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Abstract: Due to the often low video quality and high camera position, it is difficult to get clear human 

faces. Person re-identification across nonoverlapping camera views is a challenging computer vision task. 

In this paper, a novel approach called Attribute learning based on Distributed Deep Convolutional Neural 

Network (AL-DDCNN) model is proposed to deal with person re-identification task. It shows how mid-

level “semantic attributes” can be generated for person description and further shows how this attribute-

based description can be used in synergy with low-level feature descriptions to improve re-identification 

accuracy when author-topic model is employed to map category. Besides, considered the ability to operate 

on raw pixel input without the need to design special features, Deep Convolutional Neural Network is 

employed to generate features without supervision for attributes learning model. To overcome the model’s 

weakness in computing seep, parallelized implementations such as distributed parameter manipulation 

and attributes learning are employed in AL-DDCNN model. Experiments show that the proposed 

approach achieve state-of-the-art recognition performance in the VIPeR data set and is with a good 

semantic explanation which cannot be given by other methods. 
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1. Introduction 
 

Person re-identification is the task of recognizing an individual by diverse scenes across different 

cameras. Monitored over space and time, a pedestrian will disappear from one camera, but perhaps will 

appear in another view with different viewing angle and lighting condition, which makes it become 

difficult to re-identify individuals in different cameras. Re-identification in large camera networks by 

human operators is a boring and inaccurate work. Manual matching operation will make significant re-

identification accuracy gaps between different human operators [1]. Re-identification performance is good 

or not subjectively depended on individual operator’s experience that makes it become difficult to transfer 

and also subject to operator bias [2]. There are many efforts to deal with theses problem and attempt to 

make an auto re-identification system[3], but despite extensive research, there are still difficult to auto re-

identify pedestrian accurately. The most reason is that traditional features are insufficiently discriminate 

for cross-view pedestrian re-identification with varying view angle and lighting. Because of easily be 

obtained and measured by machine, low-level features, such as color, shape and texture [4], are typically 

employed to re-identify pedestrian. Ethnicity, gender and age are eager to be obtained, which would be 

most helpful to the task of pedestrian re-identification. But these high-level features are exceptionally 

difficult to get and measure reliably in surveillance video. Recently, a new mid-level attribute features are 

employed in image classification as a medium between low-level features and class. As far as person re-

identification is concerned, mid-level attribute features, 
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such as hair style, shoe type or clothing style can be measured reasonably reliably with modern computer-

vision techniques. In this paper, we will discuss how to obtain the mid-level attribute features from low-

level features and how to use them into pedestrian re-identification. 
 

2. Related Work 
 

2.1 Attributes and their applications 
 

Different from low-level features or high-level classes, attributes provide the mid-level description 

between images and their classes. There are various unsupervised (e.g. PCA or topic-models) or 

supervised (e.g. neural networks) modelling approaches which produce data-driven mid-level 

representations, which aim to project the data onto a basis set defined by the assumptions of the particular 

model (e.g. maximisation of variance, likelihood or sparsity). In contrast, attribute learning focuses on 

representing data instances by projecting them onto a basis set defined by domain-specific axes which are 

semantically meaningful to humans. Recent work shows that attributes are useful in a variety of settings. 

First, they are independently useful to describe familiar and unfamiliar things (e.g., the leopard is spotted 

and furry, whether or not we know to call it a leopard [5]), or to search through large image/video 

collections in semantic terms [6]. Second, they enable new zero-shot learning paradigms, where one can 

build an object model on the fly [7]. Third, they can serve as mid-level features to an object classification 

layer; having learned to predict the presence of each attribute, one can build supervised object models on 

top of those predictions [8,9,10]. Usually attribute-object associations are manually specified, but some 

work explores ways to obtain them automatically [11,12]. Notably, nearly all models using attributes for 

recognition learn them independently. 
 

