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Abstract 

Purpose. Isometric exercise (IE) training has been shown to be effective at reducing resting blood 

pressure (BP). However, there is a lack of clarity as to which IE modality is more effective at reducing 

resting BP. Acute responses following a single session of IE have been shown to predict long-term training 

adaptions. It was hypothesised that when using a comparative workload, exercises that recruit more 

muscle mass have a greater proclivity to induce transient reductions in BP than those that use smaller 

amounts of muscle mass. To test this hypothesis, the current study set out to compare the acute 

haemodynamic and autonomic responses following a single session of isometric wall squat (IWS) and 

isometric handgrip (IHG). Method. Twenty-six sedentary participants performed a single IWS and IHG 

session comprised of 4 x 2-min contractions, with 2-min rest, at 95 HRpeak and 30% MVC, respectively. 

Total power spectral density of HR variability and associated low-frequency and high-frequency power 

spectral components were recorded in absolute and normalized units before, during, and 10-min and 1-

hour after each IE session. Heart rate (HR) was recorded via electrocardiography and baroreceptor reflex 

sensitivity via the sequence method. Continuous BP was recorded via the vascular unloading technique 

and stroke volume and cardiac output (Q̇) via impedance cardiography. Total peripheral resistance (TPR) 

was calculated according to Ohm’s law. The change from baseline for each variable was used for 

comparative analysis. Results. During IE, there was a significantly greater increase in systolic BP, diastolic 

BP, mean BP, HR and Q̇ in the IWS condition (all P= <0.001). There was also significantly less TPR during 

IWS exercise (P= 0.006). During the 10-min recovery window, there was a significantly greater reduction 

in systolic BP, diastolic BP, mean BP (all P= 0.005) and TPR (P= <0.001). There were no differences in any 

autonomic variables during recovery, and no differences in any variables 1-hour post exercise. 

Conclusion. Isometric wall squat exercise produces a greater cardiovascular response during exercise, 

with a greater reduction in BP and TPR during a 10-min recovery period. These acute responses may be 

mechanistically linked to the chronic reductions in resting BP reported after IE training interventions. 
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1.0 Introduction 

Hypertension is a major risk factor in the development of a variety of cardiovascular diseases, such as 

coronary artery disease, atrial fibrillation, stroke, and peripheral vascular, and is estimated to affect ~30% 

of the global population, resulting in an estimated 9.4 million deaths a year (Chan, 2013). The substantial 

public health burden that this presents emphasises the need for effective antihypertensive treatments. 

However, although pharmacological treatments have shown to be considerably effective in the battle 

against hypertension, many medications frequently fail to reach clinical targets. Additionally, as few as 

50% of patients adhere to such treatment, for numerous reasons, including harmful side effects (Burnier 

and Egan, 2019). These, together with the economic burden that antihypertensive medications inflict on 

health services, places great emphasis on the need for a more patient friendly and sustainable approach 

to dealing with hypertension (Wang et al., 2017).  

A pragmatic solution that has been put forward to solve this health epidemic is the use of alternative 

lifestyle modification treatments, which are a widely recommended approach to reduce resting blood 

pressure (BP) (Brook et al., 2013). Such treatments include weight loss, following a healthy diet, and 

exercise/physical activity, all of which have no harmful side effects and are relatively low in cost 

(Ndanuko et al., 2016). Indeed, physical activity has been proposed as the cornerstone lifestyle 

modification for the treatment of hypertension with guidelines suggesting aerobic exercise training with 

dynamic resistance training as the most effective intervention (Baddeley-White et al., 2019).  

However, research has now shown that there are other exercise modalities possibly more effective at 

reducing resting BP than the traditional aerobic guidelines, such as isometric handgrip (IHG) training (a 

form of isometric exercise (IE) training). Meta-analysis has shown significant reductions in both systolic 

BP (sBP) and diastolic BP (dBP) following IHG training, by 13.4 mmHg and 7.8 mmHg respectively (Kelley 

and Kelley, 2010). This effect has been shown in both normotensive and hypertensive populations, with a 

magnitude larger than previously evidenced with dynamic aerobic or resistance training (Carlson et al., 

2014). Given its cited effectiveness, the American Heart Association has endorsed IHG training as a 

potential alternative strategy to lower resting BP (Class IIB, Level of Evidence C) (Brook et al., 2015; Brook 

et al., 2013). 

Recently, alternative IE protocols have been proposed in an attempt to progress the clinical applicability 

of this exercise modality. The proclivity of sedentary individuals to abstain from physical activity 

underlines the importance to enhance not only the physiological effectiveness of current exercise 

prescription, but also circumvent the factors that may inhibit participation, such as economic costs and 

accessibility (Morgan et al., 2016). Indeed, it could be argued that the expensive and/or laboratory-based 
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equipment, as typically associated with IHG exercise, hinders the effectiveness of IE as a therapy for 

reducing resting BP (Goldring et al., 2014).  

Isometric wall squat (IWS) exercise is one such protocol that has been proposed as an effective 

alternative to IHG exercise (Goldring et al., 2014; Wiles et al., 2017). Isometric wall squat exercise 

involves maintaining a constant position wall squat at a participant specific knee angle, relative to a 

target heart rate (HR) determined in a familiarisation session (Wiles et al., 2017). Minimal equipment is 

required to execute the IWS, making it economical, accessible and time efficient (Goldring et al., 2014). 

Total costing for the protocol comes in at <£30 (Wiles et al., 2017), which is a fraction of the price 

compared to the latest Zona plus series 3 handgrip device, priced at £549.00 (Baddeley-White et al., 

2019). Following a 4-week programme consisting over 4 x 2-min bouts of IWS, 3 times per week, IWS 

training has produced clinically relevant reductions in resting sBP and dBP by 4 mmHg and 3 mmHg, 

respectively (Wiles et al., 2017). However, more recently amongst a cohort of stage 1 

hypertensive/prehypertensive participants, Taylor et al., (2019) found that 4 weeks of IWS training 

significantly reduced resting sBP and dBP by 12.4 mmHg and 11.8 mmHg respectively.  

Despite the aforementioned benefits of IWS training, the literature remains inconclusive as to which IE 

modality has more physiological capacity to reduce resting BP. A selection of literature has suggested 

that exercises involving a larger amount of muscle mass induce a greater CV response than those with a 

small amount of muscle mass (Mitchell et al., 1980; Kilbom and Persson, 1981; Seals et al., 1983; Misner 

et al., 1990; Iellamo et al., 1999; Gálvez et al., 2000). As IHG exercise only uses a small isolated muscle 

group in the arm, it does not recruit as much muscle mass in comparison to IWS exercise, which utilises 

larger muscle groups. Typically, the IHG only recruits the forearm-ulna and forearm-radius (Abe and 

Loenneke, 2015) whereas the IWS uses a larger group of muscles, in particular the hamstrings, 

quadriceps and gluteal muscles, as well as a variety of other supporting muscles (Blanpied, 1999). It has 

been suggested that IE contractions of a greater muscle mass require an increased autonomic response 

(Mitchell et al., 1980; Gálvez et al., 2000). There are two potential mechanisms that have been proposed 

that may help to explain this; central command and the peripherally modulated exercise pressor reflex 

(Gálvez et al., 2000).  

The central command theory involves activation of higher brain centres, through a feedforward 

mechanism involving parallel activation of motor and cardiovascular centres (Williamson, 2010). It is 

suggested that at the onset of a muscular contraction, signals are irradiated from the motor cortex to the 

CV control centre in the medullar oblongata (Seals et al., 1983). Muscular contractions that utilise a 

greater number of motor units require stronger nervous stimulation which in turn reciprocally enhances 

the signal that is irradiated to the CV control centre. Therefore, exercises that involve a greater amount 
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of muscle mass will stimulate a greater central command input to the brain stem CV centres, which 

subsequently enhances the CV response (Gálvez et al., 2000).  

The peripheral mechanism consists of a reflex pathway originating in the nerve endings of the contracting 

muscle (Gálvez et al., 2000). This theory suggests that a reflex stimulus in the contracted musculature is 

stimulated by chemical substances released during the contraction and/or by the physical deformation 

that occurs in the muscle and surrounding structures. The former may involve the release of metabolites 

and/or an increase in the osmolarity of the interstitial fluid which could activate nerve endings that 

feedback centrally to the CV centre (Seals et al., 1983). Nonetheless, it should be acknowledged that 

there are some circumstances in which muscle mass is a secondary influence, and thus is only of primary 

influence when programme variables, such as intensity, duration, and rest periods are closely matched 

(Seals and Enoka, 1989; Williams et al., 1991). 

One the other hand, in a meta-analysis by Inder et al., (2016), it was suggested that IE contractions of the 

arm have a greater potential to reduce BP than IE contractions using the leg. Inder et al., (2016) argued 

that this is due to the muscles in the arm are smaller, and thus the threshold at which the arteries 

become occluded is lower, resulting in repeated bouts of hypoxia in the forearm which is a potential 

stimulus for changes in arterial stiffness. Baross et al., (2012) has also suggested that local conduit 

arterial remodelling may be an important mechanism for BP reductions following IE (Baross et al., 2012). 

Therefore, given the inherent vasculature heterogeneity in the human body, the relative effects on local 

arterial remodelling in the trained muscle may differ between the IHG and IWS, independent of the 

muscle mass recruited. Walther et al., (2008) has argued that there is little evidence to support shear 

stress (SS) induced adaptation in the common femoral artery (CFA) and suggests this may be due to a 

reduced ability in the CFA to dilate in response to a SS stimulus (Walther et al., 2008). In comparison, 

other arteries such as the brachial artery appear to be more sensitive to a SS stimulus and induce a 

greater dilatory response (Walther et al., 2008). As such, it could be argued that the IHG may have more 

potential to reduce resting BP due to greater sensitivity to SS.  

