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Abstract

Plants and arbuscular mycorrhizal fungi have co-evolved over a period of at least 450 million years.

This fungal-plant association involves the transfer of carbon to the obligate biotropic fungus, in return

for a wide range of beneficial functions. Although this is usually a mutualistic relationship, it can

become parasitic to the plant under adverse conditions. Here, the research examining mechanisms

by which mycorrhizal associations improve plant fitness is reviewed. Although there is strong

evidence that a number of beneficial functions are performed by mycorrhizae, the mechanisms

behind these are often not clear. There are numerous factors which influence these mechanisms and

their outcomes, one or more of which can be affecting the association simultaneously. The

knowledge we have on arbusular mycorrhizal associations with plants could be applied to various

land management practices in order to improve soil degradation brought about by anthropogenic

activities. These include erosion, drought, nutrient stress and salinization, and are often a result of

poor land management. In order to use mycorrhizal fungi as a biomanagement tool, more research is

required, particularly in mature field communities over long timescales. There is a need to invest in

the development of sustainable agroecological management methods and to design future policy and

legislation that encourages large organizations to incorporate more sustainable practices whilst

protecting small-scale farmers.

Keywords: Arbuscular, Mycorrhizal, Fungi, Agroecology, Agriculture, Plant nutrition

Review Methodology: The following databases were searched for research articles and review papers: ISI Web of Knowledge,

Google Scholar and CAB Abstracts. Topic-specific search terms were used in searches. References cited in the articles obtained

by this method were used to check for additional relevant material.

Introduction

One gram of agricultural soil can contain millions of

beneficial microorganisms, which improve soil fertility,

including bacteria, algae and fungi [1]. In 1981, Jenkinson

and Ladd [1] made a conservative estimate that all soil

microorganisms constitute a biomass of 500 kg of C per

hectare. A more recent study [2] found that fungi account

for a fresh biomass of 4000 kg per hectare of temperate

pasture soil – greater than bacteria and algae combined.

Not only are fungi abundant in the soil – they are also

hugely diverse. The vast diversity of soil fungi has interested

researchers since Fries [3] suggested in 1825 that fungi

may be as speciose as insects, thereby suggesting a figure

of over 140 000 species. A generally accepted estimate of

1.5 million species was made by Hawksworth [4], although

other studies have suggested that this may be a vast

underestimate, with values of up to 9.9 million being

given [5].

Fungi established a symbiotic relationship with the root

organs in plants of nearly all terrestrial plant ecosystems

worldwide [6, 7], and involve up to 80% of all plant families

and approximately 150 fungal species [8]. Of the six groups

of mycorrhizal fungi – arbuscular, arbutoid, ecto, ericoid,

monoptropoid and orchid [6, 9] – arbusuclar mycorrhizal

fungi (AMF)–plant interactions are the most common

[7, 10, 11] and these are the most prevalent soil

microorganisms in natural and agricultural soils [12]. This

interaction is thought to date back at least 450 million years,

over which time AMF have become obligate biotrophs
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as they have lost the ability to capture carbon without

associating with a plant host [10, 11, 13, 14].

In order to form associations between the soil and the

internal structure of the host species, AMF use hyphae –

branching threadlike filaments, which make up the

mycelium – to proliferate throughout the upper soil

horizons and link plants [15–17]. During symbiotic

association with a host plant, nutrients are exchanged

from fungus to plant in branched, tree-like dichotomous

structures formed within plant root cortex cells, called

arbuscules [15, 17–20]. These structures transfer nutrients

in exchange for carbon through a bidirectional mutualism

[10, 21–23], where 5–10% of the host carbon is extracted

by AMF [24], thus providing a benefit of host association for

the fungus [16]. In return AMF can provide numerous

beneficial functions for the host, some examples of which

being increased nutrient acquisition [21, 25], improved

water relations [26–29], protection from pathogens [30]

and sequestration of heavy meals [31, 32], amongst many

others. However, it is unclear what factors determine

either the relative importance of each function to the plant

or which of the aforementioned functions AMF is able to

provide in any given situation [33, 34].