Visual attributes have received increasing interests in the past three years for classification problems 

ranging from image categorisation [13,14,15], person re-identification [16], to action and video event 

recognition[17]. Attributes are either user defined based on prior knowledge [14,16] or data driven or 

latent and discovered from data [17,18]. The former has clear semantic meaning and the latter not 

necessarily so. On the other hand, manually defined attributes may not be computable consistently nor 

discriminative sufficiently despite additional human annotation, from which data driven attributes do not 

suffer. 
 

Throughout the research of person identification properties study in recent years, there are few to 

discuss the relationship between attributes and features, namely, how to determine what attribute is 

suitable to describe human with data driving. Recent years, deep learning is employed to select features. 

In this paper, we will discuss how to use deep learning to obtain suitable attributes. 
 

2.2 Deep learning 
 

In recent researches, with the steady advance of deep learning [19,20] and unsupervised feature 

learning [21], learnable features gain significant attentions. Specially, the Deep Convolutional Neural 

Network (DCNN) proposed by Krizhevsky et al. [22] achieved record-breaking results in ImageNet Large 

Scale Visual Recognition Challenge 2012. Afterwards, its specific network structure has been widely 

used in image classification and object detection [23,24]. In [25], Donahue et al. showed that features 

generated from a classifying CNN perform excellently in related vision tasks, implying that DCNN can 

be used as a generic feature extractor. 
 

In the field of pedestrian detection, many feature learning and deep learning methods have been 

introduced recently. In [26,27,28], Sermanet et al. proposed a two layers convolutional model and layers 

were pre-trained by convolutional sparse coding. In [29], Ouyang et al. conducted Restricted Boltzmann 

Machine (RBM) in modeling mutual visibility relationship for occlusion handling. And in 
 



 
[29] authors further cooperated with Convolutional Neural Network, and proposed a joint deep learning 

framework that jointly consider four key components in pedestrian detection: feature extraction, 

deformation model, occlusion model and classifier. In [30], Convolutional Neural Network has been 

successfully applied in pedestrian detection, where the used network structure have only 2 layers. In 

contrast, Krizhevsky’s CNN [22] that has 7 layers is much deeper. 
 

Nowadays, distributed computing system such as Hadoop, Spark are employed in many real time 

system of large scale data. Distributed Deep Convolutional Neural Network (DDCNN) has already 

become a research focus. 
 

In this paper, we will discuss how to employ Distributed Deep Convolutional Neural 

Network(DDCNN) to discover attributes and how to use DDCNN to set attribute model and target 

classifier. At last, we will show the experiment results of our Attribute Learning based on Distributed 
 

Deep Convolutional Neural Network (AL-DDCNN) model with milti-GPU Parallel integrate. 
 

3. Method 
 

3.1 Attribute obtain 
 

As in most popular person re-identification methods, the feature representation approach described 

in the previous subsection reflects low-level visual features[32]. However, identifying people is a high-

level task. There is a semantic gap between low-level feature representation and high-level task , which 

are recognized as middle-level description of people. Therefore, embedding attribute layers into the 

identification provides a possible way to bridge the semantic gap. 
 

In the literature of computer vision, attributes are obtained by two approaches. In the work of 

Yamaguchi et al. [33], the attributes are crawled from the fashion website. Although such a data 

acquisition method can provide plenty of attributes, these attributes are not suitable for person re-

identification. For example, in [33], jacket and coat are both annotated, but they are high-level clothes 

concepts and difficult to distinguish in low-quality surveillance videos. For the person re-identification 

task, the attributes should be visually separable in the surveillance video scenario. 
 

Besides mining Web data, another approach to obtain attributes is manual annotation. Layne et al. 
 

[34] annotated 15 binary-valued and utilized them in person re-identification. In this work, there define 

11 kinds, to describe the appearance of people. 
 

