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Lung cancer is a global health problem affectingmillions of people each year. Non-

small cell lung cancer (NSCLC) is the most common form of lung cancer with

various conventional treatment available in the clinic. Application of these

treatments alone often results in high rates of cancer reoccurrence and

metastasis. In addition, they can cause damage to healthy tissues, resulting in

many adverse effects. Nanotechnology has emerged as a modality for the

treatment of cancer. When used in combination with nanoparticles, it is possible

to improve the pharmacokinetic and pharmacodynamic profiles of pre-existing

drugs used in cancer treatment. Nanoparticles have physiochemical properties

such as small size which allowing passage through challenging areas of the body,

and large surface area allows for higher doses of drugs to be brought to the tumor

site. Nanoparticles can be functionalized which involves modifying the surface

chemistry of the particles and allows for the conjugation of ligands (small

molecules, antibodies, and peptides). Ligands can be chosen for their ability to

target components that are specific to or are upregulated in cancer cells, such as

targeting receptors on the tumor surface that are highly expressed in the cancer.

This ability to precisely target the tumor can improve the efficacy of drugs and

decrease toxic side effects. This review will discuss approaches used for targeting

drugs to tumors using nanoparticles, provide examples of how this has been

applied in the clinic and highlight future prospects for this technology.
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Introduction

Cancer is a leading cause of death worldwide, accounting for approximately 1 in 6

deaths (1). Compared with other cancer types, lung cancer has one of the poorest survival

outcomes with approximately 1.8 million deaths annually (2). Based on the histology of the

cancer cells, lung cancer is classified as either non-small cell lung cancer (NSCLC) or small
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cell lung cancer (SCLC). NSCLC is the most common form and

accounts for over 85% of all cases of lung cancer. NSCLC can begin

in various types of epithelial cells that line the lungs, whereas SCLC

will generally always begin in the bronchi (3). Currently, diagnosis

and staging of lung cancer can involve chest radiographs, computed

tomography (CT) scans, biopsies, and positron emission

tomography (PET) scans (4). Conventional treatment for NSCLC

includes surgery, which can involve removing part of the lung or the

whole lung, followed by chemotherapy and/or radiotherapy (5). An

alternative treatment which is less widely used is immunotherapy;

using antibodies to trigger the immune system into targeting the

cancer cells. Monoclonal antibodies (MABs) can be designed to

bind to target proteins on cancer cells so they can be more easily

detected by the immune system. MABs are also used as checkpoint

inhibitors which target and block checkpoint proteins on immune

cells to enhance the immune response against the tumor (6).

Patients with NSCLC are often tested for molecular markers;

changes in genetic sequences, gene expression levels and protein

structures and functions, associated with disease sub-types and

stages (7). These markers can be used to help diagnose and stage

diseases and provide prognostic information. In cancer therapy,

molecular markers can also be used to predict how patients will

respond to certain treatments, allowing treatment plans to be

personalized to each patient to increase the efficacy of treatment.

NSCLC patients will most commonly be tested for mutations in

epidermal growth factor receptors (EGFR), anaplastic lymphoma

kinase (ALK) and Kirsten rat sarcoma viral oncogene homolog

(KRAS). EGFR is overexpressed in 62% of cases of NSCLC and

patients with this mutation have high response rates to treatments

with tyrosine kinase inhibitors; therefore, this has become the

standard treatment for patients with this mutation (8)

Rearrangement of the ALK gene is detected in around 4% of

NSCLC patients and these patients tend to be highly responsive to

ALK inhibitors (9). Lastly, KRAS mutations occur in 25 - 35% of

NSCLC cases. Currently, there are no clinically approved drugs to

target KRAS mutations, however, this marker can still inform a

patient’s treatment plan as it is a negative predictor of response to

chemotherapy, but evidence suggests that cancer with this mutation

is more vulnerable to immunotherapy (10, 11)

The rate of recurrence in NSCLC is between 30% and 55%

depending on the stage of the disease – highlighting the need to

refine current treatments and develop new methods to treat it (12).

Conventional treatments can also damage nearby healthy tissue,

resulting in several adverse effects for patients. Using

nanotechnology, it is possible to develop new methods to target

drugs to tumor sites, increasing the efficacy of the drug and reducing

the harmful effects on healthy tissue.

