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Abstract— In the context of global cancer prevalence and the 

imperative need to improve diagnostic efficiency, scientists 

have turned to machine learning (ML) techniques to expedite 

diagnosis processes. Although previous research has shown 

promising results in developing predictive models for faster 

cancer diagnosis, discrepancies in outcomes have emerged, 

even when employing the same dataset. This study addresses a 

critical question: does the choice of development platform for 

ML models impact their performance in cancer diagnosis? 

Utilizing the publicly available Wisconsin Diagnostic Breast 

Cancer (WDBC) dataset from the University of California, 

Irvine (UCI) to train four ML algorithms on two distinct 

platforms: Python SciKit-Learn and Knime Analytics. The 

algorithms’ performance was rigorously assessed and 

compared, with both platforms operating under their default 

configurations. The findings of this study underscore an 

impact of platform selection on ML model performance, 

emphasizing the need for thoughtful consideration when 

choosing a platform for predictive models’ development. Such 

a decision bears significant implications for model efficacy and, 

ultimately, patient outcomes in the healthcare industry. The 

source code (Python and Knime) and data for this study are 

made fully available through a public GitHub repository.  

Keywords-Cancer; Machine Learning; Python SciKit-Learn; 

Knime Analytics; Wisconsin Diagnostic Breast Cancer (WDBC). 

I. INTRODUCTION  

Cancer is a global health menace responsible for nearly 

10,000,000 deaths in year 2020 alone [1][2][3]. This disease 

is characterized by the uncontrolled growth of body cells 

which forms tumors classified as malignant - the cancerous 

cells that are invasive and capable of spreading to other 

parts of the body - or benign - the non-cancerous cells that 

are not capable of invading nearby tissues and are less 
harmful.    This disease's complexity spans multiple organs 

like the breast, kidneys, brain, lungs, prostate, ovaries, and 

skin, posing substantial challenges for healthcare 

professionals and patients alike. Despite significant progress 

in cancer understanding and treatment development, timely 

diagnosis remains critical as delays exacerbate patients' 

conditions, often leading to irreparable outcomes and 

increased mortality rates. 

        Scientists are channeling substantial resources into 

accelerating the diagnostic process, and artificial 

intelligence, which has proven effective in various 

industries, is offering hope for quicker and more effective 

cancer diagnosis methods. Machine learning, a subset of 

artificial intelligence, has profoundly reshaped medical 

research, enhancing diagnostic precision, prognostic 

accuracy, and treatment strategies. By harnessing advanced 

computational techniques, ML algorithms ranging from 

Logistic Regression (LR) to Decision Trees (DT), Random 

Forests (RF), Gradient Boosting (GB) among several others 

for cancer diagnosis,  extract insights from intricate medical 
data used in revolutionizing clinical decision-making and 

improving patient outcomes from pinpointing diseases 

through image analysis [4] to forecasting patient responses 

to therapies [5].    
These ML algorithms have showcased remarkable 

potential in the field. However, a critical aspect that we 
found to be underexplored is the impact of implementation 
platforms on which the algorithms are trained, and models 
are developed, such as Python Scikit-learn and Knime 
analytics, on the performance of these algorithms. Therefore, 
understanding the nuanced influence of implementation 
platforms on ML algorithms is pivotal. 

Against this backdrop, this study used supervised 
learning, training models on labeled WDBC datasets [6] to 
evaluate the performance metrics of ML algorithms 
including accuracy, precision, recall, and F1-Score focusing 
on the nuanced relationship between implementation 
platforms and the efficacy of these algorithms. It emphasizes 
the potential impact of platform choice on algorithm 
behavior, highlighting the necessity of discerning these 
disparities.  

This study embarks on two pivotal inquiries:  
(1) It seeks to answer whether the choice of the 

implementation platform significantly impacts the 
performance of ML algorithms in cancer data classification, 

(2) Identifies which of the selected algorithms performed 
best in cancer dataset binary classification task. 

By delving into these fundamental questions and 
meticulously avoiding hyperparameter tuning, this research 
provides nuanced insights, offering a comprehensive 
understanding of the intricate interplay between ML 
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algorithms, implementation platforms, and feature 
significance.  

The rest of this paper is organized as follows: Works 
relating to this study were explored in Section II, examining 
relevant literature to the research question. The section starts 
by looking at studies that used ML in cancer research, then at 
the different algorithms implemented, the train-test split, 
performance metrics, dataset sources, and implementation 
platforms used. Section III outlines the Methodology used 
for this study, detailing data collection and pre-processing 
steps, feature selection, and implementation of the selected 
ML models. Section IV presents the Results and Discussion, 
followed by Conclusion and Future Work in Section V. 