But even if we can afford to ask domain experts to provide a list of attributes most descriptive of the 

images we wish to categorize, there is no guarantee that those attributes will be sufficiently separable in 

the image feature space—a necessary condition if they are intended to serve as the mid-level cues for 

recognition. On the other hand, even though we have abundant machine learning tools to discover 

discriminative splits in image feature space that together carve out each object of interest, there is no 

guarantee that any such features will happen to correspond to human-nameable traits—a desirable 

condition if we are to leverage the transfer, description, and other attractive aspects mentioned above. 

 

Figure  1  shows  an  overview  of  our  approach  to  mine  both  human  understandable  and  

discriminative attributes based on data driving. At each iteration 
t
 , we actively determine an attribute 

hypothesis (a hyper plane in the visual feature space) that helps discriminate among classes that are 
 

most confused given the current collection of attributes 
At 

. We then estimate the probability that the 
 

hypothesis is nameable, using a learned model of nameability that is continually augmented by any 

hypotheses accepted (i.e. named) by the human in the loop. If it appears unnameable, we discard it and 
 



 
loop back to select the next potential attribute hypothesis. If it appears nameable, the system creates a 

visualization of the attribute using a subset of training images, presents the images to the annotator, and 

requests an attribute label. The annotator may either accept and name the hypothesis, or reject it. If it is 
 

accepted, we append this new named attribute 
a j  

to our discovered vocabulary,  At 1    [ At ; a j ] , 

 
retrain the higher level classifier accordingly, and update our nameability model. If it is rejected, the 

system loops back to generate a new attribute hypothesis. Thus, only those attributes that are named by 

the user are added to the pool and can be used for recognition. The discovery loop terminates once human 

resources are exhausted, or when a desired number of named attributes have been collected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Overview of our attribute obtainment approach 

 
 

3.2 Attribute Model and Target Classifier 
 

Traditional attribute model is shown as Figure 2.a. Attributes are the media layer between samples 

and classes. The attribute model we employed in our method is the Author-Topic (AT) model (Figure 

2.b) . The AT model is originally designed to model the interests of authors from a given document 

corpus[35]. In this paper, we extend the AT model to describe the distribution of image features related 

to attributes. Indeed, authors of a document and attributes of an image category have many similarities, 

which allow us to analogize the latter to the former: a document can have multiple authors and an object 

category can have multiple attributes; an author can write multiple documents and an attribute can be 

presented in multiple object categories. Nevertheless, there is also noticeable difference between them: 

each document can have a distinct list of authors, while all images within an object category share a 

common list of Attributes. 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) (b) 

 
Figure 2. Attribute Model. The left is traditional attribute model. The right is author-topic attribute model.  

The AT model is a generative model. In this model, an image 
x

 
j
 has a list of attributes, denoted by 

Aj
 . 

An attribute 
l
 in 

Aj
 is modeled by a discrete distribution of K topics, which parameterized by a 

 



K-dim vector   
l
    

(
 
l1,...,

 
lK

 
)

 with topic 
k

 receiving weight  
lk

  . The topic 
k

 is modeled by a 

discrete distribution of  
W

 codewords in the lexicon, which is parameterized by a W-dim vector 

l
( 

k1
,..., kW ) with codeword  v receiving weight 

kv
 . Symmetric Dirichlet priors are placed on 

and , with   
l
  ∼Dirichlet(   ), and   

k
 ∼ Dirichlet(   ), where andare hyper 

parameters that affect the sparsity of these distributions. The generative process is outlined in Algorithm 

1. 
 