Nanotechnology describes science, engineering and technology

that works with particles that are on the nanometer scale called

nanoparticles (NPs). NPs can be made up of carbon, metal, metal

oxides or organic matter and can be engineered to have different

shapes and sizes as well as altered surface chemistries; allowing

several types of NPs to be produced with various biological

applications (13). The physiochemical properties of NPs (such as

their small size) permit passage through challenging areas (such as

the blood-brain barrier) while the ability to modify their surface
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chemistries allows the NP-drug conjugate to be targeted to tumor

cells. Several NPs are therefore being developed to deliver

therapeutic agents to tumor cells, including in NSCLC.
Current uses of NPs in the clinic

Nanoparticles can be passively targeted to tumor cells due to the

enhanced permeability and retention effect (EPR). This describes

how nanoparticles will preferentially accumulate into tumor tissue

(due to the tumor’s leaky vasculature) and will remain in these

tissues for prolonged periods as they have impaired lymphatic

drainage. The EPR effect means drug-loaded NPs will concentrate

high drug doses into tumors compared with the free drug and

therefore decrease exposure to healthy tissue (14) Passive and active

drug targeting is represented in Figure 1.

Currently, two nanoformulations have been approved for

clinical use in the treatment of NSCLC – Abraxane and Genexol-

PM. Both drugs use the same active substance, paclitaxel (PTX)

which prevents microtubule dissociation and so inhibiting mitosis

leading to cell death. PTX is highly lipophilic so traditionally the

solvent Cremophor-EL is used to encapsulate it, however this is

associated with toxic side effects and decreases the efficacy of PTX.

Nanoparticles offer new methods of delivering this drug.

Abraxane (also known as Nab-PTX) uses a combination of NPs

with albumin-bound PTX and has been approved by the food and

drug administration (FDA) and European medicines agency (EMA)

for the treatment of advanced breast cancer, pancreatic cancer, and

NSCLC (15). For the treatment of NSCLC, Abraxane is

administered intravenously at 100mg/m2 on days 1, 8 and 15 of a

21-day cycle; carboplatin is also administered on day 1 of the cycle

(16) Abraxane has been shown to have a higher tumor uptake

compared to solvent based PTX. It is believed Abraxane reaches

tumor sites through the EPR effect and receptor-mediated

transcytosis. When administered, the albumin-bound PTX binds

to albumin-specific receptors such as glycoprotein 60 which

activates caveolin-1 resulting in the formation of transcytosis

vesicles. The vesicles are transported through the vascular

endothelial cells and to the tumor tissue (17). Abraxane allows

higher doses of PTX to be administered to patients with fewer side

effects and decreased administration time (18).

Genexol-PM also contains PTX but uses a formulation of

polymeric micelles. It has been approved in South Korea for the

treatment of recurrent and metastatic breast cancer and NSCLC. It

has been reported to have a maximum tolerated dose of 180mg/m2

when administered weekly to patients with solid tumors (19). A

phase II study of patients with NSCLC showed that treatment with

both genexol-PM and cisplatin had a significantly greater antitumor

effect and allowed higher doses of PTX to be administered without

significantly increasing toxicity (20). Treatment of NSCLC with

genexol-PM and gemcitabine in a phase II trial also showed

enhanced antitumor activity, however, severe side effects were

frequently observed so further studies are needed to evaluate the

safety of this treatment (21).

Currently, 4 clinical trials utilizing nanoparticles for drug

delivery in the treatment of NSCLC have reached phase III/IV,
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with one having completed – lipoplatin (22, 23). These are

summarized in Table 1 and Figure 2. Lipoplatin is a liposomal

formulation of the chemotherapy agent cisplatin, which has been

studied in the treatment of several cancers and has successfully

completed phase I, II and III clinical trials for the treatment of

NSCLC. Lipoplatin cannot be detected by immune cells so is able to

circulate in the body for longer and due to the EPR effect it will

preferentially accumulate in tumor tissue (22). A meta-analysis of

clinical trials looking at the efficacy and safety of lipoplatin

compared to conventional cisplatin, showed that patients with

NSCLC had higher response rates to lipoplatin and this

formulation had significantly lower toxicity than cisplatin.

However, overall survival and progression free survival were not

reported in most of these clinical trials so further studies are needed

to confirm the benefit of lipoplatin compared to cisplatin (23).