The latter potentially conflicting arguments reinforce that the underlying mechanisms responsible for 

these BP reductions remain largely inconclusive. Despite the mounting evidence regarding the beneficial 

effects of IE on BP management, few studies have assessed the acute effects of IHG and IWS on BP 

control, with no study directly comparing the acute responses between the two forms of IE. Interpreting 

the acute responses following IE is important as there are strong associations between the acute and 

chronic responses. Liu et al., (2012) remarked that the magnitude of post exercise hypotension (PEH) 

following an acute bout of exercise may predict the extent of BP reductions following a chronic 

intervention. Moreover, Somani et al., (2017) found that acute sBP changes to 2-min IHG and isometric 
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leg exercise (ILE) tests were associated with IHG and ILE training-induced reductions in sBP after 10 

weeks of training, respectively (r = 0.58 and r = 0.77; for IHG and ILE; P= < 0.05). Farah et al., (2017) also 

suggested that chronic adaptations may result from temporal summation of acute responses. As such, 

further research in this area of study may help to confirm mechanistic pathways related to IWS and IHG 

training, and also ascertain which modality is more effective at reducing resting BP. 

1.1 Acute studies 

During an acute bout of IWS exercise consisting of 4 x 2-min bouts at 95% HRpeak, Taylor et al., (2017) 

found an increase in sBP of 33.3 mmHg from baseline (132.6 ± 5.6 mmHg) to the final stage of IE (165.9 ± 

21 mmHg). This increase in sBP was accompanied by a significant stepwise increase in HR during the 4 x 

2-min IWS contractions. There was also a significant stepwise reduction in power spectral density R-R 

interval (PSD-RRI) from baseline to IE2, IE3 and IE4, represented by a decrease in high frequency (HF) 

oscillations with an increase in the low frequency (LF) oscillations of HR. This alteration in the RR interval 

is generally associated with a decrease in parasympathetic outflow to sinus node occurring during 

exercise and an increase in sympathetic modulation to the sinoatrial node (Iellamo et al., 1999). 

The contraction intensity and duration, the number of contractions and total workload, in addition to the 

muscle mass involved have all been shown to influence the CV response during IET (Olher et al., 2013). It 

is thought that these responses are induced through both central command and the muscle ergoreflex 

(Park et al., 2012). The magnitude of these responses are a probable stimulus for changes in resting BP 

(Gálvez et al., 2000).  

The latter point is demonstrated by Stewart et al., (2007), who used a single 2-min unilateral IHG 

contraction at 35% MVC, and found sBP increased by 29 mmHg, less than the IWS used by Taylor et al., 

(2017). Likewise, Garg et al., (2013) only managed increases of 11mmHg sBP during a single 2-min 

unilateral IHG contraction at 30% MVC. Nonetheless, when using a comparative volume of exercise, the 

outcome changes somewhat. For example, during the first single 2-min contraction, BP only increased by 

8.9 mmHg during IWS exercise (Taylor et al., 2017), entailing a reduced pressor response after a single 

bout compared to both the IHG protocols (Stewart et al., 2007; Garg et al., 2013). It could be argued that 

this finding is somewhat unexpected as more muscle mass is recruited during the IWS than the IHG. The 

result is further perplexed by results from the Iellamo et al., (1999) study that found during a short 60 sec 

acute bout of ILE, sBP increased by 26.5 mmHg from baseline (118.2 ± 2.9 mmHg) to exercise (144.7 ± 5.7 

mmHg), similar to those found following IHG exercise (Stewart et al., 2007; Garg et al., 2013).  

In addition, Stewart et al., (2007) found no increase in sympathetic modulation during a single 2 min IHG 

contraction, instead finding a decrease during the first minute, represented by a decrease in LF 
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oscillations, which may be a result of the reduced central and peripheral drive associated with the 

smaller muscle mass recruitment (Mitchell et al., 1980; Gálvez et al., 2000). However, after 4 x 2-min 

bouts of bilateral IHG at 30% MVC Millar et al., (2010) found a significant increase in sympathetic nervous 

activity represented by a decrease in sample entropy, which suggests that like the BP response, the 

autonomic response is also dependant on variables such as the duration of exercise and total workload.   

The influence of muscle mass on the CV response during has been reported in the study by Iellamo et al., 

(1999), who compared ILE to IHG exercise. The study found greater increases in both HR and BP during 

ILE exercise compared to IHG exercise when performed at the same intensity, and suggested these 

responses to IE appear to be dependent on the size of contracting muscles. Iellamo et al., (1999) also 

hypothesised that during IE contractions with larger muscle mass recruitment, metabolite production is 

greater, with a consequent greater activation of the muscle metaboreflex. Another potential mechanism 

cited for this greater increase in HR during IE was a greater reduction in baroreceptor reflex sensitivity 

(BRS). Taylor et al., (2017) also found a significant decrease in BRS following IWS exercise, which is 

associated with the resetting of baroreceptors to higher operating point by the action of central 

command on the central neuron pool receiving baroreceptor afferents. This allows for a sympathetically 

controlled increase in HR and BP, resulting in the pressor response associated with IE (Ichinose et al., 

2009).  

Other physiological mechanisms that are altered during IE include total peripheral resistance (TPR). Bakke 

et al., (2007) found that during a single 2-min IHG contraction at 40% MVC, TPR was significantly 

increased, and explain that this was the main contributing factor to the increase in mBP found (25.3 ± 8.9 

mmHg). Bond et al., (2016) also found that during a 3-min IHG contraction at 30% amongst a 

prehypertensive group, TPR was significantly increased from 1713 ± 91 to 2807 ± 370 dyne.s.cm-5 (64%). 

Conversely, Taylor et al., (2017) found that during 4 x 2 min of IWS exercise amongst a group of 

prehypertensives, TPR was significantly reduced, amid a significantly greater increase in BP. Although 

Bakke et al., (2007) only used a single 2-min contraction and Bond et al., (2016) only used 3-min 

compared to the 4 x 2 min in the Taylor et al., (2017) study, these contrasting findings potentially 

highlight the different mechanistic actions at work during these contraction types. 

At the cessation of an IE contraction, there is a rapid perfusion of the previously occluded muscle. This is 

accompanied by a transient pressure undershoot, generally resulting in a hypotensive response (Clifford 

and Hellsten, 2004). Millar et al., (2009) found a significant drop of 3 mmHg in sBP 5 min following 4 x 2-

min bouts of bilateral IHG exercise at 30% MVC. Likewise, Millar et al., (2011) found sBP reductions 

(approx. 2/3 mmHg) 5-min following a mixture of IHG protocols (4 × 2-min, 8 × 1-min, and 16 × 30-s). 
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These PEH effects were also found by Stewart et al., (2007), who reported a significant reduction of 4 

mmHg in sBP 1-min following a single 2-min unilateral IHG contraction.  

Following 4 x 2 min of IWS, Taylor et al., (2017) found significant reductions of 23.2 ± 18.1 mmHg, 18.7 ± 

16.9 mmHg and 15.8 ± 15.5 mmHg below baseline values for sBP, dBP, and mBP, respectively (Taylor et 

al., 2017). O’Driscoll et al., (2017) also found a significant reduction in sBP (132.6 ± 5.6 vs. 109.4 ± 19.6 

mmHg), dBP (77.6 ± 9.4 vs. 58.8 ± 17.2 mmHg), and mBP (94.7 ±10.1 vs. 78.8 ± 18 mmHg) in recovery. 

However, it must be acknowledged that the baseline BP values may have influenced the resulting PEH 

found by the latter studies (Moraes et al., 2012). Indeed, O’Driscoll et al., (2017) and Taylor et al., (2017) 

used sedentary pre-hypertensive participants, whereas the IHG studies used normotensive participants 

(Stewart et al., 2007; Millar et al., 2009, 2011). Nevertheless, numerous studies have found that an acute 

bout of IHG exercise produces no significant reductions in BP amongst hypertensive cohorts. For 

example, McGowan et al., (2006a) and Olher et al., (2013) found no effect on BP following an IHG 

protocol in medicated hypertensive patients. Likewise, Goessler et al., (2016) found that bilateral IHG at 

30% MVC evoked no transient reductions in BP amongst a cohort of hypertensives 5-min post, 1-hour 

post, or 24-post exercise. More recently, Silva et al., (2018) used 12 hypertensive participants and 

compared the effects from three acute IHG protocols. The study found no reduction in BP following IHG 

exercise, even after a 4 x 2-min protocol that used 50% MVC.  

Taylor et al., (2017) found that cessation of IWS exercise resulted in an overall increase in HRV above 

baseline, with a greater proportion in the HF domain, which signifies parasympathetic activation and 

sympathetic withdrawal. Similar autonomic responses have also been shown following IHG exercise. 

Millar et al., (2009) found an increase in parasympathetic modulation during recovery following a 4 x 2-

min of bilateral IHG exercise. Millar et al., (2011) also found cardiac vagal modulation, demonstrated by 

HR sample entropy, was increased 5-min after a 4 x 2-min of IHG. Furthermore, following IWS exercise, 

Taylor et al., (2017) found a significant threefold increase in BRS (19.9 ± 10.3 ms·mmHg-1 to 60.04 ± 53.1 

ms·mmHg-1). On the other hand, Stewart et al., (2007) found that the HF oscillations were similar to 

baseline following a single 2-min bout of unilateral IHG exercise. Moreover, Iellamo et al., (1994) found 

BRS was not increased following a single 2-min bout of IHG exercise, potentially highlighting the influence 

of total workload.  

Comparisons of cardiac impedance following IWS and IHG exercise have shown some contrasting 

findings. O’Driscoll et al., (2017) found a significant increase in cardiac output (Q̇) (4.3 ± 0.7 vs. 6.1 ± 1 

Lmin-1, P < 0.001), predominantly mediated via a significant increase in SV (74.6 ± 11 vs. 96.3 ± 13.5 mL, 

P < 0.001) as HR was unchanged (62 ± 9.4 vs. 63 ±7.5 bmin-1 , P = 0.63) post exercise. Taylor et al., (2017) 

also found SV was significantly increased during recovery but found that Q̇ was decreased. On the other 
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hand, Weiner et al., (2012) found a significant decrease in SV (63.9 ± 12.0 vs. 49.4 ± 7.8; P < 0.001; Fig. 2) 

following 3 min of unilateral IHG exercise at 40% MVC. The decrease in SV was paralleled with a 

simultaneous increase in HR, resulting in no significant change in Q̇ (3.9 ± 0.5 vs. 4.2 ± 0.7 l min−1; P= 

0.27). 