II. RELATED WORK 

Researchers have explored and reported the use of various 
supervised ML algorithms in different areas of human health 
and medical fields. Some previous studies reviewed are 
briefly discussed below. 

A. Machine Learning in Cancer Research 

Michael et al. in [7] tested five ML classification 

algorithms on 912 breast ultrasound images found that  

Light Gradient Boosting Machine (LightGBM), the 

algorithm proposed in their work, which has an accuracy of  

99.86%, outperformed other algorithms including the K-

Nearest Neighbour (KNN), and RF in binary classification 

of cancerous cells as either malignant or benign. Similarly, 
Ara et al. in [8] used a ML techniques to develop model for 

classifying cancer cells into two main categories. Kumar et 

al. in [9] on the other hand focused on using ML ensemble 

techniques for breast cancer detection and classification. 

Their Optimized Stacking Ensemble Learning (OSEL) 

model showed a higher accuracy in performing the task than 

other ensemble ML techniques, such as Stochastic Gradient 

Boosting and XGBoost tested in their research. Ebrahim et 

al. in [10] tested eight predictive algorithms on National 

Cancer Institute dataset to identify which algorithm would 

predict cancer cell more accurately. 

B. Selection of Algorithm 

LR, a linear model is a powerful predictive analysis tool 
that is especially useful for binary classification [11].  
Rahman et al. [12] examined six ML algorithms for 
predicting Chronic Liver Disease (CLD) and LR algorithm 
was found to be the most effective in predicting CLD based 
on the selected features. Zhu et al. in [11] experimented with 
improved LR in the classification of binary variable and one 
or more independent variables to predict diabetes.   

Likewise, Tree based algorithms including DT, RF and 
GB are widely researched with the intent of harnessing their 
strengths particularly in performing classification tasks. DT 
serve as foundational structures, offering transparency and 
interpretability by partitioning feature spaces into 
hierarchical branches thereby excelling in capturing non-
linear relationships and feature interactions, enabling 
straightforward visualization of decision-making processes. 
Moving beyond individual trees, RF combines multiple DT 

through ensemble techniques, averting overfitting and 
increasing predictive accuracy [13]. By combining varied 
perspectives from individual trees, RF provides robust 
generalization and robustness to noisy data.  

By extension, GB algorithm, a more advanced method, 
embraces an iterative refinement to enhance predictive 
performance and in particular, Gradient Boosting Trees, such 
as XGBoost. It employs sequential tree fitting to target the 
residuals of prior iterations, systematically improving model 
predictions. These algorithms perform better in modeling 
complex relationships, accommodating non-linearities, and 
excelling in predictive accuracy across domains [14][15]. 
These characteristics formed the basis on which we selected 
the algorithms in our study. 

C. Train-Test Split 

For evaluation, datasets used in various studies are split 
into different proportions using the larger proportion to train 
algorithms while the smaller proportion is used to test at the 
inference stage of model development. In [10], the authors 
assessed the performance of some classical and deep learning 
algorithms used to predict breast cancer, including DT, LR, 
KNN, Support Vector Machine (SVM), Recurrent Neural 
Networks (RNN) and Ensemble Learning. They used 
Train/Test split of 70:30 and 90:10. DT and Ensemble 
methods showed higher accuracy both before and after 
feature selection. Whereas DT did not perform optimally in 
Kidney Cancer Lung Metastasis prediction as reported by 
[16] when trained with 52,222 data from Surveillance, 
Epidemiology, and End Results (SEER) database and 492 
hospital patient data with Train/Test split of 70:30 returning 
accuracy of 82% which is significantly lower than in other 
studies reviewed.  

D. Performance Metrics 

Efficient model development and deployment require 
rigorous assessment, evaluating the accuracy and other key 
metrics like precision, recall, and F1-score derived from the 
confusion matrix. Accuracy gauges correctly predicted 
instances against the total dataset, offering a general 
overview of predictive success. In imbalanced datasets, 
relying solely on accuracy can be deceptive. Therefore, other 
metrics such as precision, recall, and F1-score gain 
importance. Precision specifically gauges correctly predicted 
positive instances, which is crucial in scenarios like medical 
diagnoses where false positives can have adverse 
consequences. Recall assesses true positive predictions, 
essential for capturing all positive instances, especially 
critical in medical scenarios to avoid missing dangerous 
conditions. F1-score strikes a balance between precision and 
recall, offering a nuanced evaluation, particularly valuable 
when dealing with class imbalances in datasets.  