An active phase III trial is assessing the safety and efficacy of

treatment with carboplatin and a Nab-PTX formulation similar to

Abraxane together with the monoclonal antibody, HLX10, for stage

III and IV NSCLC compared to carboplatin Nab-PTX treatment

alone. HLX10 targets programmed cell death protein 1 (PD-1),

which is involved in inhibiting the immune response and elevated
Frontiers in Oncology 03
levels have been observed in NSCLC (28). The expected completion

date of this study was January 2023 (25)

A second ongoing phase III clinical trial uses a NP micellar

formulation of PTX similar to Genexol-PM, in combination with

cisplatin for the treatment of stage III/IV NSCLC (26) This study

has demonstrated a significant improvement in overall rate

response (50% compared to 26%) and progression free survival

(an increase of 1.1 months) in patients treated with the polymeric

micellar formulation of PTX and cisplatin compared to those

treated with solvent based PTX and cisplatin (29). Although this

trial has concluded, outcome measures are still being monitored.

Finally, a phase IV study is comparing the efficacy and safety of

treatment of advanced NSCLC with a liposomal formulation of

PTX (Lipusu) in combination with cisplatin and the standard

treatment of cisplatin and gemcitabine (27). Treatment with

Lipusu and cisplatin showed similar efficacy to the standard

treatment but had a better safety profile with fewer treatment

terminations and significantly lower incidences of adverse effects

(30) EPR is a unique property of NPs that makes them suitable as

drug delivery systems, however, relying on the effects of EPR alone

only results in a moderate increase in drug delivery to tumors
TABLE 1 Nanoformulations approved or in phase III/IV clinical trials for the treatment of NSCLC. Adapted from Holder et al. (24).

Product/Clinical trial
identifier

Active drug
loaded

NP type Clinical status Reference

Abraxane PTX Albumin-bound
combination

Approved for treatment of breast cancer, NSCLC, and
pancreatic cancer

(15)

Genexol-PM PTX Polymeric micelles Approved for treatment of breast cancer and NSCLC in
South Korea

(19–21)

Lipoplatin Cisplatin Liposome Completed phase III clinical trials for treatment of NSCLC (22, 23)

NCT04033354 HLX10 Nab-PTX Albumin-bound
combination

Ongoing phase III clinical trial for treatment of NSCLC (25)

NCT02667743 PTX Polymeric micelles Ongoing phase III trial for treatment of NSCLC (26)

Lipusu/NCT02996214 PTX Liposome Ongoing phase IV trial for treatment of NSCLC (27)
f

FIGURE 1

A comparison of passive and active drug targeting. Passive targeting relies on the EPR effect for NPs to accumulate in tumor tissue and release the
encapsulated drug to the cells by diffusion. Active targeting involves conjugating proteins to the NPs which bind to receptors that are overexpressed
by tumor cells. The NP enters the tumor cell by receptor mediated endocytosis and the drug is released.
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compared to healthy cells; therefore other methods are required to

more effectively target tumor cells (31).
Using NPs for targeted drug delivery

Another property of tumor tissues which can be exploited in

targeted drug delivery is the slightly acidic environment that is

observed in the tumor microenvironment (pH of 6.5 to 6.8).

Nanoparticles can therefore be engineered to be pH-sensitive so

that they only release anti-cancer drugs when they reach the tumor

site (32) Tan andWang, 2017 conjugated the pH-sensitive polymer,

poly (acrylic acid) (PAA), to lipid nanoparticles which were loaded

with the kinase inhibitor Erlotinib (ETB). In vitro cytotoxicity was

significantly increased in A549 cells treated with the PAA-ETB-NP

conjugate compared to ETB-NPs and ETB alone – suggesting the

addition of PAA caused enhanced drug delivery to the tumor.

Tumor inhibition was also measured in lung cancer mouse models.

After 21 days tumor inhibition rate of PAA-ETB-NPs was

significantly higher than ETB-NPs and ETB solution (84.5%

compared to 68.7% and 38.1% respectively). Both ETB-NP

conjugates had a much higher drug concentration in tumor tissue

compared to the ETB solution and showed a far lower

concentration in healthy tissues such as kidneys and the heart

(33). This study demonstrates how drugs can be targeted to tumors

using pH-sensitive release methods to increase drug delivery to

tumors and decrease the effects of the drug in healthy tissue.

As discussed, patients with NSCLC are commonly tested for

mutations in EGFR, ALK and KRAS, to predict which treatments

patients will respond best to. Due to the overexpression of EGFR in

many cases of NSCLC, it can be used for specific recognition of

cancer cells. EGFR antibodies (EGFRAb) can be conjugated with
Frontiers in Oncology 04
NPs to direct them to tumor sites for targeted drug delivery.