Decreases in BP following IE have been shown to be related to reductions in TPR. For example, Taylor et 

al., (2017) found that TPR was significantly lower during the recovery period compared with baseline (P= 

<0.05). On the other hand, following 2 x 3-min bouts of bilateral IHG at 30% MVC, Krzemiński et al., 

(2012) found that there were no significant differences in TPR during a 5 min recovery period compared 

to baseline. Taylor et al., (2017) suggested that this reduction in TPR may be related to an increase in 

vasodilation caused by an increase in nitric oxide (NO) synthesis. The synthesis of NO is increased in 

response to the SS induced by hyperaemic blood flow, which may be increased during IWS due to the 

elevated HR. Reductions in TPR post exercise have also been related to the sympathovagal balance. 

From the available literature, it is apparent that IWS exercise, which recruits a larger amount of muscle 

mass than the IHG, produces a greater increase in CV parameters during exercise, which results in a 

greater episode of PEH. The mechanisms responsible for these acute BP reductions may be related to 

alterations in HRV, and/or from reductions in TPR. However, although there is a selection of acute studies 

conducted to make a consensus on the haemodynamic and autonomic responses following IWS and IHG 

exercise, it is clear from searching the literature that more research is needed in order to make reliable 

and robust comparisons between the two isometric modalities.  

One of the main problems with the current selection of literature is a lack of consistency between the 

methods used in each study, with differing populations, exercise durations, and intensities. Therefore, 

the aim of this study was to investigate the transient cardiac autonomic, central and peripheral 

haemodynamic responses, measured continuously pre, during, 10-min post, and 1-hour post an acute 

bout of IWS and IHG exercise (4 x 2-min) using a repeated measures crossover design. The study aimed 

to utilise the most widely adopted protocols used within IWS and IHG training programmes, but also 

match the acute programme variables as closely as possible in order to specifically ascertain the relevant 

acute responses induced from each form of IE. From the available data, it was hypothesised that due to 

the larger muscle recruitment, the IWS would induce a greater increase in sympathetic modulation, and 

thus a followed by a greater parasympathetic over sympathetic activity in recovery, mediated by an 

increase in baroreceptor reflex control of HR. This would correspond with a greater increase in BP during 

IWS exercise, followed by a significantly greater reduction in BP at the cessation of exercise.  
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2.0 Method  

2.1 Participants 

26 male and female participants (50:50) who were not meeting the current guidelines for physical activity 

(<150 minutes p/week) were recruited for the study (mean ± SD: age 27 ± 4.3 years; mass 79.8 ± 22.2 kg; 

height 173.5 ± 6.9 cm). The sample size (26) in the current study was based on previous studies analysing 

the acute responses following an IWS session (Taylor et al., 2017). All participants were non-smokers and 

were not be taking any pharmaceuticals known to influence the output measures. All exercise was 

carried out at the same time of day (within 2 hours), in a quiet, temperature-controlled room. All female 

participants reported using oral contraception. Exercise took place 4 hours following a light meal, with a 

24-hour abstinence from alcohol, caffeine, and vigorous physical activity (Taylor et al., 2017). Participants 

were required to void their bladder prior to the testing session to avoid a possible rise in BP arising from 

bladder distention (Fagius & Karhuvaara, 1989). Prior to testing, and after receiving a written explanation 

of the testing protocol along with any potential risks, each participant completed a written informed 

consent form along with a health questionnaire. The study had ethical approval by Canterbury Christ 

Church University Sport and Exercise Science Ethics Committee and all procedures were conducted 

according to the Declaration of Helsinki.  

2.2 Study design 

There were total of four visits to the laboratory. During the first visit, a seated resting BP was performed 

using an automated BP monitor (Dinamap, PRO 200, GE Medical Systems Information Technologies 

GmbH, Munzinger Strasse 3, 79111, Freiburg, Germany) to confirm participants were not hypertensive 

(>130/70 mmHg) (Whelton et al., 2018). The Dinamap ProCare 200 utilises an oscillometric technique 

and a pneumatic cuff positioned around the upper left arm of the participant. The inflation and deflation 

of the cuff is controlled by a microprocessor, and each inflation cycle took approximately 30-45 s. The 

device has been calibrated against the Baumanometer Mercury Gravity Sphygmomanometer (W.A. Baum 

Co., Copiague, NY, USA) for oscillometric BP measurements (Lee et al., 2011). Although the Dinamap 

ProCare 200 was found to overestimate dBP, the results are similar in accuracy to other semi-automated 

devices (Lewis et al., 2002).  

Upon arrival to the laboratory, BP was measured three times at 5-min intervals after a 15-min period of 

quiet seated rest. Participant stature in centimetres (cm) using a stadiometer (Seca 213, Seca GmbH & 

Co. Kg., Hamburg, Germany) and body mass in kilograms (kg) using mechanical column scales (Seca 710, 

Seca GmbH & Co. Kg, Hamburg, Germany) were also measured during this first visit. Prior to the 

commencement of BP measurements, participants were also familiarised with all the equipment and BP 
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measurement procedures. Eligible participants were then invited to a second preliminary session to 

complete an IWS incremental test and an IHG maximum voluntary contraction (MVC) test. These tests 

were used to establish the appropriate exercise intensity to use in the forthcoming sessions.  

Data collection was conducted during the second and third visits. The study used a crossover design in 

which each participant performed both an acute bout of IHG and IWS in a separate session; the order of 

which was dictated by blind randomisation using the Microsoft Excel random number generator. Each 

session was carried out at least 48 h after the previous visit.  

Each testing session began with 15-min of rest. Baseline autonomic and haemodynamic functions were 

then recorded continuously for 5-min in the supine position. Previous work by Taylor et al., (2017) has 

acknowledged that a change in posture and subsequent gravitational stress will influence cardiovascular 

haemodynamics. Pickering et al., (2005) and Vischer and Burkard (2016) have also discussed how BP 

changes based upon body position. Therefore, in order to minimise the influence of gravity, the currently 

study utilised a 5-min period of seated rest following the 5-min supine rest. All measures were then 

recorded continuously throughout each 2-min interval of IE (IWS1/IHG1, IWS2/IHG2, IWS3/IHG3, and 

IWS4/IHG4). Autonomic and haemodynamic parameters were then recorded during a 10-min recovery 

period (5-min seated followed by 5-min supine) immediately following the cessation of IET. After 1-hour 

from the termination of the last bout of IE, resting measures were again taken during a 5-min seated and 

5-min supine window. During the hour period from the last IE bout participants were required to stay 

rested in the laboratory. Intervention marks enable the separation of the cumulative data into 

independent stages of the IE session. The current study used intervention marks at baseline, at each 2-

minute exercise period, and at 10-min recovery. Data for the 1-hour recovery window was taken during a 

separate measurement. 

2.3 Experimental procedures  

Isometric wall squat 

During the IWS session, participants were required to exercise at a prescribed knee joint angle based on 

HR responses to the incremental IWS test performed during the first laboratory visit. It has been shown 

that the intensity of the IWS can be attuned by manipulating the angle of the knee (Goldring et al., 2014). 

This is due to the inverse relationship found between knee joint angle and HR that is reproducible (r =-

0.9940; P<0.05) using an incremental test (Wiles et al., 2008).  

During the incremental wall squat test (IWST), participants were required to perform continuous wall 

squat exercise. During the test, the intensity was incrementally increased via alterations in knee joint 

angle. The knee angle was dictated using a clinical goniometer (MIE Clinical Goniometer, MIE Medical 
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Research Ltd., Leeds, U.K.). The goniometer was strapped to the participants leg using four 25 mm elastic 

Velcro straps, ensuring that the muscle was not compressed in any way. The fulcrum of the goniometer 

was aligned with the lateral epicondyle of the femur, with the moving arm placed on the lateral midline 

of the femur using the greater trochanter for reference. The stationary arm was positioned on the lateral 

midline of the fibula using the lateral malleolus and fibular head for reference. A spirit level was attached 

to the stationary arm to ensure that the lower leg was kept vertical during the IWST.  

The first stage of the IWST began at 135˚ of knee flexion. Every 2-min, the exercise intensity was 

increased by decreasing the knee joint angle by 10˚. There are five stages in the test, with the final stage 

finishing at 95 ˚. The test ended when either the participant reached the end of the 95˚ stage, or if the 

participant was no longer able to continue the required knee joint angle within 5˚ of the target value 

(volitional fatigue). Upon cessation, all participants verbally confirmed that the test had been completed 

to maximum. 

The data obtained during the incremental test was then used to prescribe a working intensity. In order to 

obtain the participant specific training angle, the knee joint angles during the IWST were plotted against 

the mean HR for the last 30 seconds of each stage. This relationship was then used to calculate the 

required knee joint angle to elicit a target HR of 95% heart rate peak - HRpeak (CV =2.8%, 95% CI =2.1-

4.1%) as utilised by Devereux et al., (2010), with HRpeak defined as the mean HR of the last 30 seconds 

achieved during the IWST. Each participant’s foot and coccyx placement were also recorded at each stage 

of the test. This enabled the target knee joint angle to be correlated against the foot and coccyx 

placements, allowing the participant to position themselves into their specific knee angle without the use 

of a laboratory-based equipment (e.g. a goniometer). This is based on the principal that lower wall squat 

exercise positions required participants to move their feet forward and back down the wall - preliminary 

testing demonstrated that knee joint angle produced linear relationships with both the feet (r = -1.00; P < 

0.05) and back (r = 0.99; P < 0.05) positions. 

The IWS testing session utilised the most widely used IWS protocol, comprised of 4 x 2-min bouts of IWS 

exercise at 95 HRpeak, separated with 2-min of rest (Wiles et al., 2017). Participants positioned themselves 

into their participant specific knee angle by manoeuvring their back and feet into the correct placement. 

A makeshift blue tac rounded lip was used to ensure correct placement of the coccyx on the wall, and a 

fixed ruler on the floor allowed the participant to align their heel to the correct measurement. Both HR 

and BP were monitored throughout to ensure participants remained within the safe exercising limits 

defined by the American College of Sports Medicine. Verbal encouragement was given and participants 

were regularly informed of the elapsed time. Participants were reminded to breathe normally throughout 
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the exercise to avoid performing a Valsalva manoeuvre. At the end of each stage, the participants gave 

an RPD score based on the Borg CR-10 (Borg, 1982).  

Isometric hand grip 

During the IHG session, participants were required to exercise at 30% MVC. The MVC was carried out 

during the first visit to the laboratory using a programmed dynamometer (DHD-3 Digital Hand 

Dynamometer, Saehan Corp, South Korea). Participants completed three maximum isometric voluntary 

contractions using their non-dominant arm, each separated by >1 min of rest. The highest of three 

maximal efforts was designated the MVC. 