  Algorithm 1. The generative process of the Author-Topic model    

1: given the attribute list Aj  and the desired number of visual words in image x j ,  N j  

2: for i = 1 to  N j do      

3: conditioning on Aj , choose an attribute  a ji ∼Uniform( Aj )    

4: conditioning on 
a

 ji , choose a topic  z ji ∼Discrete(  a ji    ), where   l defines the distribution of 

topics for attribute a  l 

visual word  wji  ∼ Discrete(  z ji 

 

where   k  defines 

 

5: conditioning on z ji  , choose a ), the 

distribution of visual words for topic z  k    

6: end for       
  

Given a training corpus, the goal of inference in an AT model is to identify the values of and  
. In [36], Rosen-Zvi et al. presented a collapsed block Gibbs sampling method. The “collapse” means 

 

that the parameters and  are analytically integrated out, and the “block” means that we draw 

the pair of ( 
a

 
ji

 , 
z

 
ji

 ) together. The pair of ( 
a

 
ji

 , 
z

 
ji

 ) is drawn according to the following conditional 

distribution:                    

  

p(a ji    l, z ji k | wji v,  ) 

/ K  Nl
k
,\ ji   /W  Ck

v
,\ ji     

  k
K 1 Nl

k
,\ ji  

W
v 1 Ck

v
,\ ji  (1)  

where {Aj , z\ ji , a\ ji , w\ ji ,  ,  } , the subscript ji represents the i-th visual word in image x j , 
         

a ji    l and 
z

 ji k represent the assignments of current visual word to attribute 
l
 and topic 

k 
 

respectively, 
w

ji 

v
 represents the observation that the current visual word is the v-th codeword in 

the lexicon, 
z

\ ji and 
a

\ ji represent all topic and attribute assignments in the training corpus 

excluding the current visual word, 
N k 

is the total number of visual words that are assigned to  l ,\ ji 

attribute  
l 

and topic 
k

 , excluding  
w

ji , and Ck
v
,\ ji is the total number of visual words with value 

v that are assigned to topic  
k

 , excluding  
wji

 .
 

 
To run the Gibbs sampling algorithm, we first initialize  a and z  with random assignments. In 

a z 

each Gibbs sampling iteration, we draw samples of ji and ji for all visual words in the training  

corpus according to the distribution in Equation (1) in a randomly permuted order of 
i
 and 

j
 . The samples 

of 
a

 and 
z

 are recorded after the burn-in period. In experiments, we observe 200 iterations are sufficient 

for the sampler to be stable. The posterior means of and can then be estimated  



 
using the recorded samples as follows: 

 

 / K  Nl
k /W  Ck
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ˆ
lk 

 

, 
ˆ

kv 

 

(2) k
K 1 Nl

k W
v 1 Ck
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where  Nl
k
 and  Ck

v 
are defined in a similar fashion as in Equation (1), but without excluding the 

instance indexed by ji . 
 

If the attribute list is unique in each category, an AT model can be used to classify a image by the 

maximum likelihood criterion. Suppose we have learned l for every l 1,..., A from the source 

 
categories, we can then use them in classifying an image of a target category using the approximate 

likelihood 

 train 
N

tK   ˆ   1  ˆ 
N

tK   ˆ ~  
p(wt | y  m, Am , D 

 )
kwti ( 

  

lk 
)
kwti mk （3）    

  i 1  k 1  | Am | l  Am  i 1  k 1   

where  Am is the attribute list associated to a target category y  m , | Am | is the length of Am . In 

 
the above equations, we have constructed a pseudo weight for the category-specified topic distribution 

 

~  1   
of a category from  

ˆ
l ，i.e.,   mk 

 

 ˆ
lk . This pseudo weight can be viewed as the prior of  

  | A | l  a 
m   m  

 

mk  before we see the real training examples of the category. So our approach can be used to predict 

 

unseen categories, namely shot learning problem. Given a threshold value, the probability in 

Equation (3) can also used to rank images for query. 
 