Sundarraj et al., 2014 conjugated EGFRAb to a type of hollow

mesoporous silica nanoparticle called silica nanorattles (SN) and

loaded this with pyrrolidine-2 (34). Pyrrolidine-2 is an inhibitor of

cytosolic phospholipase A2 a (cPLA2a), an enzyme that catalyzes

the hydrolysis of phospholipids to arachidonic acid and

lysophospholipids, precursors of numerous biologically active

lipids. In lung cancer, cPLA2a is believed to promote tumor

growth by enhancing cell viability and proliferation (35). The

internalization of the EGFRAb conjugated SN loaded with

pyrrolidine-2 (EGFRAb-SN-pyrrolidine-2), was almost double in

NSCLC cells compared to healthy lung cells (44.57 and 29.28%

respectively) and in vitro studies showed that cytotoxicity, cell cycle

arrest and apoptosis were significantly higher in cells treated with

EGFRAb-SN-pyrroldine-2 compared with free pyrroldine-2 and

SN-pyrroldine-2. In vivo studies with healthy mice found that

EGFRAb-SN-pyrroldine-2 had low systemic toxicity compared

with free pyrroldine-2, and in lung cancer mouse models

EGFRAb-SN-pyrroldine-2 had an enhanced tumor inhibition

rate. These findings demonstrate the ability of EGFRAb-SN-

pyrrolidine-2 to effectively target drug delivery to lung cancer

cells and enhance the effects of the drug and reduce toxicity to

healthy cells.

Another protein which is often overexpressed in lung cancer is

vascular endothelial-derived growth factor (VEGF). VEGF is the

key inducer of angiogenesis through binding to VEGF receptor 2

(VEGFR2) and activating downstream signaling pathways. In many

cancers VEGF is upregulated by oncogenes and tumor hypoxia

leading to an overexpression of VEGFR2, promoting angiogenesis

and therefore tumor growth (36). Neuropilin1 (NRP1) is a

glycoprotein receptor which can act as a co-receptor with

VEGFR2 and VEFA-165 to enhance their binding and promote
B

C D

A

FIGURE 2

Schematic representation of nanoparticles created for targeted drug delivery in NSCLC. (A). Lipid NPs were conjugated with the pH sensitive
polymer, poly (acrylic acid) (PAA) and loaded with the kinase inhibitor Erlotinib (ETB). (B). EGFR antibodies (EGFRAbs) were conjufated to silica NPs
which were loaded with pyrrolidine-2, an inhibitor of cytosolic phospholipase A2 a, cPLA2a. (C). Liposomal NPs were coated in tLYP-1 peptide and
loaded with parthenolide and compound K (CK). (D). Silica NPs were loaded with doxorubicin or cisplatin and an siRNA and an LHRH peptide was
conjugated to target the tumor and a fluorescent protein was conjugated to measure fluorescence intensity.
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angiogenic signaling (37, 38). NRP1 has been shown to be highly

expressed in NSCLC is believed to correspond to poor patient

prognosis, it is therefore a potential target for tumor therapy (39).

Jin et al., 2018 designed a liposomal NP which targeted NRP1 by

coating the NP with the tumor-homing peptide, tLyp-1. They then

loaded these NPs with parthenolide and ginsenoside compound K

(CK), naturally occurring compounds which have shown numerous

antitumor effects in cancers including NSCLC (40, 41). Cellular

uptake of tLyp-1-liposomes was greater than liposomes coated in

polyethylene glycol (PEG), and there was a greater accumulation of

tLyp-1 in tumors from NSCLC mouse models. NSCLC cells

exposed to CK/parthenolide tLyp-1 liposomes had significantly

higher rates of apoptosis than those exposed to the free drugs

alone or in combination. In vivo antitumor efficacy was also greater

in mice treated with the CK/parthenolide tLyp-1-liposome

formulation compared to the free drugs and PEG-liposomes

loaded with the drugs. Lastly, lower systemic toxicity was

observed in tissues of mice treated with the CK/parthenolide

tLyp-1-liposomes compared to other treatments (42). This study

suggested the CK/parthenolide tLyp-liposomes could effectively

inhibit tumor growth and minimize the harmful effects of the

drugs on healthy tissue.