The IHG session comprised of 4 x 2-min bouts of unilateral IHG exercise at 30% MVC. The use of a 

unilateral protocol was founded upon several factors. Firstly, it appears that unilateral IHG training 

provides the ideal stimulus for BP reductions. A recent meta-analysis by Inder et al., (2016) found that 

bilateral IHG interventions appear to be suboptimal for isometric training-induced BP reduction. 

Interestingly, Pagonas et al., (2017) found no reduction in BP variables following 12 weeks of bilateral IHG 

training. Smart et al., (2017) suggested that IE lowers BP through local rather than systemic effects, and 

thus the study design by Pagonas et al., (2017), which alternates the hand used, may have hindered the 

localised effects of IE.  

Secondly, it is evident that unilateral IHG protocols (n=16) are more commonly prescribed than bilateral 

(n=11) (see appendix 1). Amongst these unilateral studies, the non-dominant arm is more widely utilised 

(McGowan et al., 2006b; Peters et al., 2006; McGowan et al., 2007a,b; Millar et al., 2007; Badrov et al., 

2013a; Millar et al., 2013; Garg et al., 2013; Badrov et al., 2016; Carlson et al., 2016; Hess et al., 2016; 

Bentley et al., 2018) than the dominant arm (Wiley et al., 1992; Ray and Carrasco, 2000). Compared to 

the 16 studies that have used a unilateral intervention, only 11 have opted for a bilateral protocol (Wiley 

et al., 1992; Taylor et al., 2003; McGowan et al.,2006a; Millar et al., 2007; Millar et al., 2008; Stiller-

Moldovan et al., 2012; Badrov et al., 2013b,c; Somani et al., 2017; Pagonas et al., 2017; Goessler et al., 

2018).  

The current study also opted for 30% MVC as this the most commonly used intensity adopted in 

unilateral handgrip protocols (Kelley and Kelley, 2010). Typically, unilateral IHG protocols at 30% MVC 

utilise a 3-min rest period. However, the current study used a 2-min rest period to match the acute 

programme variables and data collection protocols as closely as possible for both the IWS and IHG 

conditions. As the aim of the study was to analyse the comparative acute responses, using identical rest 

periods helped to eliminate any influence that the contrasting rest periods may have had on the outcome 

variables, without affecting the fundamental programme variables of the IHG protocol. 
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During the IHG testing session, participants were seated in an erect position so that the shoulder was 

adducted in a neutral position. The elbow was flexed at a 90°, with the forearm and wrist also in a neutral 

position. The handgrip was arranged in the participants’ hand in a comfortable position. Participants 

were instructed to apply grip force gently and smoothly. A direct-reading light box was attached directly 

to the dynamometer to provide visual feedback to aid participants in maintaining the required 

contraction force. The display was monitored closely by a researcher to ensure the participant did not 

significantly fluctuate from the required intensity. Participants were reminded to breathe normally 

throughout the exercise to avoid performing a Valsalva manoeuvre. At the end of each stage, the 

participants gave an RPE score based on the Borg CR-10 (Borg, 1982). 

2.4 Measurement variables  

All experimental procedures carried out in a controlled laboratory environment. Autonomic and 

haemodynamic assessment was performed using the Physio Flow (Manatec Biomedical, Paris, France) 

and Task Force Monitor (TFM).  

Continuous blood pressure 

Continuous measurement of sBP, dBP, and mBP were recorded using the vascular unloading technique at 

the proximal limb of the index or middle finger (Fortin et al., 1998; Gratze et al., 1998). The continuous 

data is automatically corrected to oscillometric BP values obtained at the brachial artery of the 

contralateral arm.  

Cardiac autonomics  

A 6-channel ECG was used for HR measurement, and also R-R interval determination via PSD analysis 

(Valipour et al., 2005; Fortin et al., 2001). Before commencing testing, the ECG traces were manually 

screened to check for traces of any erroneous data. The beat-to-beat values obtained were then used for 

the real-time calculation of HRV by an autoregressive model (Fortin et al., 2001; Bianchi et al., 1997). 

High and low frequency parameters of HRV were automatically calculated by the TFM and expressed in 

absolute (ms2) and normalized units (nu). The general consensus is that LF oscillations represent 

sympathetic outflow, while HF oscillations represent parasympathetic outflow and that the LF:HF ratio 

provides a measure of cardiac sympathovagal balance (Pomeranz et al., 1985). Baroreceptor reflex 

sensitivity was automatically evaluated via the sequence method and displayed on-line.  

Impedance cardiography 

Impedance cardiography (ICG) is a non-invasive method to measure the total conductivity of the thorax 

and analyse how it changes over time in relation to the cardiac cycle (Fortin et al., 2001). The PhysioFlow 
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uses a low amplitude/high frequency current that is transmitted through the chest which detects 

changes in impedance. Calculation of SV is founded on the notion that changes in aorta blood volume 

evoke contrasting changes in electrical impedance (Moshkovitz et al., 2004). Six electrodes were 

attached to the subject’s upper body to calculate SV and Q̇ continuously, with values averaged over 15-

sec.  

Other haemodynamic variables 

Rate pressure product (RPP) was calculated as the product of HR and sBP, and TPR was calculated 

according to Ohm’s law. A selection of haemodynamic parameters measured were indexed to the 

participants body surface area. 

2.5 Data Analysis 

All data were analysed using the statistical package for social sciences (SPSS 22 release version for 

Windows; SPSS Inc., Chicago IL, USA). Unless otherwise stated, continuous variables are expressed as 

mean ± SD. All data were checked for parametric assumptions. For analysis, the changes from baseline 

were used in order to factor in any differences that may have occurred between conditions at baseline. A 

two-way repeated measure analysis of variance (RMANOVA) was used to compare the change from 

baseline between conditions followed by LSD post hoc tests for pairwise comparisons; the Wilcoxon 

signed-rank test was used for pairwise comparisons of non-parametric data. Data were log-transformed if 

needed to satisfy the underlying assumption of normality. If there was a violation of the sphericity 

assumption, then the degrees of freedom (DoF) were corrected using either the Greenhouse-Geisser or 

the Huynh-Feldt. If the Greenhouse-Geisser estimate of sphericity (ε) was > 0.75 then the Huynh-Feldt 

correction was used, and if ε was < 0.75 then the Greenhouse-Geisser was used (Field, 2013). Corrected 

DoF are reported throughout. A P value of 0.05 was regarded as statistically significant. 
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3.0 Results  

All participants completed all four bouts of IWS at their prescribed knee joint angle. However, four 

participants consistently failed to maintain the unilateral handgrip contraction within 10% of the 30% 

MVC threshold through all bouts of IHG. Baseline characteristics are displayed in table 3.0.1.  

 

 

 

 

 

 

3.1 Haemodynamic response  

Baseline data and the change from baseline delta scores (Δ) for each haemodynamic variable during each 

bout of IE, and in the 10-min and 1-hour recovery are displayed in Table 3.1.1 and Figure 3.1.2. There was 

a significant condition by time interaction for each BP parameter: sBP [F(2.727, 68.164)= 19.058, P= 

<0.001] (Figure 3.1.2.A), mBP [F(2.610, 65.252)= 17.754, P= <0.001] (Figure 3.1.2.B), and dBP [F(2.697, 

67.429)= 17.142, P= <0.001] (Figure 3.1.2.C). The Δ sBP from baseline to IE1, IE2, IE3, and IE4 was 

significantly higher during the IWS, with the biggest difference occurring at IE1 (P= <0.001). The mean 

increase in sBP at IE1 was 38 ± 21.7 mmHg from baseline for the IWS condition, compared to 11.9 ± 15.6 

mmHg during the first bout of IHG. Both dBP and mBP paralleled this haemodynamic response, with a 

significantly greater increase from baseline during all 4 exercise bouts compared to the IHG condition, 

and the biggest difference occurring at IE1 (Z=-3.721, P= <0.001 and P= <0.001, respectively). 

There was also a significantly greater drop in sBP (20 ± 14.6 mmHg) during the 10-min following the 

cessation of IWS exercise (Z= -2.832, P= 0.005) compared to the IHG condition (6.8 ± 12 mmHg). This 

response during the 10-min recovery window was again paralleled by dBP and mBP, which both 

demonstrated significantly greater reductions of 20 ± 14.3 mmHg and 20 ± 14.5 mmHg, respectively. 

There were no significant differences between the conditions for any BP variable when measured 1-hour 

post exercise.  

There was a significant condition by time interaction for HR [F(2.884, 72.093)= 66.390, P= <0.001] (Figure 

3.1.2.E). Pairwise comparisons demonstrated that the increase in HR from baseline in the IWS condition 

was significantly greater during IE1, IE2, IE3 and IE4, with the biggest difference occurring at IE4 (Z=-

    

Age (yr) 27 ± 4.3 

Height (cm) 173.5 ± 6.9 

Mass (kg) 79.8 ± 22.2 

HR (bpm) 67.2 ± 8.5 

sBP (mmHg) 129.4 ± 10 

dBP (mmHg) 74.7 ± 7.5 

Table 3.0.1 Baseline characteristics of population. 
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4.432, P= <0.001). During the 10-min recovery window, HR remained significantly higher in the IWS 

condition (P= <0.001). During this period, the HR in the IHG condition was reduced compared to baseline 

(-2.1 ± 4.6 bpm) whereas the HR in the IWS condition remained elevated (5.8 ± 7.3 bpm). There were no 

significant differences between conditions at 1-hour post.  

As a consequence of the BP and HR responses, there was also a significant condition by time interaction 

for RPP [F(2.559, 63.978)= 55.079, P= <0.001] (Figure 3.1.2.D). However, the increase in RPP was 

significantly higher during all four bouts of IWS, with the greatest difference at IE4, in which RPP 

increased by 9765.1 ± 4142.9 (bpm.mmHg) from baseline, compared to 3102.9 ± 2031.4 (bpm.mmHg) in 

the IHG condition (P= <0.001). There were no significant differences between conditions at any recovery 

time points.  

