programs Application
Early detection Data privacy,
. : Increased access, .
Screening Al-powered EyeArt, IDx-DR,  of eye diseases, - ensuring
) . early detection, X
Programs screening tools ~ mobile Alapps  such as DR and accuracy in
reduced workload . .
glaucoma diverse settings
Alin Retina-Al, diaRrig:i)s’,[in d Access to care in Te;f;l:slsgy
Teleophthalmology telemedicine telehealth ghost remote areas, P
e monitoring of . maintaining data
platforms initiatives ) timely referrals .
eye conditions security
Automating Improved Interoperability
Workflow Al for task Al-driven triage image analysis, efficiency, with existing
Optimization automation and scheduling patient triage, allowing for focus systems, user
and scheduling ~ on complex cases acceptance
. . Continuous Real-time data, Data
Patient Al in wearable Smart contact I - management,
s . monitoring of proactive .
Monitoring devices lenses, Al apps S patient
eye conditions management
adherence
.. Clinical IBM Watson, .ASSISm.Ig n Enhanced Trust in AI. rec
Decision Support . diagnosis and . . ommendations,
decision Google Health decision-making, . .
Systems treatment . integration into
support Al Al . personalized care
planning workflow
Hospital Optlmlzn?g use Cost savings, Implementation
Resource Al for resource of medical . e
. management Al improved resource costs, training
Allocation management resources and e
tools . utilization staff
staff scheduling
Chatl'aots for Enhancing Improyed patient Accuracy of Al
. Al chatbots appointment . satisfaction,
Patient . . patient responses,
and virtual scheduling, - reduced .
Engagement . communication . . patient data
assistants symptom . administrative .
. and education privacy
checking burden

Abbreviations—ALl: artificial intelligence; DR: diabetic retinopathy.

5.1. Screening Programs

Al-powered screening programs are transforming the landscape of ophthalmic care
by enabling large-scale, efficient, and accurate screening processes. These programs utilize
advanced algorithms to analyze retinal images and other relevant data, identifying signs of
eye diseases with high accuracy [8,87]. The implementation of Al in screening programs
offers several benefits, including improved access to care, early detection, and reduced
healthcare costs [88,89]. Mobile applications and teleophthalmology services are at the
forefront of Al-driven screening programs. These platforms allow for remote screening
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of eye diseases, making it possible to reach populations that lack access to traditional
eye care services [26,90]. Al algorithms integrated into mobile apps can analyze images
captured by smartphone cameras or portable retinal imaging devices, providing immediate
diagnostic feedback.

Teleophthalmology services extend the reach of Al-powered screening by connecting
patients in remote areas with specialists in urban centers [26,91]. Retinal images and other
relevant data are transmitted to centralized Al systems for analysis. The results are then
reviewed by ophthalmologists who can provide detailed assessments and recommenda-
tions [8,90]. This model has been successfully implemented in various regions, significantly
reducing the barriers to accessing specialized eye care.

In many parts of the world, there is a shortage of trained ophthalmologists, and
patients in rural or underserved areas often face long travel distances to receive care. Al-
driven screening tools can bridge this gap by providing accurate and timely diagnoses at the
point of care [84,87]. One notable example is the implementation of Al screening programs
in India, where DR is a major public health concern [45,47,92]. Al-powered systems have
been integrated into primary care settings, allowing healthcare workers to screen patients
and refer those with positive findings to specialized eye care centers [22,84,91]. This
approach has significantly increased the detection rates of DR and reduced the burden on
tertiary care centers.

The automation of routine screening tasks through Al not only improves efficiency but
also reduces healthcare costs by reducing the need for unnecessary referrals and follow-up
visits [21,71,89]. By accurately identifying patients who need further evaluation, Al systems
help ensure that healthcare resources are used more effectively. This targeted approach
minimizes the financial burden on both healthcare systems and patients. Furthermore,
Al-powered screening programs can integrate with electronic health records (EHR) systems,
streamlining the documentation and management of patient data [22,71]. Automated data
entry and analysis reduce administrative workloads, allowing healthcare providers to
allocate more time to patient care.