Although there is evidence for some host or AMF

specificity in AMF–plant relationships, this is not always the

case [22, 35–39]. Despite such associations usually being

mutualistic (beneficial to both), there is evidence that it

can be commensalistic (neither favourable nor detrimental

to the two individuals), ammenalistic (one species is

inhibited whilst the other is not affected) or even parasitic

(advantageous to one individual while having a negative

effect on the other [39, 40]. For example, Campos-Soriano

[41] found that AMF may have evolved the capacity to

evade plant defence mechanisms under conditions where

plants are not benefiting from an association, whilst keeping

the same functionality.

The mechanisms behind the potentially beneficial func-

tions of AMF–-plant associations for plant health and

nutrition are discussed below. The degree to which the

current literature provides a comprehensive understanding

of these processes and the factors which affect them is

reviewed. Moreover, the importance of each function in

terms of land management is debated. Finally, the impli-

cations of these findings with respect to future research and

land management are argued.

The Common Mycelial Network and Implications

for Plant Community Structure

Biodiversity insures ecosystems against declines in pro-

ductivity by retaining or increasing species diversity – the

greater the variety within a community, the more chance

there is that the community will continue to function even

if some species can no longer survive in the environment

[42]. Species diversity can provide important genetic

resources, particularly in environments, which exhibit

high genetic diversity, such as semi-natural grasslands

[43, 44].

Plant community structure can affect diversity of AMF

communities [45, 46]. However, mycorrhizal fungi can also

alter plant competition and therefore community structure

through a ‘common mycelial network’ of hyphae linking

many plants in one community [35, 47–50]. This concept

has been described as the ‘wood-wide web’, where

nutrients can flow between parts of the fungi, and

potentially between plants [7, 51]. As a result, plant–plant

competition for nutrients may be mediated, at least to a

degree, through improved nutrient transfer via the

common mycelial network [52–55]. Therefore, microbial

soil communities have been described as a driver of plant

community dynamics [10], where it is a key mechanism for

linking biodiversity and ecosystem functioning and may

increase plant biodiversity [56, 57]. However, the degree to

which a CMN is beneficial to a host plant is species-

dependant [45, 48, 55], and this network may allow for

‘cheater’ species to obtain benefits of the common mycelial

network without investing significant amounts of carbon

[54, 58].

Soil Erosion

Land degradation is recognized as one of the most

important global environmental issues, particularly in arid

and semi-arid regions. This degradation is a result of

numerous climatic and anthropogenic factors, including

erosion, drought, nutrient stress and salinization, and often

as a result of poor land management [15, 59, 60]. The loss

of agricultural productivity due to soil erosion costs the UK

E9.99 million annually alone [61]. The network of

mycorrhizal hyphae can improve soil stability by binding it

through ‘sticky’ secretions of glomalin, a proteinaceous

substance [62–64], creating an entanglement of micro-

aggregates, which leads to macroaggregate formation [59].

This creates a macroporous soil structure which allows

water and air to penetrate and reduces erosion [65–67].

As a result, AMF are thought to be the most important

factor affecting soil aggregation [40, 62] and are crucial for

soil conservation [68, 69].

The complex network of hyphae produced by AMF can

equate to up to 30 m of hyphae per 1 g of soil [70, 71],

making a significant contribution to the total fungal biomass

in soil [72]. AMF hyphae act as an extension of the plant’s

own root structure, taking over the role of plant root

hairs and creating a more branched root system [73, 74].

These fungal hyphae positively influence ecosystem

services associated with the below-ground structure,

functioning and carbon sequestration, where a high below-

ground biomass results in higher ecosystem stability [75].

Numerous studies have shown that a greater abundance of

plant roots and mycorrhizae results in higher carbon

sequestration [71, 76, 77]. This can mitigate negative

effects of climate change from CO2 emissions [78, 79].
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However, a greater understanding of the processes

underlying C sequestration is required in order to under-

stand its potential on a global scale. Then, long-term effects

of AMF on carbon storage can be modelled [80].