The TPR response demonstrated a significant condition by time interaction [F(3.329, 83.227)= 4.221, P= 

0.006] (Figure 3.1.2.H). Total peripheral resistance was significantly higher in the IHG condition during 

IE2, IE3, with the biggest difference occurring at IE4 (P= <0.001); there was no significant difference at 

IE1. The reduction in TPR during the 10-min recovery window was significantly greater in the IWS 

condition (P= <0.001). There were no significant differences 1-hour post exercise. 

There was a significant condition by time interaction for Q̇ [F(2.545, 63.620)= 20.077, P= <0.001] (Figure 

3.1.2.G), but not for SV [F(6,150)= 0.923, p= 0.434, ηp2= 0.036] (Figure 3.1.2.F). During all four exercise 

bouts, Q̇ was significantly higher in the IWS condition, with the greatest difference at IE4 (Z= -4.203, P= 

<0.001). Like the HR response, Q̇ remained significantly higher during the 10-min recovery period in the 

IWS condition (P= <0.001) although Q̇ remained above baseline for both conditions. There were no 

significant differences 1-hour post exercise.
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Parameter   Baseline IE1Δ IE2Δ IE3Δ IE4Δ 10-minΔ 1-HourΔ 

sBP IWS 126.9 ± 9.4 38 ± 21.7 39.2 ± 30 35.9 ± 27.6 35.6 ± 28.5 -20 ± 14.6 -14 ± 10.4 

 IHG 124.5 ± 7.5 11.9 ± 15.6 16 ± 16.5 12.3 ± 16.4 15.6 ± 19.5 -6.8 ± 12 -10 ± 8.5 

       *  *  *  *  *   

mBP IWS 98.1 ± 8.5 37.4 ± 19.1 36 ± 25.5 32.5 ± 24.1 30.9 ± 24.7 -20 ± 14.5 -12.2 ± 7.8 
 IHG 97.1 ± 8.4 14 ± 16.4 17.8 ± 15.9 12.8 ± 15.3 17.4 ± 18.1 -7.5 ± 10.4 -10 ± 8.9 

       *  *  *  *  *   

dBP IWS  79.8 ± 8.1 36.1 ± 17.7  33 ± 22.6 29.9 ± 22.7 28.8 ± 23 -20.4 ± 14.3 -11.8 ± 6.8 

 IHG 79.6 ± 8.7 12.5 ± 17.9 16.2 ± 16.2 10.2 ± 16.1 15.8 ± 18.3 -9.3 ± 11.3 -9.9 ± 10 

      *   * *  *   *   

RPP IWS 8422.9 ± 1309.4 7617.7 ± 3047.9 8428.4 ± 3089.3 8944.6 ± 3448.3 9765.1 ± 4142.9 -646.8 ± 1527.5 -1548.7 ± 1105.2 

 IHG 8167.6 ± 1288.6 2039.3 ± 1343.5 2633.2 ± 1481.8 2388.4 ± 1427.9 3102.9 ± 2031.4 -714.3 ± 1005.1 -1417.4 ± 763.1 

      *  *   *  *     

HR IWS 66.2 ± 9.9 30.6 ± 11.1 35.8 ± 12.7 40.8 ± 14 45.8 ± 16.3 5.8 ± 7.3 -5.3 ± 6.6 

 IHG 65.5 ± 9.6 9.7 ± 4.4 11.7 ± 5.1 12.2 ± 5.6 15.5 ± 10 -2.1 ± 4.6 -6.6 ± 4.8 

      *   * *  *      

SI IWS 55.6 ± 15.7 -2.6 ± 6.7 -0.2 ± 6.8 -1.4 ± 6.1 -1.9 ± 7.5 4.6 ± 5.2 1.5 ± 15.6 

 IHG 57.9 ± 16.9 -5.5 ± 8.9 -5.3 ± 8.4 -4.9 ± 7.9 -5.4 ± 8.7 2.0 ± 4.6 0.4 ± 12.4 

                  

CI IWS 3.6 ± 0.9 1.4 ± 1.2 1.9 ± 1.4 2 ± 1.3  2.2 ± 1.5 0.7 ± 0.6 -0.2 ± 0.8 

 IHG 3.7 ± 1.2 0.2 ± 0.7 0.2 ± 0.6 0.4 ± 0.7 0.4 ± 0.8 0 ± 0.4 -0.3 ± 0.9 

       * *  *  *      

TPRI IWS 2251.1 ± 547 97.2 ± 497.1 -72.5 ± 595 -237.4 ± 573.2 -307 ± 610 -739.2 ± 453.2 -213.9 ± 482.3 

 IHG 2229.2 ± 677.9 291.7 ± 509.3 338 ± 515.9 159.6 ± 528.1 279 ± 609.2 -170.7 ± 272.2 -122.1 ± 466.9 

       * *   * *  *    

Table 3.1.1 Haemodynamic parameters at baseline, and Δ scores during IE, and in recovery. 

Data are presented as the mean change from baseline ± SD. sBP = systolic blood pressure (mmHg); dBP = diastolic blood pressure (mmHg); mBP = mean blood pressure (mmHg); 

RPP = rate pressure product; HR = heart rate (bpm); SI = stroke index (mL.m-2); CI = cardiac index (L.min-1 m-2; TPRI = total peripheral resistance index (dyn.s-1.m-2.cm-5). *=sig. 
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Figure 3.1.2 Hemodynamic responses to IWS and IHG. Values are presented as mean ± SEM. A, sBP. B, mBP. C, dBP. D, 

RPP. E, HR. F, SV. G, CO. H, TPR. *=sig. 
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3.2 Cardiac autonomic response 

Baseline data and Δ scores during each bout of IE, and in recovery for each autonomic variable are 

displayed in Table 3.2.1 and Figure 3.2.2. There was a significant condition by time effect for PSD-RRI 

(log10) [F(3.251, 81.267)= 7.768, P= <0.001] (Figure 3.2.2.A). Pairwise comparisons show PSD-RRI was 

significantly lower in the IWS condition throughout all exercise bouts (all P= <0.001), and remained 

significantly lower during the 10-min recovery period (P= <0.001). There were no significant differences 

1-hour post exercise.  

Both Lfnu [F(4.352, 108.804)= 2.741, P= 0.028] (Figure 3.2.2.C) and HFnu [F(4.352, 108.804)= 2.741, P= 

0.028] (Figure 3.2.2.D) data showed significant condition by time interactions. Pairwise comparisons 

revealed a significant difference between conditions at IE4 for both LFnu (P= 0.018) and HFnu (P= 0.018), 

with the IHG producing a greater increase in LFnu (8.461) and a greater decrease in HFnu (-8.461) 

compared to the IWS (1.037 and -1.037, respectively). There were no significant differences during the 

10-min recovery or 1-hour post exercise. There was no condition by time interaction for either absolute 

LF (ms2) [F(2.486, 62.138)= 2.254, P= 0.102] or HF (ms2) [F(3.102, 77.555)= 0.058, P= 0.983] HRV data. 

There was a significant interaction between condition and time for the LF/HF ratio [F(3.298, 82.438)= 

5.729, P= 0.001] (Figure 3.2.2.E). Pairwise comparisons show the LF/HF ratio was significantly higher in 

the IWS condition at IE1 (P= 0.002). At IE4, the difference remained significant (Z= -2.426, P= 0.015), but 

the ratio was higher in the IHG condition. There were no significant differences during the 10-min 

recovery or 1-hour post exercise.  

The BRS data showed a significant interaction between condition and time [F(3.571, 89.274)= 4.752, P= 

0.002] (Figure 3.2.2.B). The reduction of BRS was significantly greater during all 4 bouts of IWS. The 

greatest reduction in was at IE4 (-13.041), which was significantly lower than the IHG condition (Z=-2.400, 

P= 0.016). There were no significant differences during the 10-min recovery or 1-hour post exercise.  

3.3 Rate of perceived exertion 

The rate of perceived exertion (RPE) data showed a significant interaction between condition and time 

[F(3.187,84.126)= 3.232, P= 0.001]. Pairwise comparisons show RPE was higher during IHG exercise at 

both IE3 (P= <0.001) and IE4 (P= <0.001). 
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Parameter   Baseline ΔIE1 IE2Δ IE3Δ IE4Δ 10-minΔ 1-HourΔ 

PSD-RRI IWS 3.3 ± 0.3 -0.2 ± 0.3 -0.4 ± 0.3 -0.4 ± 0.3 -0.5 ± 0.4 -0.2 ± 0.3 0 ± 0.3 

 
IHG 3.4 ± 0.4 0 ± 0.3 0 ± 0.3 -0.1 ± 0.3 -0.1 ± 0.3 0.1 ± 0.2 0 ± 0.2 

       * *   * *   *   

LF - RRI IWS 1188.2 ± 799.4 -384.2 ± 834.8 -623.5 ± 690 -704.7 ± 603.2 -783.2 ± 682.1 -407.8 ± 394.9 31 ± 644.4 

 IHG 1510.6 ± 1178.1 -89.4 ± 885.7 -50.8 ± 903.3 -144.5 ± 956.6 -90.3 ± 977.9 177.8 ± 598.3 23.4 ± 826.9 

                  

HF - RRI IWS 826.2 ± 831.9 -427.1 ± 907.6 -444.7 ± 888.2 -506.6 ± 848.9 -522.6 ± 934.7 -70 ± 610.9 373.2 ± 847.5 

 
IHG 1128.7 ± 1100.5 -327.5 ± 889 -315 ± 1005.4 -458.4 ± 753.2 -423.3 ± 933.5 29.5 ± 537.5 554.5 ± 1506.4 

                  

LF/HF IWS 2.2 ± 1.1 1.9 ± 2.1 0.7 ± 2.6 0.7 ± 1.6 0.2 ± 1.5 -0.3 ± 0.9 -0.8 ± 0.8 

 
IHG 2.1 ± 1 0.4 ± 1.4 0.6 ± 1.9 1.3 ± 1.8 1.2 ± 2.2 0.1 ± 1.2 -0.5 ± 0.9 

       *     *      

BRS IWS 18.7 ± 9.1 -11.3 ± 9.8 -12 ± 9 -13 ± 9.2 -13.6 ± 9 -1.4 ± 7.2 4.5 ± 6.7 

 
IHG 20.2 ± 9.7 -5.3 ± 7.3 -6.3 ± 9.6 -8.6 ± 8.2 -9.4 ± 8.8 0.3 ± 5.1 2.9 ± 9.2 

       * *  *   *     

Table 3.2.1 Autonomic parameters at baseline, and Δ during IE, and in recovery. 