The real-world application of Al in ophthalmology service delivery has yielded nu-
merous success stories. For example, the EyePACS program in the United States uses Al to
screen for DR in underserved populations [26,93]. This program has successfully screened
millions of patients, identifying those at risk and facilitating timely treatment. The Al
system used in EyePACS has demonstrated high accuracy, comparable to that of human
graders, highlighting the potential of Al to enhance screening programs on a large scale [42].
Another success story comes from the United Kingdom, where the National Health Service
(NHS) has implemented Al-powered screening for DR [8,23]. The Al system analyzes
retinal images and flags those that require further review by an ophthalmologist. This
approach has improved the efficiency of the screening process and ensured that patients
with sight-threatening retinopathy receive prompt care.

5.2. Workflow Optimization

Al is significantly enhancing workflow optimization in ophthalmology by automating
routine tasks, such as image analysis and patient triage [9,84,94]. This not only improves
efficiency but also allows ophthalmologists to focus on more complex cases, ultimately
enhancing overall service delivery. One of the key areas where Al is making a substan-
tial impact is in the automation of routine tasks. Image analysis, a critical component
of ophthalmic diagnostics, can be time-consuming and labor-intensive. Al algorithms,
particularly those based on deep learning, can analyze large volumes of imaging data
quickly and accurately [4,73].
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By automating image analysis, Al significantly reduces the workload of ophthalmolo-
gists and technicians [1,84]. This not only speeds up the diagnostic process but also ensures
a high level of consistency and accuracy in the interpretation of imaging data. Studies have
shown that Al algorithms can match or even exceed the diagnostic accuracy of human
experts in detecting various eye conditions [3,12,84,90]. This allows for a more efficient
allocation of human resources, enabling clinicians to dedicate their time and expertise to
more complex and critical cases.

Patient triage is another area where Al is optimizing clinical workflows. Efficient
triage systems are essential for prioritizing patients based on the urgency and severity of
their conditions. Al-driven triage systems use advanced algorithms to analyze patient data,
including medical histories, symptoms, and imaging results, to determine the urgency of
each case [22,71]. This prioritization ensures that patients with severe conditions receive
timely care, reducing the risk of complications and improving overall outcomes. Al-based
triage systems can also provide decision support to clinicians, offering recommendations
on the appropriate course of action for each patient [95].

Al’s ability to streamline clinical workflows extends beyond image analysis and triage.
By integrating with EHR systems, Al can automate various administrative tasks, such as
data entry, documentation, and appointment scheduling [2,21]. This integration enhances
the overall efficiency of clinical operations and reduces the administrative burden on
healthcare providers. For instance, Al algorithms can extract relevant information from
EHRs and populate patient records automatically, ensuring that the data are accurately
recorded and readily available for clinical decision-making. Additionally, Al can optimize
appointment scheduling by predicting no-show rates and adjusting schedules, accordingly,
maximizing the utilization of clinical resources [21].

A notable example of Al optimizing workflow in ophthalmology is its application in
glaucoma management. Glaucoma requires regular monitoring of intraocular pressure,
visual fields, and optic nerve health [16]. Al-driven platforms can automate the analysis
of visual field tests and OCT images, providing consistent and objective assessments [63].
These platforms can detect subtle changes in the optic nerve head and retinal nerve fiber
layer, which are critical for early diagnosis and monitoring of glaucoma [17,64]. Moreover,
Al systems can integrate data from multiple sources to provide a comprehensive risk
assessment for each patient [22,73]. For example, combining IOP measurements, visual
field data, and OCT results, Al can predict the risk of glaucoma progression and recom-
mend personalized monitoring and treatment plans. This approach not only enhances the
efficiency of clinical workflows but also improves patient outcomes by enabling early and
targeted interventions.

6. Challenges and Ethical Considerations
6.1. Data Privacy and Security

The integration of Al in ophthalmology brings significant benefits but also raises criti-
cal concerns about data privacy and security. The confidentiality and integrity of patient
data must be maintained to ensure trust and compliance with regulatory standards. This
section explores the challenges associated with data privacy and security in Al-driven
ophthalmology and the measures needed to address these issues. One of the primary
concerns in Al-driven ophthalmology is ensuring that patient data remain confidential and
secure [96,97]. Al systems often require access to large datasets, including retinal images,
medical histories, and demographic information, to train algorithms and improve diagnos-
tic accuracy [21]. The collection, storage, and processing of this sensitive information pose
significant privacy risks. To ensure data confidentiality, robust encryption methods must
be employed both in transit and at rest [97]. This means that data should be encrypted
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when they are being transmitted over networks and when they are stored in databases. En-
cryption ensures that unauthorized parties cannot access or tamper with the data, thereby
maintaining its integrity [98]. Additionally, access controls must be strictly enforced to
ensure that only authorized personnel can access sensitive patient data. This includes
implementing multi-factor authentication (MFA) and role-based access control (RBAC) to
limit access based on the user’s role and necessity. Regular audits and monitoring of access
logs are also essential to detect and respond to unauthorized access attempts promptly [99].