AMF can be significantly reduced – or lost altogether –

under conditions of land degradation. This could be

through changes in vegetation composition (due to

deforestation, agriculture or revegetation) or through

agricultural practices such as tillage reducing the inoculum

potential [45, 46, 81, 82]. The abundance and diversity of

AMF propagules will decrease over time in degraded soils,

where plant hosts rely on being colonized by AMF with

long-surviving spores [83]. However, the AMF abundance

and diversity can be rapidly restored in these soils through

transplanting seedlings already colonized by AMF and

managed revegetation [60]. The recovery of these AMF

communities in highly degraded or desertified ecosystems

is essential to successful restoration.

Nutrient Cycling

As a global ecosystem service, the benefits associated

with nutrient cycling were valued at US$2.3 trillion in 1997

[84], although a revised version of this study suggests that

this may be a gross underestimation [85]. Agricultural

management practices often include significant additions

of fertilizers, herbicides and pesticides, which have been

shown to reduce mycorrhizal functioning [86–92].

Although studies estimating phosphate reserves vary

widely [93] the some estimates suggest that our global

phosphate resources could be exhausted within the next

100 years [94]. A review by Berruti et al. [95] found that

AMF could be used as a biomanagement tool, where crops

inoculated with AMF required 80% less phosphate fertilizer

to produce the same yield. Tawaraya et al. [96] also found

that the use of AMF combined with lower phosphate

application was significantly cheaper per hectare than

traditional phosphate fertilizer applications, and therefore

is an economically viable option.

The majority of research investigating mycorrhizal fungi

has focused on their ability to improve nutrient uptake,

particularly of phosphorus [21]. This is because the

enhanced availability of nutrients, chiefly phosphorus and

nitrogen, is considered the most important function

provided by mycorrhizal fungi [10]. Plants rely on AMF

for the capture and transfer of soil nutrients through

processes of weathering, dissolution and cycling of mineral

nutrients and from mobilization of nutrients from organic

substances [97]. Up to 90% of plant P and 20% of plant N

can be provided by AMF [98]. However, if the soil-N or

soil-P availability rises, plants will allocate less carbon to

mycorrhizae as they are less reliant on the fungi for their

nutrient acquisition, and mycorrhizal abundance will

decline [10, 99].

Phosphorus is a major macronutrient required by plants

for numerous processes related to plant growth, seed

formation and fruit, vegetable and grain quality [100].

Plant-soluble forms of phosphorus, such as phosphate, are

very limited in soil [10, 101], making phosphorus availability

the most limiting factor for crop yield in 30–40% of arable

soils [102, 103]. The inorganic phosphate that is available is

rapidly absorbed by plant roots, resulting in a ‘phosphorus

depletion zone’ surrounding the root. AMF can bypass

this zone by proliferating in soil which plant roots are unable

to reach – a mechanism, which is particularly important in

P-limited soils [10, 16, 98, 104]. Conversely, in conditions

where plants are not phosphorus-stressed, colonization

and growth of mycorrhizal fungi decreases as the AMF

association becomes less beneficial to the plant [105].

Nitrogen is an essential component in chlorophyll

and plant proteins and is required for cell division [100].

AMF transfer a significant proportion of N to the plant

[106, 107], and have been shown to increase plant

utilization of nitrogen [10, 108]. As with phosphorus,

mycorrhizae can proliferate decomposing patches of

organic matter which plant roots are unable to reach and

transfer inorganic N to plant roots via the mycelium in

exchange for carbon [10, 109]. Although AMF association

mainly involves transfer of ammonium, AMF can also

assimilate nitrate and amino acids to the plant [110, 111].

Salinization

It has been estimated that between 45 and 77 million

hectares of agricultural land are affected by salinity or

sodicity stress globally [112, 113] and salinization of arable

land is expected to lead to up to 30% land loss within the

next 25 years and 50% by 2050 [114–117]. In saline or

sodic soils, poor drainage results in the accumulation of salt

on the soil surface, negatively affecting plant growth.

Increased concentrations of sodium and chlorine and a

reduction in potassium, calcium, phosphate and nitrate

result in water and nutritional stress [118].

Although extreme saline or sodic soils have been found

to delay spore abundance reduce colonization rate and

decrease effectiveness of some mycorrhizal associations

with plants [119–121], many AMF species are found

naturally in saline soils [122]. A recent meta-analysis of

studies analysing the effects of mycorrhizal fungi on

salt-stressed plants found an overwhelmingly positive

response of salt-stressed plants to AMF inoculation [123].