These four metrics were assessed in our study (TABLE 3); 
they collectively provide a comprehensive assessment of a 
model's performance.  

E. Datasets 

Data quality is fundamental in machine learning, shaping 
model development and real-world utility. The WDBC [6] 
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has been pivotal in healthcare, especially for binary tumor 
classification, crucial in timely cancer detection and 
treatment planning. While studies like [17][18][19] 
employed smaller, open-source WDBC datasets (typically 
fewer than 600 records and 30 features), other studies in [10] 
and [15] diverged. For example, [10] used a substantial 
dataset from the National Cancer Institute (NIH) containing 
1.7 million records and 210 features. Despite its size, dataset 
quality, marked by precision and representativeness, 
significantly influences outcomes. Smaller datasets with 
these qualities outperform larger, noisier ones. This 
distinction is evident in accuracy rates, with open-source 
datasets achieving 99.12%, 99.67%, and 100%, compared to 
the model in [10] with a lower accuracy of 98.7%.  

F. Implementation Platform 

KNIME Analytics, a no-code tool recognized for its user-
friendly interface and compatibility with various other tools, 
has been utilized for comprehensive ML research, as 
demonstrated in studies like [20] which looks at cancer 
incidence among individuals with HIV in Zimbabwe. 
Meanwhile, Python, with its extensive ecosystem and 
libraries like SciKit-Learn, has gained prominence in 
machine learning. Studies in [16][21][22] performed their 
cancer research work using Python. Both platforms have 
strong support from scientists, underlining the need for 
further research into their respective impacts on algorithm 
performance.  

The findings of the literature are summarized in TABLE 1. 
The table highlights the latest studies that used ML 
techniques in cancer research, the data source used, train – 
test split ratio adopted in the study, the implementation 
platform used, the algorithm type and the model accuracy (a 
‘–’ has been used in the table in the case where the 
information was missing in the literature).  

     The recent surge in research on ML applications in 

healthcare, specifically in diverse cancer data sets, is 

evident. Nevertheless, a significant research gap persists 

concerning the impact of implementation platforms on 

algorithm performance in cancer classification.  

    While several studies have used different implementation 

platforms in developing ML models for predictive and 

classification tasks, none, to the best of our knowledge, have 

examined the impact of implementation platforms on ML 

algorithm performance. This gap forms the focal point of 

our research contribution, that will be explored in 
subsequent sections, highlighting the novelty and 

importance of our investigation. 
 
 
 
 
 
 
 
 
 
 

TABLE 1. COMPARATIVE REVIEW OF SOME STUDIES THAT 

USED MACHINE LEARNING TECHNIQUES IN CANCER 

RESEARCH. 

 

 
    Addressing the gap identified in the literature, the next 
section presents the methodology carried out.  

III. METHODOLOGY 

This study's methodology comprises systematic steps for 

a comparative analysis of ML algorithms using the WDBC 

dataset and two implementation platforms. The process as 

illustrated in  includes data collection, exploration, feature 

engineering, and selection using filtering and random forest 

techniques. The dataset was split into an 80% training set 

and a 20% test set before model development, ensuring a 

robust evaluation process.  

A. Data Collection and Preprocessing 

We selected a publicly available dataset on UCI Machine 
Learning repository, the WDBC [6] because it was sourced 
from a medical research study and its extensive use in breast 
cancer machine learning research due to its real-world 
applicability, in addition to its popularity within the research 
community for binary classification task. With 569 
occurrences and 30 attributes (benign tumours made up 
62.7% of the total instances while the cancerous tumour, 
malignant class comprise 37.3%) was extracted from 
digitized Breast Mass Fine Needle Aspiration (FNA) 

 
Author, 

Year 

 
Data Source 

No of 
Records 
/Features 

 
Train/Test 

Split 

 
Implementation 

Platform 

 
Algorithm 

Type 

 
Model 

Accuracy 
 

Ebrahim et 

al. 