3.3 Deep Convolutional Neural Network & Feature Extraction 
 

In order to make the data driving attribute model work for classify, Deep Convolutional Neural 

Network (DCNN) is employed in the feature extraction stage. Following the network architecture 

proposed by Krizhevsky et al. [22], we used the RCNN package [22] which utilize the Caffe [31] to 

implement DCNN. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Architecture of DCNN 



 
The architecture of used DCNN is presented in Figure 3, which has 7 layers. Notice that the DCNN 

requires input images of 128×48 pixels size, so first we simply warp candidate windows to the required 

size. In the first layer, the images are filtered with 96 kernels of size 11×11×3 pixels with a stride of 4 

pixel, then max-pooling is applied in 3×3 grid. The second layer has the same pipeline as first layer, with 

256 kernels of size 5×5×48, and max-pooling in 3×3 grid. Afterwards, there are two convolution layers 

without pooling, which both contains 384 kernels. In the fifth layer, again, the output of previous layer is 

first convoluted with 256 kernels then applied spatial max-pooling in 3×3 pixel grid. The last two layers 

of the network are fully connected layer, which both contains 4096 nodes respectively. The DCNN 

eventually output features of 4096 dimensions from the last layer. The activation function used in the 

convolution and full connected layer is Rectified Linear function f(x) = max(0, x). For more details about 

network parameters and training protocol, we refer reader to [19]. 
 

The DCNN is employed to unsupervised learn features from original image. This is the base of 

attributes target recognition. The overview of attribute learning based DCNN is shown as Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Overview of AL-DCNN  

 
 
 
 

 
Figure 4. Overview of attribute learning based DCNN 

 
3.4 Parallelized implementations of attribute learning based on DCNN 

 
DCNN have been shown to excel at classification tasks, and its ability to operate on raw pixel input 

without the need to design special features is very appealing. However, it is notoriously slow at inference 

time. So we employ parallelized implementations to speed up recognition. The key idea of our model’s 

parallelized implementations is distributed parameter manipulation and attributes learning. As far as 

distributed parameter manipulation concerned, instead direct accessing to the model parameters, the 

coordinator issues commands drawn from a small set of operations that can be performed by each 

parameter server shard independently, with the results being stored locally on the same shard. Additional 

information, e.g the history cache for the optimization algorithm, is also stored on the parameter server 

shard on which it was computed[37]. This allows running large models without incurring the overhead 

of sending all the parameters and gradients to a single central server. In the parallelized implementations, 

data is distributed to many machines and the results are sent back to a central parameter server. Many 

such methods wait for the slowest machine, and therefore do not scale well to large shared clusters. To 

account for this problem, we employ the following load balancing scheme: The coordinator assigns each 

of the N model replicas a small portion of work, much smaller 
 



 
than 1/Nth of the total size of a batch, and assigns replicas new portions whenever they are free. With 

this approach, faster model replicas do more work than slower replicas. To further manage slow model 

replicas at the end of a batch, the coordinator schedules multiple copies of the outstanding portions and 

uses the result from whichever model replica finishes first. This scheme is similar to the use of “backup 

tasks” in the MapReduce framework [38]. Prefetching of data, along with supporting data affinity by 

assigning sequential portions of data to the same worker makes data access a non-issue. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Distributed parameter manipulation of AL-DCNN 

 
 

Another parallelized implementation idea of our model is distributed attributes learning. The 

attributes learning model is partitioned across several machines (Figure 6), so that the learning task of 

different attribute is assigned to different machine. The framework automatically parallelizes 

computation in each machine using all available cores, and manages communication, synchronization 

and information transfer between machines during both training and inference. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Distributed attributes learning of AL-DCNN 

 

4. Experiments 
 

4.1 Datasets and feature selection 
 

We selected two challenging datasets with which to validate our model, the VIPeR dataset 

introduced by Gray et al.[39]. VIPeR is comprised of 632 pedestrian image pairs from two cameras with 

different viewpoint, pose and lighting conditions. The images are uniformly scaled to 128×48 pixel size. 

We follow [39,40] in considering Cam B as the gallery set and Cam A as the probe set. Performance is 

evaluated by matching each test image in Cam A against the Cam B gallery. We follow 
 

[40] in randomly selecting one image for each pedestrian to build a gallery set, while the others form the 

probe set. This is repeated 10 times and the results averaged. We split the data set into a training and a 

test set. 
 