Robust data governance frameworks are crucial for protecting sensitive information
and ensuring compliance with regulatory standards, such as the General Data Protection
Regulation (GDPR) in Europe, the Health Insurance Portability and Accountability Act
(HIPAA) in the United States, and other national data protection laws [100,101]. These
frameworks provide guidelines and policies for data collection, storage, processing, and
sharing, ensuring that patient data are handled ethically and legally. Key components of an
effective data governance framework include data minimization, data anonymization, data
retention policies, consent management, and transparency and accountability [102,103].
Data minimization involves collecting only the data necessary for specific Al applications
to reduce the risk of exposure [104]. Data anonymization involves removing or masking
personally identifiable information (PII) to protect patient privacy while allowing for data
analysis [105,106]. Data retention policies establish clear guidelines on how long data
should be retained and ensure their secure disposal when no longer needed [107]. Consent
management ensures that patients provide informed consent for the use of their data, with
clear explanations of how it will be used and the benefits and risks involved [108].

Compliance with regulatory standards is essential for maintaining trust and ensuring
that Al applications in ophthalmology adhere to legal and ethical guidelines. Regulations
such as GDPR and HIPAA set stringent requirements for data protection, including the
rights of individuals to access, correct, and delete their data, and the obligation of orga-
nizations to report data breaches promptly [100,101]. To comply with these standards,
organizations must implement comprehensive data protection measures. These measures
include conducting Data Protection Impact Assessments (DPIAs) to identify and mitigate
potential privacy risks associated with Al applications; establishing breach notification pro-
cedures to detect, report, and respond to data breaches in a timely manner [109]; ensuring
staff training and awareness in data protection principles and practices; and managing
vendors to ensure that third-party vendors and partners comply with data protection
standards and contractual obligations to safeguard patient data [110].

6.2. Bias and Fairness

Al algorithms, despite their transformative potential in ophthalmology, can inadver-
tently introduce biases that lead to disparities in patient care [111]. The primary sources
of bias in Al systems include the training data, algorithm design, and operational imple-
mentation. Training data bias occurs when the datasets used are not representative of the
broader population, such as a retinal image dataset dominated by images from a single
demographic group, which may result in algorithms that perform inadequately on other
demographic groups [111,112]. Algorithm design bias can stem from developer decisions
regarding feature selection, model architecture, and hyperparameter tuning. Operational
bias arises during the deployment and use of Al systems, where the interaction with clinical
workflows and the interpretation of Al outputs by healthcare providers may introduce
unintended biases [113].

To ensure fairness and generalizability in AI models, it is imperative to develop and
validate these models using diverse and representative datasets. In ophthalmology, this
means including retinal images from patients with diverse skin tones, ages, and underlying
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health conditions [114]. Bias detection and mitigation techniques should be employed
during the training process to identify and address biases [112,114]. Fairness metrics can
be used to assess the performance of Al models across different subgroups, and techniques
such as reweighting or resampling data, adversarial debiasing methods, and incorporating
fairness constraints in training can help reduce bias [112,115].

Robust validation of AI models on independent and diverse datasets not used during
training is essential to ensure these models generalize well to new, unseen data. This in-
volves using cross-validation techniques and conducting external validation studies to test
the model’s performance across various population groups [116]. Continuous monitoring
and updating of Al systems are necessary to maintain their fairness and reliability over
time [117]. This ongoing process helps to identify new biases as they emerge and adjust the
models accordingly.

6.3. Integration into Clinical Practice

Integrating Al into existing clinical workflows in ophthalmology poses several chal-
lenges, particularly concerning interoperability and user acceptance. For Al tools to be
effectively utilized, they must seamlessly integrate with the current healthcare infrastruc-
ture, including EHRs and other clinical systems [22,71]. This requires robust interoperability
standards to ensure that Al systems can communicate and exchange data with these existing
platforms without disruption.