Total yield, flower count, tiller count, leaf area, root fresh

weight, shoot length, fruit fresh weight, leaf weight, leaf

count, total dry weight, leaf dry weight, shoot fresh weight,

biomass yield, fruit count, plant height, root length, grain

yield, stem diameter, fruit dry weight, shoot dry weight,

root dry weight, stem weight, grain count, total seed weight

and root:shoot ratio were all significantly higher for AMF-

inoculated plants. Only two variables – shoot:root ratio and

shoot growth – showed a significant negative effect.

Numerous mechanisms have been proposed to explain

how AMF alleviate salt stress, and many of these
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mechanisms may occur simultaneously to improve plant

tolerance in saline conditions. AMF can enhance nutrient

uptake [124–126] and improve rhizospheric and soil

conditions [127]. They can reduce production of plant

hormones that slow growth, such as ABA [128], accumu-

late compatible solutes [129] and produce higher levels of

antioxidant enzymes [117, 130]. AMF can increase plant

chlorophyll concentration [117, 131–133], increase photo-

synthetic activity [117, 125, 134] and improve water use

efficiency and osmotic adjustment at low water potential

[117, 131, 135, 136]. Additionally, changes at the cell level,

in membranes and cell wall elasticity, have been recorded

[137, 138].

Water Relations

Salinity, drought and increasing temperatures are inter-

linked as these factors all affect the osmostic component of

the plant [139, 140]. They are also the most common

abiotic stresses affecting crop plants [29, 141]. Humans

intercept approximately 60% of water run-off following

precipitation, and use 80% of this for agriculture [142].

There has been recent attention on the potential role of

AMF to reverse soil degradation in arid and semi-arid areas

through improvement of soil quality and subsequent

revegetation of land [59, 143, 144].

One of the main processes by which AMF improve

water relations under drought conditions is through the

secretion of glomalin, a glycoprotein, which can stabilize

soil aggregates and therefore increase water retention

[63, 145, 146]. However, mycorrhizal fungi are also able to

improve water relations directly through transporting

water to the plant via fungal hyphae in areas of soil

inaccessible to plant roots [97, 147] subsequently improv-

ing stomatal control and reducing transpiration rates

[135, 147, 148]. The extensive nature of the hyphal

network not only leads to greater proliferation into

previously inaccessible patches of soil, but also results in

a larger surface area for absorption of water (and nutrients)

and greater longevity of absorption [149–151]. There

is evidence that mycorrhizal hyphae promote plant

root development, which leads to improve water uptake

[28, 152]. AMF can stimulate the expression of aquaporins

– proteinic channels, which facilitate passive water flow and

are responsible for cytosolic osmoregulation and water

transport [29, 141, 148, 153]. AMF have been shown to

increase plant root hydraulic conductivity and to improve

water use efficiency via increased nutrient uptake, resulting

in more drought-resistant plants [28, 29, 154–157].

Protection Against Soil and Above-ground

Organisms

In the USA, the annual cost to agriculture due to

nonindigenous species of plants, animals and microbes

was in excess of US$138 billion annually [158]. Soil-borne

pathogens such as nematodes and pathogenic fungi cause

significant damage to plants with a high economic impor-

tance, such as agricultural crops [158–161]. In order to

reduce the negative effects of plant–pathogen interactions,

plants exhibit numerous defence responses, which are

brought about by their association with a fungal partner.

Cell wall thickening occurs when the plant increases

synthesis of chitinases and glucanases [162, 163] and the

plant can produce a biochemical response, which can alter

root structure and exudate composition [164, 165]. Direct

competition with root pathogens for colonization sites and

altered soil biota may also reduce the negative effects of

pathogens on plants [21, 30, 166, 167]. However, recent

research has suggested that competition for colonization

sites is not the main mechanism by which AMF inhibits

soil-borne pathogens [168]. It is likely that there is a

cumulative effect from improvement of plant nutrition and

from increased resistance through AMF-induced plant

defence responses [30], which drives plant pathogen

resistance under AMF innoculation.