[10],2023 
 

National 

Cancer 

Institute 

(NIH), USA 

 

 

70,079/107 

 

70:30 
&90:10 

 

 

Python 

DT, LR, 

VM, LD, 

ET, KNN 

 

98.7% 

 

Shafique et 

al.[18],2023 

 

Kaggle       
    569/30 

 

75:25 
-  RF, VM, 

GBM, LR, 

MLP, KNN 
 

 

100% 

 

 

Uddin et al. 
[19], 2023 

 

 

UCI 

 

 

569/30 

 

 

70:30 

 

 

Python 

SVM, RF, 

KNN, NB, 

DT, LR, 
AB, GB, 

MLP, NCC, 

VC 

 

 

98.7% 

Zhang et al 

[23]., 2022 
 

TCGA 
 

     604/ -  
 

- 
 

R & Python 
RF, SVM, 

libD3C 
 

99.67% 
 

Aamir 

et.al.[24], 

2022 

 

UCI 
 

   569/26 
 

80:20 
&70:30 

 

Python & 

Tensor Flow 

RF, GB, 

SVM, ANN, 

MLP 
 

 

99.12% 

 

Yi et al., 

[16],2023 

SEER& 

Southwest 

Hospital, 

China. 

 

 52,714 / - 
 

70:30 
 

         Python 
 

LR, XGB, 

RF, SVM, 

ANN, DT 

 

- 

 

Mahesh et 

al., 

[22],2022 

 

 

Kaggle 

 

 

143/10 

 

 

70:30 

 

 

Python 

 

NB, AltDT, 

RedEPT, RF 

 

 

98.20% 

ATEŞ et al. 

[25] 2021 
 

Kaggle 
 

569/30 
 

70:30 
 

Knime 
NB, DT, 

MLP 
 

96.5% 

Minnoor et 

al.[13] 2023 
 

UCI 
 

569/30 
 

80:20 
 

- 
RF, SVM, 

DT, MLP, 
KNN 

 

100% 

Ara et al. [8] 

, 2021 
 

UCI       
    569/30 

 

75:25 
 

- 
SVM, LR, 

KNN, DT, 

NB, RF 

 

96.5% 

Liu, et al.  
[26]2018 

UCI      569/30 75:25 Python LR 96.5% 

  

22Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-136-7

AIHealth 2024 : The First International Conference on AI-Health



specimens, including features like "Diagnosis" (categorized 
as Malignant (M) or Benign (B)) and various measurements 
from cell nuclei in biopsy images ("radius_mean," 
"texture_mean," "perimeter_mean," etc.) [6], providing a 
rich foundation for cancer predictive analysis. 

 
TABLE 2. WDBC DATASET VARIABLES DATATYPE. 

 

 
 
In the data preprocessing phase, the dataset was 

structured into a Python dataframe named "breast". The data 
was subsequently queried to ascertain the data types and to 
check for presence of any null values. According to TABLE 2, 
data consists of both integer and floating-point values, and 
no null values were found. Further analysis involved 
identifying outliers through box plots and the Capping 
method was applied to mitigate their impact. This technique, 
as presented by [27] involved setting values below the lower 
whisker to the lower whisker's value and values above the 
upper whisker to the upper whisker's value, ensuring an 
unbiased model. 

Normalization was achieved through Z-Score 
Normalization (Standardization) which rescales each feature 
to normal distribution with a mean of 0 and a standard 
deviation of 1 [28][29]. Standardizing features to the same 
scale are essential to prevent algorithms from giving undue 

importance to larger-magnitude features, thus preserving 
fairness and accuracy across diverse ML algorithms. This 
process ensured that each feature contributed proportionally 
to the learning process, averting dominance by any single 
feature, and promoting balanced model decisions. Equation 1 
below represents the computation formula for z-score 
standardization [29]. 

 

Z=(x-µ)/σ.       (1)  

 

where z is the scaled value of the feature, 

x is the original value of the feature, 

μ is the mean value of the feature, and 

σ is the standard deviation of the feature. 

Correlation analysis was conducted to evaluate the 
relationship between each feature, a crucial step preceding 
feature selection, providing insights into features 
independently related to the target variable. This analysis 
was followed by a detailed examination of individual feature 
relationships, discerning the impact of changes in one feature 
on another and identifying strongly correlated independent 
features. High correlation between features suggests 
redundancy, potentially diminishing their value in the model, 
thus ensuring more effective predictions. 

B.  Feature Selection 

Selection of essential features is a crucial stage [30]. We 

employed both the Filter Method as in [4], and the Tree-

Based Method as in [31]. Initially, the Filter Method was 

utilized to evaluate dataset features based on their 

correlation scores with the target variable. Features with 

coefficients ≤ 0.5 were eliminated as they were considered 

to have low significance based on feature selection 

technique used in [32], while those above this threshold 
were retained, resulting in the identification of 15 out of the 

30 features for further analysis. To confirm these selections, 

the Tree-Based Method was employed, utilizing the RF 

Classifier. This method, known for balancing 

interpretability and computational efficiency while 

capturing both linear and non-linear relationships between 

the features as shown in Figure 2, affirmed the chosen 

features, underscoring their significance in model 

development [30].  