Data are presented as the mean change from baseline ± SD. PSD–RRI = power spectral density (ms2); LF-RRI = low frequency (ms2); HF-RRI = high frequency (ms2); LF/HF-RRI = 

LF/HF ratio; BRS = baroreceptor reflex sensitivity (ms.mmHg-1). *=sig. 
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Figure 3.2.2 Autonomic responses to IWS and IHG. Values are presented as mean ± SEM. A, PSD-RRI. B, BRS. 

C, LFnu. D, HFnu. E, LF:HF ratio. *=sig. 
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4.0 Discussion 

4.1 Executive summary of findings 

This study is the first of its type to compare the continuous cardiac autonomic and haemodynamic 

regulatory responses during and following a single isometric wall squat (IWS) and isometric hand grip 

(IHG) exercise session. The study employed the two most commonly used protocols for IWS and IHG 

training. However, as this was a study focused upon the acute cardiovascular responses, programme 

variables and data collection protocols were matched wherever possible. A repeated measures design 

was used, in which a cohort of 26 male and female (50:50) sedentary participants undertook both an IWS 

and an IHG exercise session in a randomised order. Cardiac autonomic and haemodynamic variables 

were measured continuously during and following each exercise session, and results were analysed for 

comparisons using the change from baseline as the independent variable.  

The current study hypothesised that the IWS, which uses a larger amount of muscle mass than the IHG, 

would result in a significantly greater CV response. This hypothesis was founded on previous research 

which has demonstrated that when performed at the same relative intensity and duration (Seals and 

Enoka, 1989; Williams et al., 1991), exercises involving a larger amount of muscle mass induce a greater 

CV response than those with a small amount of muscle mass (Mitchell et al., 1980; Kilbom and Persson, 

1981; Seals et al., 1983; Misner et al., 1990; Iellamo et al., 1999; Gálvez et al., 2000), which has been 

argued as a likely stimulus for reductions in BP (Gálvez et al., 2000). Data from the current study has 

demonstrated a significantly greater elevation in CV parameters throughout all IWS exercise bouts, 

followed by a significantly greater corresponding drop in BP and TPR during the 10-min post exercise 

window.  

4.2 During IE 

During IWS exercise, there was a significantly greater increase in BP. The increased BP coincided with a 

significantly greater increase in HR and Q̇ compared to the IHG condition. Since there were no significant 

differences in SV between conditions, the difference in Q̇ would be attributable to the change in HR. This 

finding further supports the theoretical argument that an increased CV drive is related to a larger amount 

of muscle mass recruitment.  

During all four bouts of IWS exercise there was a significantly greater drop of PSD-RRI and BRS than 

during IHG exercise, which correlated inversely with the greater CV alterations. Studies have shown that 

decreases in HRV and BRS occur during exercise and that the magnitude of the decrease in variation is 

strongly correlated with muscle mass recruitment and exercise intensity (Iellamo et al., 1999; Saboul et 

al., 2016). This finding is consistent with the study conducted by Taylor et al., (2017) who also found a 
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significant decrease in PSD-RRI and BRS and reciprocal increases in HR and BP. Taylor et al., (2017) argued 

that the greater muscle mass activation and the relatively high contraction intensity used during IWS 

exercise results in a greater engagement of the muscle metaboreflex, which produces a reflex inhibition 

of cardiac vagal tone and increase in sympathetic nerve activity (Taylor et al., 2017). However, frequency 

parameters of heart rate variability (HRV) data in the current study were inconclusive and do support this 

notion.  

As there was a significantly reduced BRS during all four IWS bouts, the lack of sympathetic activation may 

partly be explained by the DeBoer hypothesis (DeBoer et al., 1987). The DeBoer hypothesis is based on a 

mathematical model of the circulation which examines the interactions of the fast vagal response to 

baroreceptor stimulation and the slower response of the sympathetic efferents controlling the arterial 

smooth muscle. The model explains why conditions that are associated with a reduction in gain of the 

arterial baroreflex control (such as exercise) are also associated with diminution of the LF peak, despite 

other good evidence of increased sympathetic tone (Sleight et al., 1995). 

The LF/HF ratio shift in the current study was significantly greater during the first bout of IWS exercise 

compared to the IHG condition. This suggests that the greater muscle mass utilised during IWS exercise 

induced a greater increase in sympathetic activity, compared to the smaller muscle mass utilised during 

IHG exercise. The significant difference in the BP response at IE1 between IWS and IHG exercise supports 

this concept. However, although the shift in the LF/HF ratio remained above baseline throughout all IWS 

exercise bouts, the ratio was not significantly different at IE2 and IE3 to coincide with the significantly 

greater increase in HR during all IWS exercise bouts. In fact, during IE4, IHG exercise produced a 

significantly greater increase in LF oscillations and a higher LF/HF ratio than IWS exercise, signifying a 

greater sympathetic response in the IHG condition. However, HR remained significantly higher in the IWS 

condition throughout all exercise bouts compared to IHG. Therefore, it is difficult to accept that a gradual 

increase in parasympathetic modulation and/or a decrease in sympathetic activation could be 

responsible for this shift in the LF/HF ratio at a time when HR was increasing in response to the IWS. 

It has been suggested that HR alterations are not simply the result of simple algebraic summation of 

sympathetic and parasympathetic nerve activity, and that physiological interventions can produce either 

parallel or complex non-linear reciprocal changes in both domains of the autonomic nervous system 

(Billman, 2013). Interventions that, in line with the theorised linear model of autonomics, would be 

expected to induce sympathetic activation, such as acute exercise and even acute myocardial ischaemia, 

have not only failed to evoke an increase in LF oscillations, but have produced reductions in this 

parameter. Houle and Billman, (1999) showed that despite large increases in HR, the LF/HF ratio was 

unaffected by either acute myocardial ischaemia or exercise. Stewart et al., (2007) also found that 
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sympathetic activation decreased during a single 2-min bout of unilateral IHG exercise, but still found sBP 

increased by 29 mmHg.  

However, although the IWS data in the current study may not have followed the expected autonomic 

trends, data from the IHG condition performed a lot more predictably, with a coherent response 

between HR, and LF and HF data. As such, a more likely explanation is that the complexity of neural 

control precedes the arguably simplistic presumptions for a linear, fixed, model of autonomics. This gives 

scope to the likelihood of a dichotomy between HR and autonomics, one that may be related to, 

differences in the muscle mass recruitment and relative intensity during IWS exercise.  

In line with the significantly greater ∆ RPP during IWS exercise, it is possible that a protective mechanism 

modulated the neural drive to prevent myocardial damage. Indeed, a high RPP is indicative of a greater 

myocardial load. During an IWS contraction, this greater myocardial load will also be coincided with an 

increased pressor response, which collectively, at a certain threshold, may stimulate a myocardial 

protective mechanism.  

One myocardial protective mechanism that may be at work is the cardiac natriuretic system (Hamasaki, 

2016). It has also been reported that circulating atrial natriuretic peptides (ANP) increases during mild 

exercise, with the dominant stimulus for its release being elevations in atrial wall tension. During an IHG 

contraction, Barletta et al., (1998) found increases in HR were accompanied by comparable increases in 

plasma ANP (+77%). The release of ANP was induced by an increase in mean left atrial pressure evoked 

through an increase in BP and HR (Barletta et al., 1998). Therefore, as the IWS in the current study 

produced significantly greater increases in HR and BP, there may have been a greater increase in these 

peptides. Butler et al., (1994) used spectral analysis of HRV to investigate the effects of exogenous ANP 

on the sympathetic and parasympathetic nervous system in healthy individuals. It was concluded that 

ANP lowered parameters of sympathetic nervous activity but had no significant effects on indicators of 

parasympathetic nervous activity (Butler et al., 1994). It should also be noted that the response derived 

from the stimulation of these peptides has been shown to regulate endothelial function through 

vasodilatory properties (Luchner and Schunkert, 2004). As such, the significantly greater reduction of TPR 

in the IWS condition may be related to the secretion of these peptides. However, more research is 

needed to determine whether these peptides have any influence on cardiac autonomics during IE. 

The effects of exercise on circulating catecholamine (adrenaline and noradrenaline) release should also 

not be overlooked when comparing the acute responses following IWS and IHG exercise. Exercise induces 

a rise in catecholamines that is observed across a wide range of exercise modalities (Christensen & 

Brandsborg 1973, Galbo et al., 1975, Vecht et al., 1978, Hickson et al., 1979). For example, Watson et al., 

(1980) showed an increase in plasma catecholamine during a lower limb unilateral IE contraction of the 
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quadricep. Studies have shown that both adrenaline and noradrenaline are involved in cardiovascular 

modulation, and the secretion of these hormones are positively related to increases in HR (Zouhal et al., 

2008). Therefore, it is conceivable that catecholamine secretion was greater during IWS exercise in the 

current study, which may have been influential on the significantly greater CV response observed.  

Isolated muscle contractions during IE typically result in an increased sympathetically modulation 

vasoconstriction and hyperaemia to the working muscle (Lawrence et al., 2015). In the current study 

there was also significantly less TPR during IWS exercise. The decreased TPR during successive bouts of 

IWS suggests that there was increased arterial dilation. Taylor et al., (2017) also found TPR was 

significantly decreased during IWS exercise and argued that there may have been a more dominant 

vascular response that could have overridden any sympathetically modulation venous compliance. It may 

be that there were a number of peripheral and vascular mechanisms that influenced TPR, such as 

increased concentrations of adenosine triphosphate (ATP) and nitric oxide (NO) and other potential 

vasodilators that downregulated the release of noradrenaline produced by sympathetic activation (Taylor 

et al., 2017). It could be argued that this potential downregulation may have influenced efferent 

pathways and subsequent LF oscillations during IWS. However, this is only speculative and requires 

further research. 