Biotic reactions among plants and microorganisms

below-ground may be equally – if not more – significant

than above-ground reactions in determining the outcome

of competition between plant species [40, 169–171].

Pineda et al. [171] suggested that it is now widely accepted

that ‘plant interactions belowground orchestrate a cascade

of events that affects the interactions of plants with

organisms that live aboveground, and vice versa’.

Above-ground ecosystems have tended to be considered

separate from below-ground ecosystems [172], however

there has been recent increased interest in the interaction

between soil organisms and above-ground organisms.

There is evidence to suggest that fungi may trigger an

indirect plant defence response against herbivores, and vice

versa [173–176] since plant defence response to insect

predation is not limited to the roots and can result

in accumulation of anti-feedant compounds in shoots

[126, 127] and up-regulation of genes associated with

plant defence [177, 178]. However, AMF is not entirely

selfless in its mechanisms of protection: removal of above-

ground biomass by herbivores can suppress AMF by

altering the plant carbon allocation due to preferential

allocation of carbon to other plant parts rather than plant

roots [179].

The effects of mycorrhizal colonization vary depending

on the organism attacking the plant. For example, a

meta-analysis of insect herbivores found that chewing

insects and leaf miners were not significantly affected by

mycorrhizal colonization, whereas mycorrhizae positively

affected sucking insects and negatively affected gall-forming

insects [180]. Pozo et al. [177] suggested that generalist

insects are more strongly affected by plant defence

responses than specialists, which can evade these mechan-

isms. When there is a positive outcome, effects have been

linked to improved plant palatability, whereas negative

effects are associated with reduced palatability or plant
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defence responses [181]. However, a recent meta-analysis

found that studies need to consider the three-way

interactions between plants, microbes and insects. For

instance, insects may affect the abundance, susceptibility

or accessibility of plants to microbial symbionts and the

plant–microbe interactions. Similarly, plants may alter

insect–microbe interactions through alterations in food

quality for herbivore or susceptibility of insects to plant

pathogens [174].

As a result of fungi-induced plant protection, Gianinazzi

and Gianinazzi-Pearson [182] described mycorrhizal fungi

as ‘health insurance’ for plants. As a result, mycorrhizal

fungi could be used as a biocontrol agent to reduce negative

effects of soil and above-ground organisms on plants

[174, 183–186]. A review of current literature found that

mycorrhiza-induced biocontrol was enhanced under con-

ditions of abiotic stress such as drought, nutrient limitation

and salinity, therefore mycorrhizal associations may

become more important over time as biotic and abiotic

stresses on plants are expected to increase [187].

However, their actual use as a biological control agent is

still limited as success varies depending on the AMF isolate,

pathogen, plant and environmental conditions [188, 189].

More research is required to develop a comprehensive

understanding of the potential role of AMF.

Remediation of Heavy-metal Contaminated Soils

In natural conditions, heavy metals are found at low

concentrations in rock and soils, posing no significant

environmental risk [190]. Many heavy metals are required

by plants in small concentrations in order to act as enzyme

cofactors or to maintain a functional plant metabolism;

however, some heavy metals such as cadmium have no

known benefit to plants [191–193]. High concentrations of

heavy metals can result in reduced plant growth, changes to

mineral concentrations in plant tissues, root browning and

altered photosynthesis [194]. Heavy metal contamination

of soils has increased due to industrial and agricultural

practices such as mining, smelting, industrial effluents,

manufacturing and processing of goods, and addition of

natural and synthesized fertilizers in agriculture [18].

A number of remediation technologies exist to treat

contaminated soils, such as excavation and subsequent land

fill, thermal treatment, electro reclamation, soil washing,

vitrification, acid leaching, evaporation, ion exchange and

solvent extraction [31, 32]. However these methods are

expensive and inefficient, and have been found to negatively

affect numerous soil properties and destroy the majority of

organisms within the soil [31, 32, 195]. Bioremediation is

suggested as a viable alternative [196, 197], particularly

using phytoremediation by plants through phytostabiliza-

tion (stabilizing pollutants through immobilization) phyto-

degradation (plant metabolic processes break down

pollutants) and phytoextraction (pollutants hyperaccumu-

late in plant tissues which are then harvested) [31].