One of the primary hurdles in integrating Al into clinical practice is ensuring that
healthcare professionals are adequately trained to use these tools. This involves not only
technical training but also educating clinicians on the benefits and limitations of Al sys-
tems [71,74,118,119]. By providing comprehensive training programs, healthcare organi-
zations can help clinicians become proficient in using Al tools, thereby improving user
acceptance and confidence in these technologies [71,118]. Addressing concerns about job
displacement is also critical. Al should be positioned as a tool that enhances the capabilities
of healthcare professionals rather than replacing them [71]. By automating routine tasks
and providing decision support, Al can free up clinicians to focus on more complex and
patient-centric activities, ultimately improving patient care.

Successful implementation of Al in ophthalmology requires collaborative efforts
between technologists and clinicians [84]. This collaboration is essential for designing Al
solutions that are both user-friendly and clinically relevant. Clinicians can provide valuable
insights into the practical challenges and needs of clinical practice, while technologists can
offer expertise in developing sophisticated Al algorithms and systems [84,120]. Together,
they can create Al tools that fit seamlessly into clinical workflows and address real-world
clinical problems. For example, incorporating feedback from ophthalmologists during the
development phase can lead to the creation of Al tools that are intuitive and tailored to the
specific needs of eye care.

Furthermore, it is important to engage in continuous dialogue with all stakeholders,
including patients, to ensure that Al systems meet their needs and expectations [22,121,122].
Patient education and transparency about how Al is used in their care can enhance trust
and acceptance [123]. By fostering a culture of collaboration and open communication,
healthcare organizations can facilitate the integration of Al into clinical practice, ensuring
that these technologies are embraced and effectively utilized to enhance patient outcomes.

7. Future Directions
7.1. Enhanced AI Models

The future of Al in ophthalmology lies in the development of more sophisticated
models capable of handling multimodal data, which include not only imaging data but also
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genetic information, patient histories, and other relevant clinical data. Such comprehensive
models have the potential to revolutionize our understanding of disease mechanisms and
enhance the precision of treatment responses. One promising direction for future research is
the integration of genetic data with traditional imaging and clinical data [124]. By combin-
ing these diverse data types, Al models can offer a more holistic view of a patient’s health,
potentially identifying genetic predispositions to certain eye diseases and predicting how
these conditions might progress over time. For instance, incorporating genetic information
could help identify patients at higher risk for conditions like AMD or DR long before
clinical symptoms appear, allowing for earlier and more targeted interventions [42,52].
Additionally, leveraging patient history data, including previous treatments, outcomes, and
other health conditions, can further refine Al models. This approach enables the creation
of personalized treatment plans that account for a patient’s unique medical background,
improving the accuracy and effectiveness of care. For example, in managing glaucoma, an
Al system that considers a patient’s comprehensive medical history could better predict
disease progression and suggest personalized treatment adjustments, enhancing overall
patient outcomes [64].

Developing advanced Al models will require collaboration across multiple disci-
plines [125], including ophthalmology, genetics, bioinformatics, and computer science.
Researchers will need to address several technical challenges, such as ensuring data in-
teroperability, managing large and complex datasets, and developing algorithms that can
seamlessly integrate and analyze multimodal data. Moreover, ethical considerations, such
as patient consent for the use of genetic data and the potential for genetic discrimination,
must be carefully managed to ensure patient trust and regulatory compliance. By focusing
on these future directions, the field of ophthalmology can harness Al’s full potential, leading
to more precise diagnoses, personalized treatments, and, ultimately, better patient out-
comes. As Al models become increasingly sophisticated and capable of integrating diverse
data sources, they will play a crucial role in advancing ophthalmic care and research.

7.2. Global Health Initiatives

Al-driven teleophthalmology services hold immense potential for addressing global
eye health challenges, particularly in low-resource settings. These services leverage Al tech-
nologies to screen for and diagnose eye diseases remotely, thereby overcoming geographical
and infrastructural barriers that often limit access to quality eye care. By expanding the
reach of teleophthalmology, Al can play a pivotal role in improving eye health outcomes
on a global scale. In low-resource settings, the scarcity of trained ophthalmologists and
advanced medical facilities significantly hampers the delivery of eye care. Al-driven
teleophthalmology can mitigate these issues by providing accurate, real-time screening
and diagnostic capabilities via mobile devices and internet platforms. For instance, Al
algorithms can analyze retinal images taken with portable fundus cameras and identify
signs of DR, glaucoma, or other eye conditions with high accuracy. Patients in remote areas
can then receive timely referrals and follow-up care, which is critical for preventing vision
loss and managing chronic eye diseases.