Conventionally, anti-cancer drugs are administered

intravenously meaning the drug will circulate around the body

and affect healthy tissue. For treating NSCLC, delivery of anti-

cancer agents via inhalation holds a number of advantages. Firstly,

higher concentrations of the drug can be achieved at the tumor site

so lower doses can be used, reducing systemic exposure and adverse

effects. The alveoli of the lungs have a large surface area, so drugs are

absorbed quicker and there is enhanced drug bioavailability as

unlike the gastrointestinal tract, the lungs have a reduced enzyme

activity relating to drug metabolism (43, 44).

Taratula et al., 2010 developed a mesoporous-silica nanoparticle

(MSN) for drug delivery by inhalation for the treatment of lung

cancer (45). The MSN was loaded with an anticancer drug

(doxorubicin or cisplatin) as well as small inhibitory RNAs

(siRNAs) targeted to either MRP1 or BCL2 mRNA in order to

suppress drug resistance. The MSN-drug-siRNA conjugate was

targeted to lung cancer cells by conjugating a luteinizing

hormone-releasing hormone (LHRH) peptide, whose receptor is

overexpressed in many cancer types including lung cancer (46) The

MSN-drug-siRNA conjugate was fluorescently labelled, and

fluorescence intensity was measured in different organs three

hours after the drug was administered to lung cancer mouse

models either by inhalation or intravenously. The amount of the

MSN complex retained in the lungs was 14.6 times higher when it

was administered by inhalation compared to intravenously.

Accumulation of the complex in other organs was significantly

decreased when administered by inhalation, limiting exposure to

healthy tissue. In vitro cytotoxicity was measured, and the effect of

the drugs was highest when delivered by the MSN complex in

combination with siRNAs. This study demonstrates that

nanoparticles can be used to effectively deliver drugs to the lungs

through inhalation and limit exposure of the drug to healthy tissue.

Although NPs have been shown to have great potential in

cancer treatment, there are still many issues that must be overcome
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target tumor sites, is random in nature and cannot be controlled. It

is estimated that less than 1% of NPs that are injected reach the

target site and the amount reaching healthy cells is substantial –

causing therefore it is essential for tumor targeting to be optimized

(47, 48). Another challenge with using NPs in the clinic is the

effect of the immune response when NPs are administered. When

NPs are administered, they can trigger the immune system and

subsequently be destroyed through the immune response. Pre-

clinical cancer studies often use immunocompromised

mice, which may explain why success in these trials is not

always translated when they are administered to humans in

clinical trials (49) It is possible to engineer NPs to avoid

recognition by the immune system. The size, shape and surface

property of a NP will determine how the immune system responds;

smaller, tubular, and inorganic NPs have been found to have better

delivery efficiency (50). One way for NPs to evade the immune

response is by coating them in a natural cell membrane. This has

been demonstrated using red blood cell membrane coated NPs. The

coated NPs retain many of the markers on the surface of natural red

blood cells such as CD47, a protein that interacts with a receptor

on macrophages, triggering a pathway that results in reduced

phagocytosis (51) These coated NPs were able to evade the

immune system and had an increased blood circulation time in

mouse models (52).
Discussion

Lung cancer has one of the poorest survival outcomes of all

cancers with traditional therapies often resulting in high rates of

reoccurrence and damage to healthy tissue causing numerous

adverse effects. NPs offer enhanced methods of drug delivery to

target sites and can improve the pharmacokinetics and

pharmacodynamic profiles of pre-existing cancer drugs. Using

NPs, drugs can be transported to tumor sites at higher

concentrations without increased systemic toxicity. Approved

nanoformulations and those in late stages of clinical trials, tend to

rely on the EPR effect to achieve enhanced drug delivery to tumor

sites; however, the benefits of this type of therapy are limited. To

enhance the effects, the surface of nanoparticles can be modified so

that they are targeted to cancer cells. This can be done by taking

advantage of the slightly acidic environment of tumors and the

overexpression of specific receptors that are seen in a number of

cancers. By targeting cancer cells, it is possible to further improve

drug efficacy and minimize the exposure of the drug to healthy

tissues and decrease toxic side effects. NPs can also be adapted to

allow them to be administered by inhalation, this offers a promising

non-invasive alternative to intravenous cancer therapy and can

enable lower doses of the drug to be administered whilst still

achieving the same concentration in the lungs. Despite the

promising advancements in nanotechnology, only a handful of

nanoformulations created for cancer treatment have shown

efficacy in clinical trials. This highlights the need for future

research to enhance the targeting capabilities of NPs and improve

uptake in tumors.
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