AMF are abundant even in highly degraded soils [198].

Under heavy metal stress, AMF associations resulted in less

uptake of heavy metals in plant tissues, better growth and

internal detoxification of metals [199, 200]. However,

Audet and Charest [201] suggested that the remediation

mechanisms may depend on the heavy metal concentration

in the soil. The production of glomalin, fungal polypho-

sphates, phytochelatins and metallothioneins by AMF could

result in chelation of toxins, reducing the plant-available

heavy metals [202–204]. Fungal colonization can reduce

plant root access to heavy metals due to fungal sheath cover

at the root surface [205], and the large biomass of AMF can

dilute the heavy metal concentration [206]. Fungi may

reduce transport of heavy metals through immobilization

and compartmentalization via absorption into hyphal walls,

reducing concentrations in above-ground plant tissues or

accumulating in hyphal walls in a non-toxic form [206–209].

They have also been found to sequester heavy metals in

plant roots, preventing translocation to shoots [210–213].

The ability to immobilize heavy metals in the fungal

mycelium is thought to be the main protection mechanism

for plants in contaminated soils [208, 214]. Accumulation

of contaminants can also occur through fungal structures

such as arbuscules, vesicles and vacuoles, minimizing

toxicity in the plant itself [191]. Finally, since AMF leads

to enhanced plant nutrition and water availability resulting

in an increase in plant yield, AMF may indirectly dilute

the effects of heavy metals by promoting plant growth

[208, 215].

Increased heavy metal contamination has often been

shown to cause a decrease in mycorrhizal species diversity

[216], spore abundance, colonization rates and growth of

the extraradical mycelium [217]. In some cases AMF has

been completely eradicated under conditions of heavy

metal pollution [218]. However, mycorrhizal communities

are generally able to recover from the initial inhibition as

immobilization limits toxicity and changes in community

structure leads to more tolerant organisms [219]. Effective

use of mycorrhizal fungi in bioremediation requires an

understanding of the AMF species present in the soil at a

given contaminated site, since AMF will vary in their

ecological diversity, functional compatibility with phtore-

mediation plants and sensitivity to heavy metal contami-

nation [31, 200, 220]. Although numerous underlying

mechanisms for improved plant tolerance through AMF

associations have been suggested, these are still poorly

understood and require further research [221].

Plant Yield and Reproductive Structures

A major indicator of plant nutrition and health is yield,

particularly for economically important crop and tree

species. However, it may be more useful to examine the

effects of a stressor on root:shoot ratio, rather than

investigating changes in above- and belowground biomass.

Resource allocation to roots has been shown to regulate
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intensity of formation of mycorrhizal structures and carbon

availability to the fungus [99, 222–224]. Conversely, it has

been suggested that a decrease in mycorrhizal colonization

could lead to a reduction in the amount of carbohydrates

allocated to roots and a reduction in the size of the

common mycelial network [10, 225]. This reduction would

lead to a decrease in the root biomass and thus the root:

shoot ratio [226, 227]. Studies have found that plant

dependence on mycorrhizal fungi may increase as greater

root branching causes more resources to be allocated

below-ground to roots and hyphae [73, 74].

Although biomass is important for a number of plant

species, the effects on reproductive structures, particularly

fruits and seeds, can have a significant effect the horticul-

ture industry, which depends on the formation these

structures. A reduction in allocation to reproductive

structures can negatively affect plant success over multiple

years. However, the effects of AMF association on

reproductive structures do not always mirror the effects

in nutrition and yield [228]. This is because resource

allocation may differ for various plant parts, depending on a

multitude of factors. For example, removal of above-ground

biomass can cause the plant to preferentially allocate

carbon away from the roots to other plant parts, resulting

in altered carbon allocation to AMF [179]. Conversely,

increased growth of plant reproductive structures results in

a greater requirement for resources in order to produce

sufficient branches, leaves and roots [229]. Mycorrhizal

fungi have been shown to affect economically important

plants, for example by improving growth of tomato plants

and mineral nutrient content of fruits [230].