The synergy between the two methods ensured a 

comprehensive and accurate feature selection process, 

crucial for enhancing the model's predictive capabilities. 
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 Figure 1. Flowchart illustrating the research methodology applied in this study. 
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Figure 2. Scatter plot showing relationships between some of the features. 
(A view of relationships between some other features can be viewed on the 

GitHub [31]). 
 

Understanding the relationship between the features helped 
to inform the class of ML algorithms that will be best suited 
for the classification task. 

C  Model Selection and Implementation 

  Four Supervised ML classification algorithms were 
chosen, each based on their specific properties and extensive 
use in previous research. This study selected LR because of 
its ability to estimate outcome probabilities, along with its 
interpretability and computational efficiency. These 
attributes make LR a widely favoured option for binary 
classification tasks. DT, RF, and GB, all belonging to the 
Tree-Based algorithms category, were selected for their 
recursive partitioning approach, which efficiently identifies 
optimal features and split points, enhancing the models' 
accuracy. 

This study was carried out utilizing the Knime Analytics 
Platform Version 4.7.6 and Python version 3.11.4 
(Jupyterlab) using the Scikit-Learn library. During this 
process, the algorithms underwent training and testing in 
their default configurations, with a maximum of 100 epochs, 
a learning rate of 0.1, and no parameter tuning—except in 
Knime, where the default split criterion for RF was adjusted 
from "Information Gain Ratio" to "Gini Index," aligning it 
with the default split criterion in Scikit Learn. 

This adjustment was implemented to maintain fairness in 
the comparative evaluation. A train-test split ratio of 80:20 
was applied, with 80% of the dataset allocated for training, 
enabling the algorithms to learn patterns, while the 
remaining 20% was reserved for testing, evaluating the 
models' ability to generalize to unseen data points. This 
methodology ensured a comprehensive evaluation of the 
algorithms' performance and their suitability for the 
classification task at hand. The source code (Python and 
Knime) and data for this study can be found in the public 
GitHub repository [31].  

IV. RESULTS AND DISCUSSION  

This section outlines the experimental results achieved 
following implementation of the four algorithms on both 
platforms comparatively in TABLE 3 and visualized in Figure 3 
after assessing their Accuracy, Recall, Precision, and F1-
Score.  
 

TABLE 3. COMPARATIVE ASSESSMENT OF MODEL 

PERFORMANCE ON THE TWO PLATFORMS. 
 

 
 
Also, we reported the Confusion matrix, showing the True 

Positive, True Negative, False Positive, and False Negative 
values, providing a comprehensive evaluation of this study's 
outcomes in TABLE 4.  
 
 

TABLE 4. PLATFORM BASED CONFUSION MATRIX OF THE 

ALGORITHMS. 
 

.  
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Figure 3. Column Chart Visualization-Comparison of all the algorithms 

performance on both platforms for: 
(a) Accuracy (b) Recall (c) Precision and (d) F1-Score. 

 

In the KNIME Analytics platform, the LR algorithm 

achieved an Accuracy of 0.92105, with Recall, Precision, 

and F1 Score of 0.88372, 0.90476, and 0.89412, 
respectively signifying that the model correctly classified 

approximately 92.11% of the instances. In comparison, the 

DT algorithm demonstrated a slightly lower Accuracy of 

0.88596, yet it exhibited higher Recall (0.90698) and F1 

Score (0.85714), suggesting that it is proficient in capturing 

true positive instances while maintaining a balance between 

precision and recall, although its Precision score was 

0.81250, indicating a relatively lower ability to avoid false 
positives.  

The RF algorithm on the other hand achieved an 

Accuracy of 0.91228, almost on par with LR. It yielded 

Recall, Precision, and F1 Score of 0.88372, 0.88372, and 

0.88372, respectively, presenting consistent performance 

across the metrics. The GB algorithm, like DT, secured an 

Accuracy of 0.90351, while it demonstrated a Recall of 

0.86047, Precision of 0.88095, and F1 Score of 0.87059 

reflecting a balanced trade-off between sensitivity and 

precision, critical in medical diagnosis scenarios. 