4.3 Additional findings  

Aside from a greater recruitment of muscle mass and the subsequently greater pressor response, one 

theory that has not yet been explored to explain the greater CV response during IWS exercise is the 

location of the occluded musculature. It has been shown that using blood flow restriction during exercise 

expedites fatigue in the areas distal to the occluded muscles (Jessee et al., 2018). This works by reducing 

arterial flow and occluding venous flow, resulting in a pooling of blood and metabolites distal to the cuff 

position when exercising (Yasuda et al., 2010). As such, although the occlusion may be greater during the 

IHG, there are no major muscles affected in the areas distal to the forearm and hand. Conversely, the 

IWS, which predominately uses the quadriceps, has the lower leg muscles, such as the gastrocnemius and 

the soleus, in its distal periphery, which are arguably more indispensable. Therefore, during IWS exercise, 

in an attempt to alleviate any distal fatigue in areas distal to the occluded muscles, the body will try to 

ensure that adequate blood flow is maintained, either through an increased Q̇ or a decrease in occlusion 

at the quadricep (reduced TPR). Conversely, it could be that the areas distal to the occluded quadricep 

during IWS exercise do have a restricted blood flow, which stimulates afferent fibres in these areas, 

inducing an increased CV response. Further research is needed to investigate the influence that the 

location of occlusion has on the CV response during IE. 
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Another interesting finding in the current study is in relation to the rate of BP elevations during IWS. 

Previous research has shown a single 2-min bout of unilateral IHG exercise produced a greater increase in 

sBP (Stewart et al., 2007; Garg et al., 2013) than IWS exercise in the study by Taylor et al., (2017). 

Conversely, the current study found that in the IWS condition, sBP was significantly higher during the first 

2-min bout than the IHG condition - and also remained higher throughout all successive bouts. The study 

by Taylor et al., (2017) only observed an increase in sBP of 8.9 mmHg during the first bout of IWS, 

compared to the much larger increase of 38 mmHg in the current study. One potential explanation for 

the blunted BP increase during the first bout of IWS in the study by Taylor et al., (2017) compared to the 

current study may be related to the different baseline resting protocols used. The current study 

measured baseline resting measures using 5 min of supine rest followed by 5 min of seated rest, whereas 

Taylor et al., (2017) only utilised 5 min of supine rest. Taylor et al., (2017) acknowledged that a change in 

posture and subsequent gravitational stress may influence cardiovascular haemodynamics and remarked 

that the pattern of the haemodynamic response may differ if using a seated or upright position (Taylor et 

al., 2017). It has been suggested that there may be a transient decrease in BP seen when humans stand 

up (Secher, 2007). Indeed, Sprangers et al., (1991) found that moving from a supine to standing position 

elicited a transient 25% fall in mBP as a result of a 36% fall in TPR, and therefore utilising a seated resting 

position prior to standing up for the IWS may eliminate any hypotensive responses when going straight 

from supine to standing.  

This finding suggests that the resting protocol in the Taylor et al., (2017) study with no additional 5 min of 

seated rest may have influenced the reactivity of the cardiovascular system prior to exercise which 

translates to an attenuated BP response in bout 1 resulting in a more gradual increase over the 4 bouts. 

Another reason the different patterns in BP responses between Taylor et al., (2017) and the current 

study may be related to orthostatic stress which occurs during periods of seated rest (de Brito et al., 

2019). Orthostatic stress results in a shift of blood away from the chest towards the distensible venous 

capacitance system below the diaphragm; commonly referred to as venous pooling (Wieling and 

Groothuis, 2012). This pooling reduces the volume of blood available to the cardiac ventricles which 

reduces arterial BP unless compensatory adjustments are made, such as an increase in muscle 

sympathetic nerve activity. It is thought that this increase in sympathetic activity is a result of the 

inhibition of the cardiopulmonary reflex due to the venous pooling (Gibbons and Freeman, 2012). As 

such, it could be argued that this increase in sympathetic outflow at the onset of IE may help prime the 

body, resulting in a sharper rise in CV parameters. Nonetheless, the current study used a normotensive 

population with both male and females compared to the all-male pre-hypertensive population used by 

Taylor et al., (2017), which may have altered the patterns of BP elevations. For example, Wong et al., 

(2007) found that women had smaller increases in HR and BP than men at the onset of IHG exercise, and 
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suggested it could be a result of differential neural activation in several forebrain sites associated with 

autonomic regulation.  

4.4 Post IE 

As hypothesised, this exaggerated response led to a significantly greater transient drop in sBP, dBP, and 

mBP during the 10-min recovery period post exercise than in the IHG condition. This finding also supports 

previous work by Taylor et al., (2017) and O’Driscoll et al., (2017) who, amongst pre-hypertensive 

participants, also found similar results in a 5-min recovery window following an acute bout of IWS 

exercise. Likewise, the relatively small reductions induced in the IHG condition in the current study are 

similar to those found by Millar et al., (2009) who only found a significant drop of 3 mmHg in sBP 

amongst a normotensive cohort following 4x2-min bouts of IHG exercise at 30% MVC; albeit bilateral 

IHG. 

Short-term responses after acute IE have been shown to play an important role in chronic BP adaptations 

following an IE training programme (Liu et al., 2012; Farah et al., 2017; Somani et al., 2017). Inder et al., 

(2016) argued that upper body IHG exercise leads to repeated bouts of hypoxia in the forearm, ultimately 

causing alterations in arterial stiffness, resulting in greater chronic BP reductions when compared to 

lower limb IE. However, the significantly greater PEH response in the IWS condition may represent a 

greater potentiality for chronic BP reductions following lower limb IWS training, which may be related to 

the larger muscle mass recruitment and pressor response.  

Although the mechanisms responsible for the BP adaptations seen with IE training remain unclear, 

according to Ohms law it can be said that BP reductions are a result of either altered modulation of Q̇, 

TPR, or both (Millar et al., 2014). As the current study did not find any significant differences between 

conditions for Q̇ during the 10-min recovery, it is likely that any reductions were mainly influenced 

through alterations in peripheral resistance. 

During recovery, TPR was significantly lower in the IWS condition. This response corresponds with the 

findings from Taylor et al., (2017) who found TPR was significantly reduced following IWS exercise. Taylor 

et al., (2017) remarked that changes in post exercise TPR may be associated with a significant increase in 

parasympathetic activity. However, during recovery in the current study, there were no differences in HF 

oscillations parameters between conditions; although it must be noted that HFnu was above baseline in 

both conditions. 

There was also a significantly greater PSD-RRI during the 10-min recovery following IHG, which 

represents a better recovery from exercise. In fact, PSD-RRI did not return to baseline during the 10-min 

recovery window in the IWS condition, which may be related to a higher intensity during IWS exercise 
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compared to IHG. This finding supports previous research that has suggested high intensity exercise can 

impair immediate post-exercise HRV recovery (Buchheit et al., 2007; Kaikkonen et al., 2008; Kaikkonen et 

al., 2010). The current study also found no differences between conditions for BRS. In fact, BRS stayed 

below baseline during the 10-min recovery window. It is thought that the PEH following IE may be related 

the baroreceptors resetting to a lower operating range with an increased sensitivity (Taylor et al., 2017). 

However, the current study found no differences between conditions for BRS, or any autonomic 

variables, which may suggest that reductions in TPR following IWS exercise were not primarily 

substantiated through autonomic modulation and may have been facilitated through more peripherally 

originated mechanisms.  

The evidenced reductions in TPR may be related to SS. Hyperaemia and BP can induce vessels to stretch 

under different biological or physical mechanisms. An increase in blood flow results in vasodilation, while 

an increase in BP causes mechanical distension (Lu and Kassab, 2011). The primary mediator in a flow-

mediated dilatory SS response is NO, which is generated from endothelial NO synthase (Ignarro et al., 

1987; Huang et al., 1995). One of the main mechanisms for the increases in circumferential stretch is 

alterations in vascular tone (Birukova et al., 2006). As there were no differences in parasympathetic 

activation post exercise, this may signify that the flow-mediated response was the more dominant 

mechanistic pathway associated with the evidenced differences between IWS and IHG exercise.  

Nonetheless, previous research has argued that the brachial artery is more sensitive to SS associated 

dilatory adaptations than the CFA. Walther et al., (2008) has argued that there is little evidence to 

support SS induced adaptation in the CFA and suggests this may be due to a reduced ability in the CFA to 

dilate in response to a SS stimulus (Walther et al., 2008). The base of this argument was founded on the 

assumption that the threshold for the femoral artery to become occluded during IWS is much greater 

than the occlusive capacity of the brachial artery due to the latter’s smaller diameter (Inder et al., 2016). 

Indeed, vessels with the same diameter will be exposed to equivalent increases in flow and SS. However, 

occluded vessels with a smaller diameter will be affected substantially more by levels of SS. This leads to 

not only morphological changes of endothelium and blood vessel wall, but can also result in biochemical 

and biological events (Lu and Kassab, 2011). 

The latter argument has some prevalence in the current study, in that TPR was significantly higher during 

IHG2, IHG3, and IHG4, potentially signifying a greater level of occlusion. Indeed, higher levels of SS 

caused by an increased level of occlusion during IHG exercise may lead to higher levels of local 

circumferential wall stress (Lu and Kassab, 2011). However, the increased blood flow during IWS exercise, 

evidenced by the greater Q̇ response, along with an increased pressor response arising from the increase 

BP, may have stimulated a greater relative post-exercise vascular response. Indeed, as previously 
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discussed, during IWS exercise, Taylor et al., (2017) argued that arterial dilatation occurs and that the 

release of sympathetic neurotransmitters may be superseded by a more dominant vascular reaction. 

Taylor et al., (2017) also remarked that only the working muscles receive hyperaemic blood flow during IE 

and the extent of the hyperaemic response is muscle mass dependent (Taylor et al., 2017). Therefore, it 

could be argued that due to the greater muscular recruitment in the IWS exercise, there is a larger 

surface area of vasculature exposed to hyperaemic blood flow, thus increasing the overall exposure to SS. 

Studies have also shown that exercise can enhance vascular function beyond the active regions (Linke et 

al., 2001; Green, 2005). For example, Thijssen et al., (2013) showed that dynamic leg cycling caused 

systemic arterial wall adaptations due to increase blood flow, resulting in enhanced arterial vessel 

compliance and a decrease in TPR. Moreover, Birk et al., (2012) found that amongst health participants, 

lower limb cycle exercise evoked a transient increase in upper limb vascular function, and suggested that 

this response was mediated, at least partly, via SS. Indeed, the increased blood flow and BP during IWS 

exercise may have subsequently increased systemic levels of frictional and circumferential SS (Lu and 

Kassab, 2011).  