Management Implications

Approximately 925 million people globally are suffering

from malnutrition [231]. Food security is of particular

concern in developing countries, where arid climates and

poor land management have led to low yields, nutrient

deficiencies, soil toxicity and acidity [232]. In Africa, one of

the worst-affected regions, the impacts are substantial: 65%

of arable land, 30% of grazing land and 20% of forests are

already damaged [233].

Agricultural management must incorporate sustainable

practices by respecting natural ecological processes and

supporting long-term productivity [234]. Since the first

‘green revolution’, despite an increased interest in the

use of mutually beneficial soil microorganisms in agriculture

[235], limited attention has been given to the potential

contribution of AMF [236]. Although most agricultural

crops associate with AMF, intensive management tends

to significantly reduce AMF diversity through practices

such as monoculture cropping, tillage and fertilizer addition

[237–240], although this is not always the case [241].

Fertilizer use is no longer an appropriate management

solution to increase nutrient concentrations as this has

become more expensive in recent years and some

fertilizers are running out [94, 242]. A recent review

found that AMF could be used as a biomanagement tool

in order to reduce phosphate fertilizer application by up

to 80% [95, 96]. Yield has been known to increase when

there is a plant–AMF association in stressed environments,

such as nutrient deficiency [95], salinity stress [123] and

heavy metal pollution [215]. The successful use of plants

in soil restoration depends on mycorrhizal associations

[200], and it has been demonstrated that a ‘phyto-

microbial’ approach to soil restoration is an economically

viable option [96].

In addition to revegetation of degraded land, there is

an increasing need to also improve the soil quality

[243, 244]. The multiple benefits associated with mycor-

rhizal fungi ultimately bring about improvements in soil

quality and agricultural productivity in areas experiencing

severe biotic and abiotic stress [245]. Bethlenfalvay and

Linderman [246] stated that ‘the role of AMF may be critical

if agriculture is to return to the state where luxury levels of

farm inputs of fertilizers, pesticides and/or chemicals are

decreased to levels that are still economic, yet do not

pollute the environment or pose health risks to consumers

or handlers’.

In order to incorporate agroecological management

practices such as AMF use on a large scale, numerous

issues first need to be addressed. Agricultural policy,

mainstream trade and land tenure legislation can also no

longer punish smallholder farmers, who are the main

practitioners of agroecology. Further investment is

required to ensure that new approaches to agroecological

management are developed, and future policy and legis-

lation should encourage large organizations to incorporate

more sustainable practices [247]. These agricultural prac-

tices must also be able to strengthen rural communities,

improve livelihood of smallholder farmers, and avoid

negative social and cultural impacts such as the loss of

land tenure and forced migration [248].

Although there have been attempts to develop global

policies and legislation on sustainable use of soils, these

have not been entirely successful: policies either led to

ineffective ‘real-life’ results or were never implemented

due to insufficient international support [249]. Currently,

farmers may use negligent, short-sighted or exploitative

management practices, while policies may be poorly

planned, discriminatory or simply ineffective [250].

In order for mankind to use AMF as a sustainable bio-

management tool to improve degraded soils and reduce

malnutrition, the degree to which resources are invested in

practitioner education and legislation is as important – if

not more so – than investment in research.

Further Research

Although there is a significant body of research on many

of the benefits of AMF for plant nutrition and health, there

are limitations with current research when attempting to
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extrapolate results to real-life conditions. These issues can

be separated into four key points:

(i) Species diversity

Plants are often grown in low-diversity mixtures for use

in pot experiments [180, 251], whereas plant communities

are associated with numerous interacting AMF species

simultaneously in the field, and vice versa [38]. Since both

plants and AMF can preferentially allocate resources to

higher quality partners [50, 99] the outcome of an

experiment is likely to be strongly dependant on the plant

and mycorrhizal species used. Pot experiments have

compared mycorrhizal plants with non-mycorrhizal plants

[195], however since ~80% of terrestrial plants are

associated with mycorrhizal fungi [8] this is not a true

representation of natural conditions. Field-based exper-

iments control AMF in this way by either using fungicide

treatment in non-AMF plots, which rarely leads to a true

‘non-AMF’ treatment, or by comparing natural plots to

those where AMF has been added [252]. These variances in

experimental setup represent a confounding factor for

analysis of treatment differences.