To effectively deploy Al solutions in low-resource settings, collaborative efforts be-
tween governments, NGOs, and technology companies are essential. Governments can play
a crucial role by creating supportive policies and frameworks that facilitate the integration
of Alin healthcare systems [126]. This includes investing in digital infrastructure, ensuring
data privacy and security, and providing funding for Al-based health initiatives. NGOs,
which often work on the ground in underserved communities, can help implement and
scale Al-driven teleophthalmology programs. Their deep understanding of local health
challenges and trust within the communities they serve make them valuable partners in
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these initiatives. NGOs can assist in training local healthcare workers to use Al tools, raising
awareness about the importance of eye health, and facilitating the logistics of teleophthal-
mology services. Technology companies bring the necessary expertise in Al development
and deployment. By collaborating with healthcare providers and NGOs, they can tailor
Al solutions to meet the specific needs of different populations. For example, companies
can develop user-friendly Al applications that are accessible to healthcare workers with
varying levels of technical expertise. Moreover, these companies can provide ongoing
technical support and updates to ensure that Al systems remain effective and up to date
with the latest medical standards and practices.

The expansion of Al-driven teleophthalmology services can significantly improve
access to quality eye care worldwide. In regions where traditional healthcare infrastructure
is lacking, these services offer a practical and scalable solution to bridge the gap. For
example, in rural and underserved urban areas, Al-powered mobile clinics can provide
essential eye care services, reducing the burden of travel for patients and making it easier
for them to receive timely and effective treatment. Furthermore, by enabling early de-
tection and intervention, Al-driven teleophthalmology can help reduce the prevalence of
preventable blindness and vision impairment. Early diagnosis of conditions such as DR or
glaucoma can lead to better management and treatment outcomes, ultimately preserving
vision and enhancing the quality of life for patients. This proactive approach not only
benefits individual patients but also alleviates the broader economic and social burden
associated with vision loss.

8. Limitations of the Review

While this narrative review provides a comprehensive overview of current Al appli-
cations in ophthalmology, it has several limitations. First, due to language constraints,
only articles published in English were included, which may have led to the exclusion of
relevant studies from key regions such as Europe, China, and India where Al research is
rapidly emerging. Although modern translation tools (e.g., Google Translate) are available,
their use was not employed in this review, potentially limiting the scope of the evidence
considered. Second, as a narrative review, the quality of the included articles was not
formally evaluated using systematic criteria such as a PICO strategy, which is essential
for assessing the strength of evidence in systematic reviews. Consequently, the conclu-
sions drawn from this review may lack the rigorous quality appraisal that is necessary for
evidence-based practice. Future work should consider incorporating non-English literature
and employing systematic quality assessment methods to further enhance the robustness
and generalizability of the findings.

9. Conclusions

Al is poised to revolutionize ophthalmology by enhancing diagnostic accuracy, person-
alizing treatment, and improving service delivery. The application of Al in ophthalmology
encompasses a wide range of innovations, from advanced diagnostic tools that can detect
conditions like DR, age-related macular degeneration, and glaucoma with remarkable
precision to personalized treatment plans that optimize therapeutic outcomes and reduce
costs. Additionally, Al-driven surgical tools and teleophthalmology services are mak-
ing high-quality eye care more accessible, particularly in underserved and remote areas.
Despite these promising advancements, several challenges need to be addressed to fully in-
tegrate Al into ophthalmic practice. Data privacy and security remain paramount concerns,
necessitating robust encryption methods, stringent access controls, and comprehensive
data governance frameworks. Addressing algorithmic biases is also crucial to ensure that
Al systems provide equitable care across diverse patient populations. Furthermore, inter-
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operability issues and the need for user acceptance highlight the importance of training
healthcare professionals and designing user-friendly Al solutions.

The potential benefits of Al in ophthalmology are immense. By continuing to invest
in research and development, fostering ethical practices, and encouraging collaborative
efforts between technologists, clinicians, and policymakers, the ophthalmic community can
overcome these challenges. Such collaborative efforts are essential to develop and deploy
Al systems that are both effective and ethically sound. As Al technology evolves, it holds
the promise of transforming ophthalmic care, leading to better patient outcomes, more
efficient clinical workflows, and broader access to high-quality eye care services globally.
By harnessing the power of Al, we can make significant strides toward improving vision
health and preventing blindness on a global scale.
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