 
In the feature selection stage, we use DCNN to obtain features without supervised learning. Figure 

 
7. shows activation of DCNN for an input example. Each panel shows the convolutional layer, the 

normalization and pooling, then the 1x1 convolutional one and finally the fully-connected one. 
 
 
 
 
 
 
 
 
 
 

Figure 7 Activation of DCNN for an input example 
 

4.2 Attribute Visualizing & Obtaining 
 

In order to display the attribute hypothesis to the annotator, we wish to convey the difference in the 

images that lie on either side of the hyperplane, while ensuring that within the constraints of finite data, 

we show only the changes induced along the direction orthogonal to that hyperplane. To do this, we first 

consider the range from the hyperplane within which 95% of the training data falls, in order to disregard 

potential outlier instances. We divide this range into 15 equidistant bins, and select three images per bin 

that are closest to the median along all other dimensions, yielding a 3×15 collage. Figure 7 shows an 

example of attribute visualizing and naming. The attributes mined by our approach are shown in Figure 

8 . Individuals in the training data set were labeled with these attributes. 
 
 
 
 
 
 
 

Short hair Attribute hypothesis Long hair 
 

Figure 7. visualize an attribute hypothesis  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Obtained attributes 



 
4.3 Attribute prediction 

 
To make attribute-to-class mapping come true, the prediction of the attributes for a specific image is 

critical procedure. At the beginning of the process, the responses of test persons were averaged to 

determine the real-valued association strength between attributes and the picture. Binary sample-attribute 

matrices are obtained by thresholding at the overall matrix mean. Some examples are shown in Figure 9. 

We also investigated the role of individual attribute with respect to prediction accuracy. We use images 

from test set labeled attributes by human to test the quality of individual attribute predictors. The results 

shown in Figure 10 can give us an observation regarding the contribution of each attribute. Some attributes 

are more difficult to predict than others. This is expected, since, intuitively, ability to identify a specific 

attribute is related to its ubiquitousness. Better defined attributes are easier to identify than more fuzzy 

ones. 
  

Hat 
Short Long Longs single Longs 

Shorts 
Long No 

Backpack 
hair hair color multi-color sleeve sleeve    

         

No Yes No No Yes No No Yes Yes 

No Yes No No Yes No Yes No Yes 

No Yes No No Yes Yes No No Yes 

No Yes No No Yes No No No No 

No No Yes No Yes Yes No No Yes 

Yes No No No Yes Yes No No No 

No No Yes No Yes No Yes No No 

No Yes No No Yes No Yes No No 

No No Yes Yes No No Yes No No 
    

  Figure 9. Examples with binary sample-attributes matrices    
To enable attribute-to-class mapping, the accuracy of the attribute prediction for a specific image is 

important. Figure 9 illustrates some classes and their corresponding attributes automatically learned with 

our system. We also investigated the role of individual attribute with respect to classification accuracy. 

First, figure 10 gives the test accuracy of our attribute learner. It can be seen that some attributes are more 

difficult to predict than others. 
 

This is as expected, since, intuitively, ability to identify a specific attribute is related to its 

ubiquitousness. Better defined attributes are easier to be identified. Secondly, Figure 11 visualizes the 

attribute-class matrix which reveals the correlation between each attribute and each category. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Quality of individual attribute predictors  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 11. Visualization ofattribute–class matrix. 

 
 

4.3 Person Re-identification matching comparison 
 

Following the classification and evaluation protocol discussing above, we randomly sample half of 

the dataset, i.e., 316 image pairs, for training, and the remaining for test. In the first round, images from 

CAM A are used as probe and those from CAM B as gallery. Each probe image is matched with every 

gallery image, and the correctly matched rank is obtained. Rank-k recognition rate is the expectation of 

the matches at rank k, and the CMC curve is the cumulated values of recognition rate at all ranks. After 

this round, the probe and gallery are switched. We take the average of the two rounds of CMC curves as 

the result of one trial. 10 trials of evaluation are repeated to achieve stable statistics, and the average result 

is reported. 
 