(ii) Scale of experiment

While small-scale pot experiments are useful when

determining specific interactions of mycorrhizal fungi

with a number of biotic and abiotic factors, the outcome

of these experiments could be very different in more

complex systems [34], for example at the community level

in situ. Pot experiments tend to use juvenile plants;

however the benefits of mycorrhizal colonization differs

depending on the age of plant hosts, where young hosts may

receive stronger positive or negative effects from AMF

associations compared with species in mature ecosystems

[53, 253]. The issues with trying to replicate field

conditions in a pot experiment are not limited to issues

with plants. For example, since an insect herbivore is rarely

selected due to a known preference for a given plant

species and mycorrhizal fungi additions, it may not be

an interaction seen under natural conditions [180], there-

fore studies are increasingly placed in a community

context [174].

In field experiments, many factors such as changing

precipitation, irradiation, temperature and small scale soil

properties can confound results [254]. Although pot

experiments allows for numerous factors to be controlled,

edge effects such as elevated temperature and obstruction

can negatively affect plant growth and alter the behaviour of

AMF [255]. Pot size may affect root growth, as a lack

of space may lead to roots being very crowded in the soil

[255, 256]. Nutrient availability can be limiting in pots,

restricting plant growth [255]. The effects of AMF may be

underestimated in pot experiments, since colonization can

be lower when there is a relatively high root density in a

confined pot [252]. One promising approach would be to

match fungal species with their environmental conditions,

for example by tillage regime, soil type, pH or host diversity

[80]. Finally, although individual experiments are useful,

there is a need for ‘big data’ research involving the collation

of large quantities fine-scale field data in order to under-

stand global soil quality [257].

(iii) Duration of experiment

The majority of studies on mycorrhizal effects on plants

have been conducted over one growing season or less,

despite evidence that communities experience phases of

vegetation dominance and adapt to environmental changes

over timescales significantly longer than this – potentially

decades [257–259]. Differences in the duration of the

experiment have also been found to lead to variability in

response to biotic stressors, such as herbivory [260, 261].

Experiments must consider the temporal variability in

abiotic stressors since soil variables such as nutrient

concentration [262] and water content [263] vary over

time, therefore the duration of the experiment will have a

significant impact on the outcome.

(iv) Hierarchies of effects

In order to successfully use AMF to improve degraded

soil or increase agricultural productivity, a better under-

standing of how functional mechanisms differ is necessary

[34]. Since numerous variables may interact with one

another and affect AMF simultaneously, there is a hierarchy

of effects in any given situation depending on the plant

stressor(s). Any given variable is controlled by, and

controls, a number of factors at any one time, so it would

be expected that direct changes in that variable will

influence the effects on other variables, and vice versa

[264]. Studies can show an overall effect on a given variable,

but cannot unequivocally reveal the mechanisms, which

cause community-level changes [265]. Therefore Koide

[266] stated that ‘an understanding of ecologically relevant

traits that determine environmentally context-dependent

interaction hierarchies is the key to elucidating general

principles that structure biological communities’.

Conclusion

AMF receive plant carbon in return for numerous benefits

to plant nutrition and health under conditions of stress.

However the plant–AMF association is not always mutua-

listic, and can be parasitic under environmental conditions,

which are favourable to the plant. These benefits have

implications for a wide range of uses of AMF, particularly as

part of agroecological management practices, which aim to

restore degraded soils, revegetate land and increase plant

yield in a sustainable manner. In order to effectively use

these management methods, further research is required,

which focuses on studies that can be extrapolated to natural

conditions in the field. Although scientific knowledge on the

use of AMF in agriculture is useful, translating this knowl-

edge into effective policies has largely failed, particularly at

the global scale. If agroecological management is to be

successful, advancements need to be made both in our

scientific knowledge of biotechnological uses mycorrhizal

fungi whilst also educating agricultural practitioners

and improving agricultural policy. These policies should

Naomi L. J. Rintoul 7

http://www.cabi.org/cabreviews



encourage large-scale farmers to manage soil sustainably,

whilst allowing the socio-economic status of small-scale

farmers to improve.
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