However, on Python (Scikit-Learn) platform, the LR 

model exhibited superior performance, with an Accuracy of 
0.95614. This shows an improvement in predictive accuracy 

when compared to its counterpart in KNIME Analytics. The 

Recall 0.92857, Precision 0.95122, and F1 Score 0.93976 

further validate the model's proficiency in correctly 

classifying instances. DT and RF algorithms also displayed 

an improvement in their performance in the Python (Scikit-

Learn) environment, with Accuracy values of 0.92981 and 

0.94737, respectively.  

Moreover, the Recall, Precision, and F1 Score values for 

these models witnessed an increase, thereby strengthening 

their overall predictive capabilities. The GB shows 
remarkable performance, attaining an Accuracy of 0.97368, 

a significant improvement compared to its counterpart in 

KNIME corroborating its impressive performance with 

Recall, Precision, and F1 Score values of 0.97619, 0.95349, 

and 0.96471, respectively, making it a standout in terms of 

all metrics.  

The comparative analysis of these algorithms across the 

two platforms demonstrates the intricate relationship 

between algorithm choice, implementation environment, 

and resultant performance metrics. While KNIME Analytics 

rendered reliable results, Python (Scikit-Learn) emerged as 

the platform offering enhanced predictive accuracy across 
the board. Notably, the GB algorithm stood out in Python 

(Scikit-Learn), exhibiting remarkable performance, which is 

highly relevant in medical contexts where accurate 

classification holds paramount importance. These findings 

underscore the necessity of carefully considering both 

algorithm selection and platform for optimal performance in 

predictive modeling endeavors. 

Additionally, the confusion matrix of the models was 

evaluated on their ability to predict both the 'Positive' and 

'Negative' classes, and the calculated metrics offer valuable 

insights into their proficiency. The matrices revealed that 
while models generally perform well, some algorithms, such 

as DT and GB, consistently exhibit a higher number of True 

Positives emphasizing the accurate prediction of positive 

cases which is crucial in medical contexts to minimize the 

risk of false negatives.  
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Comparing the KNIME and SciKit-Learn platforms, a 

pattern emerges. Generally, the SciKit-Learn platform 

showcases slightly better performance metrics, particularly 

in terms of True Positives and True Negatives. This 

disparity suggests that the SciKit-Learn implementation 
may have certain advantages in terms of predictive accuracy 

and class separation. 

Also in our analysis, we conducted a comparative 

assessment of the LR, GB, and RF models on scikit-learn 

against the Baseline Model Performance (BMP- available 

on UCI website) established using the same dataset from the 

UCI Machine Learning Repository. The LR and GB models 

demonstrated accuracy values of 95.6 and 97.4, 

respectively, falling within the BMP range [92.308-98.601]. 

Similarly, their precision scores (95.1 and 95.3) were 

consistent with the baseline range [91.555-98.576]. In 

contrast, the RF model reported accuracy and precision 
scores (94.7 and 89.1) below the lower limit of the baseline 

performance. On the other hand, for all metrics, the 

performances of the algorithms on Knime Analytics were 

lower than the lower limits of the BMP score. 

V. CONCLUSION AND FUTURE WORK 

This comparative experiment aimed to investigate the 

potential impact of machine learning implementation 

platform on the performance of machine learning models 

using the WDBC dataset and four classification algorithms 

during both training and inference phases in Python SciKit-

Learn and Knime Analytics. The results demonstrated 
variation in the metrics for the algorithms in Python 

compared to Knime. While Knime showed its strength with 

the LR algorithm in terms of accuracy, Python presented 

different performance patterns, with DT excelling in recall 

and RF as well as GB providing high recall values, which 

are crucial in the context of cancer diagnosis as it suggests a 

reduced likelihood of false negatives.  

These findings emphasize the significance of platform 

choice when considering the specific performance metrics 

required for a given application, shedding light on the 

intricate relationship between algorithm selection and the 

implementation environment. It is important to note that this 
study does not intend to render a verdict on the overall 

efficacy of either tool in ML model development but rather 

serves as an investigation into the potential disparities 

introduced by their respective architectures, providing 

insights for informed decision-making in predictive 

modeling endeavors. 

Further research should explore a larger dataset as we 

hope this may contribute to the generalizability of the 

models and as a means of broadening the applicability of 

these findings. Future studies may also evaluate the 

performance of the algorithms on both platforms using other 
datasets. In addition, future work may:  

(i) drill down to identify factors responsible for the observed 

differences by examining the platforms architecture,  

(ii) extend the experiment by including some other 

classifiers algorithms, such as SVM and Multi-Layer 

Perceptron (MLP). 

(iii) implement on different platforms including R and Weka 

or test multiple datasets. 
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