Table 1 Comparison results on VIPeR  

Method r=1 r=5 r=10 r=20 
     

DF 12.00 22.00 34.00 43.00 
     

ELF 12.00 31.00 41.00 58.00 
     

bLDFV 22.34 47.00 60.04 71.00 
     

SDALF 19.87 38.89 49.37 65.73 
     

SDC-knn 26.54 40.03 47.89 54.76 
     

SDC-ocsvm 26.29 46.57 58.84 72.72 
     

eSDC-knn 26.31 46.61 58.86 72.77 
     

eSDC-ocsvm 26.74 50.70 62.37 76.36 
     

AL-DDCNN 26.76 52.64 63.45 77.27 
     

 

Since DF, ELF, bLDFV, SDALF, SDC-knn, SDC-ocsvm, eSDC-knn and eSDC-ocsvm[41,42] have 

published their results on the VIPeR dataset, they are used for comparison. The splitting assignments in 

these approaches are used in our experiments. Figure 12 report the comparison results. It is observed that 

our approach outperform all these benchmarking approaches. In particular, matching rate is around 27% 

at rank 1 and is around 77% at rank 20 for our AL-DDCNN. Figure 13 shows examples of the query 

results of our proposed method on the VIPeR database. Probe images from one view are shown in the 

left-most column and the top18 query results are sorted from left to right. The correct matches are 

indicated by the red boxes. The right-most column shows the true matches. The bottom row shows a 

failed attempt. The correct match failed to show up in the top18 
 



 
queries.This is because the appearance of this individual was radically altered in the different views. The 

recognition accuracy of our proposed AL-DDCNN compared with the state-of-the-art works on VIPeR 

with different number of searching classes are summarized in Table 1. From these figures, it is clear that 

AL-DDCNN gives the best results. Although our method does not provide a significant gain compared 

to the state-of-the-art method, it gives a good semantic explanation which cannot be given by other 

methods. Besides, our method can be used to deal with “zero-shot” scenario in which a visual probe is 

unavailable but re-identification can still be performed with user-provided semantic attribute description. 
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Figure 12. Rate of cumulative matching characteristic  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13. Example of query results using AL-DCNN 



 
4.5 Increase speed of Model parallelism 

 
To explore the performance of our model parallelism, we measured the mean time for training the 

number of partitions (machines) used in our model. In Figure 14 we quantify the impact of parallelizing 

across N machines by reporting the average training speed-up: the ratio of the time taken using only a 

single machine to the time taken using N. 
 

Figure 14 shows that the moderately sized model e.g. our 34 attributes model, runs fastest on 8 

machines, computing 2.2 faster than using a single machine. Partitioning the model on more than 8 

machines actually slows training, as network overhead starts to dominate in the fully-connected network 

structure and there is less work for each machine to perform with more partitions. In contrast, the model 

with more parameters or attributes will benefit more from the use of additional machines than do model 

with fewer parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14. Increase speed of model parallelism with different number of machines 

 

5. Conclusion 
 

In this paper, we describe how to use middle-level attributes to assist person re-identification. Instead 

of training for the recognition of a specific category of person directly based on the manually designed 

features such as SIFT and HoG, a series of visual attributes are extracted from a given set of images, 

which consider both human understandable and discriminative demand. As the media layer between 

samples and classes, attributes are play key role in our novel approach. To generate features without 

supervision for the attributes learning model, Deep Convolutional Neural Network is employed to 

generate features. In addition, parallelized implementations such as distributed parameter manipulation 

and attributes learning are employed to make the model speed up. Experiments in dataset VIPeR show 

that the proposed approach achieve state-of-the-art recognition performance and is with a good semantic 

explanation. 
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