This study was the first of its type to compare the haemodynamic and autonomic responses 1-hour 

following an acute bout of IWS and IHG exercise. The duration of PEH is important to reveal whether the 

acute responses can have a clinical impact reducing the subject’s CV load and risk for a long period of 

time (de Brito et al., 2019). Data from the current study showed no significant differences between 

conditions in any parameters 1-hour post exercise. Thus, although some evidence exists to support a 

relation between the length of the PEH response and the intensity and duration of the exercise stimulus 

(Seals and Kenney, 1993), this has not been demonstrated in the current study. Nevertheless, all BP 

parameters for both conditions did remain below baseline 1-hour post exercise. One interesting finding 

that is worth mentioning is the trend for a greater reduction 1-hour post than during the 10-min recovery 

for the IHG condition. All BP measurements in the IHG condition continued to decline, whereas the IWS 

reductions were returning to baseline; although the magnitude of reductions was still greater in the IWS 

condition 1-hour post. Although comparisons are difficult to make, this contrasts the findings by Goessler 

et al., (2016) who found that bilateral IHG at 30% MVC evoked no transient reductions in BP amongst a 

cohort of hypertensives 5-min or 1-hour post exercise. More research is needed to understand the 

differences in the duration and magnitude of PEH following an acute bout of IWS and IHG exercise. 

4.5 Practical application 

The practical application of these findings may provide health care professionals and practitioners with 

guidance on the more effective protocol to reduce resting BP. Indeed, it has been suggested that chronic 

adaptations may result from temporal summation of acute responses (Farah et al., 2017) and that the 
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magnitude of PEH following an acute bout of exercise may predict the extent of BP reductions following a 

chronic intervention (Liu et al., 2012). As such, it could be argued that due to the greater PEH 

experienced following an acute bout of IWS exercise, chronic reductions following an IWS training 

programme would be greater than following an IHG training programme. However, amongst 

normotensive populations, reductions following IWS and IHG training programmes have been similar 

(Kelley and Kelley, 2010; Wiles et al., 2017; Taylor et al., 2019). A follow up intervention would be ideal to 

investigate any links between acute responses and long-term adaptions following IWS and IHG training. 

Another practical finding from the current study is in relation to the significant differences found in RPE 

data between the IWS and IHG conditions. As the intensities were methodically different in their setup, 

95% HRpeak vs. 30% MVC, and due to the contrasting contraction types, constant position vs. constant 

tension, it could be argued that the relative intensity in the IWS had a greater capacity to influence 

changes in CV parameters. Interestingly, Wiles et al., (2010) found that IWS exercise prescribed at 95% 

HRpeak was relative to approx. 22% MVC during ILE. This may suggest that even though the intensity was 

lower during IWS exercise when adjusting to MVC, the stimulus was still greater, potentially due to the 

larger muscle mass recruitment. However, MVC during ILE does not directly relate to MVC during IHG 

exercise, and thus comparisons are difficult to make. However, as previously discussed, RPE was higher 

during IHG3 and IHG4. Therefore, in many ways the intensity/stimulus was greater during IWS, yet the 

perceived exertion was lower. Furthermore, four participants failed to maintain the unilateral IHG 

contraction within approx. 10% of the 30% MVC threshold. This is important and may have health/clinical 

implications surrounding future IE prescription. The primary aim for the collection of RPE data was to 

ascertain any correlations between exertion and changes in CV parameters. However, from a prescriptive 

perspective, the RPE data suggests that participants may prefer IWS exercise due to less perceived 

exertion. This finding warrants future research from a qualitative perspective. 

Notwithstanding the above, it must be acknowledged that although the IHG condition evoked 

significantly less PEH than the IWS condition, there was also significantly less myocardial load. Data from 

the current study shows that RPP was significantly lower in the IHG condition, suggesting that IHG 

exercise does not elicit the same level of CV stress as IWS exercise. However, Inder et al., (2016) suggests 

that IE per se does not elicit the same level of CV stress as aerobic activity. Indeed, when comparing the 

RPP data during IWS in the current study (18,188 ± 4829 beats min−1 mmHg) to an aerobic intervention 

(32,837 ± 2251 beats min−1 mmHg), it is arguably much less (Maiorana, et al., 2002).  

A study by Wiles et al., (2018) investigating the safety of IWS exercise also evoked similar RPP values 

(18074 ± 3209 beats min−1 mmHg) using a hypertensive population during an acute bout of IWS. The 

study showed that IWS exercise was safe amongst a hypertensive cohort by comparing BP values induced 
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during IWS exercise to the current ACSM guidelines for aerobic exercise termination. Some participants 

(12/26) exceeded the 115 mm Hg threshold for dBP, whereas no participants had sBP values outside of 

the 250 mmHg guidelines. The same findings were prevalent in the current study, in which 14 out of 26 

participants exceeded the dBP threshold, but none exceeded the sBP limit. Wiles et al., (2018) suggested 

the need to individualise IE training prescription with participants that have suboptimal BP control. For 

participants with suboptimal BP control, IHG may be a more appropriate first step in the treatment 

process, with IWS treatment being a prospective modality based on reasonable improvement in 

cardiovascular reactivity. Indeed, all good training programmes will have an element of progressive 

overload, with a variety of exercises (Hass, Feigenbaum and Franklin, 2001). Moreover, when factoring in 

the sustainability of IE prescription, and the fact that drop-out rates during resistance exercise 

programmes have been reported to be around 22–38% (Zech et al., 2012; Ericsson et al., 2016), it is 

important to acknowledge that an increased variety of exercises available will enhance the overall 

application of IE to the wider population (Geirsdottir et al., 2017). Therefore, a more holistic outlook of 

the findings from the current study is that data collected from both conditions can enhance our 

understanding of the comparative acute responses from a variety of isometric modalities, enhancing the 

overall applicability of IE prescription.  

The application of these findings can also be representative of a more heterogenous population. The 

finding that IWS can produce greater transient reductions in BP amongst both men and women expands 

on previous research who have used a male cohort (O’Driscoll et al., 2017; Taylor et al., 2017). Although 

exploring sex differences was not a primary aim of this study, previous research has demonstrated that 

there are differences between males and females in the acute recovery from IHG. For example, an 

increased BRS during exercise, and a reduced HR in recovery for females, which may be related to female 

sex hormones (Teixeira et al., 2017). However, future studies are needed to ascertain the difference 

haemodynamic and autonomic responses between males and females following IWS and IHG exercise. 

It should also be recognised that using an additional 5-min seated rest in the current study enhances the 

generalisability of the results. Although the supine position favours haemodynamic measurements 

without the orthostatic stress inferring (Gotshall et al., 1994), it may decrease the real-world application 

of the findings as outside of research studies, as individuals are less likely to start exercise and recover 

from exercise in the supine position. On the other hand, an additional seated position may be more 

appropriate as a person may be more likely to sit and talk before or after exercise (de Brito et al., 2019). 

 

 



31 
 

4.6 Limitations 

This study is not without limitations, most notably the robustness of cardiac autonomic data. It has been 

suggested that changes in HRV can be influenced by respiratory rates. A selection of studies that have 

investigated HRV during dynamic exercise have found similar results to the current study, in that at peak 

exercise intensity (indicative of an elevated HR), HF components become more dominant over the LF, 

technically signifying a greater parasympathetic response (Bernardi et al., 1990; Casadei et al., 1995; 

Casadei et al., 1996; Pichon et al., 2004). One potential argument put forward is that the predominance 

of HFnu relates to the respiratory sinus arrhythmia that occurs in response to an increase in the 

oscillations of venous input to the heart, due to increasing tidal pressure and volumes (Bernardi et al., 

1990; De Meersman, 1992; Casadei et al., 1996; Keselbrener and Akselrod, 1996). Another potential 

mechanism put forward suggests that the increased stretch of the atrial wall, due to the increased 

changes in intrathoracic pressure, may influence the HF component during strenuous exercise (Bernardi 

et al., 1990).  

The theory that respiratory parameters can alter HR and R–R interval variability independent of changes 

in cardiac autonomic regulation is commonly cited throughout the literature (Angelone and Coulter, 

1964; Davies and Neilson, 1967; Hainsworth, 1974; Melcher, 1976; Hirsch and Bishop, 1981; Brown et al., 

1993; Van De Borne et al., 2001). Although no study has compared the respiratory rates between the two 

modalities, isometric and dynamic exercises are considered with different physiological characteristics, 

and it would be assumed that continuous dynamic exercise respiratory rates would be significantly 

higher. Nevertheless, the current study did not investigate respiratory rates, and therefore any 

associations are difficult to justify. However, it must be noted that Iellamo et al., (1999) found increases 

in respiratory rates were minimal during ILE, amounting to approx. 2 breaths/min, which would arguably 

have very little influence on HF alterations. 

Another potential limitation concerns the use of single pre–post measurements of resting BP. It is 

conceivable that BP readings could be exaggerated at the onset of a study due as undertaking a novel 

laboratory or training setting may lead to nervousness or excitement. As such, resting BP may have 

experienced a normal reduction (e.g. regression to the mean) and the observed pre–post effects may be 

misleadingly pronounced. Consequently, potential errors in the pre-study and post-study BP 

measurements make it hard to determine any training effects and may contribute to false negative and 

positive results (Millar et al., 2007). However, the methodology used to record resting measures has 

been shown to be reliable at rest, giving confidence that any changes measured from baseline can be 

attributed to IE (Taylor et al., 2017). Furthermore, it has been suggested that where PEH is a primary 

outcome, at least two familiarisation sessions should be used in accordance with reliability and 
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familiarisation studies (Rosner and Polk, 1981; Stolt et al., 1990). The current study used two 

familiarisation sessions, one for baseline BP to gauge suitability for the study, and one for the 

incremental IWS test and IHG MVC test, which strengthens the opposition to this potential pre-post 

limitation.  

4.7 Conclusion 

The results of the current study are the first to demonstrate that IWS exercise results in greater PEH than 

IHG exercise using a repeated measures crossover design. The study found a greater ∆ increase in HR and 

BP during IWS exercise, resulting in a greater ∆ reduction in TPR post exercise, potentially stimulated 

through peripheral vasodilatory mechanisms. This may be explained by more muscle mass being 

recruited during IWS exercise. However, there are a number of practical benefits for both IWS and IHG 

exercise potentiated in this study, such as a greater potential for BP reductions following IWS exercise, 

but less myocardial load during IHG exercise. Future research is needed to ascertain any associations 

between these acute responses and long-term training adaptions.  
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