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Abstract  18 

Entomopathogenic nematodes (EPN) are globally important inundative biological control agents. 19 

Their widespread use makes environmental risk assessment important, but very few 20 

comprehensive post-application risk assessments have been conducted for EPN. We apply a 21 

rigorous risk analysis procedure to the use of EPN applied in a forest ecosystem to suppress the 22 

large pine weevil (Hylobius abietis). In this synthesis, we provide a quantitative evaluation of 23 

five risk categories: a) establishment, b) dispersal, c) host range, d) direct non-target effects and 24 

e) indirect non-target effects. A low level of risk was identified (35 – 51 out of a possible total of 25 

125).  Species exotic to the clear-fell forest ecosystem (Steinernema carpocapsae and 26 

Heterorhabditis downesi) were accorded a lower overall risk status than native species and 27 

strains (Steinernema feltiae), largely as a result of their shorter persistence in the target 28 

environment.  We conclude that EPN are a low risk viable alternative control for pine weevil 29 

compared to the higher risk conventional control using pyrethroid insecticides.  30 

     31 
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Inundative control with EPN and the potential associated risks 36 

Entomopathogenic nematodes (EPN) are lethal insect pathogens that are commercially produced 37 

as inundative control agents and used in various regions of the world against a variety of pests 38 

(Kaya & Gaugler, 1993; Shapiro-Ilan et al., 2006; Grewal, 2012). There are two genera 39 

(Steinernema Travassos, 1927 and Heterorhabditis Poinar, 1976: Nematoda: Rhabditidae), both 40 

of which have global natural distributions (except Antarctica) and are used in biological control 41 

(Kaya & Gaugler, 1993; Stuart et al., 2006). The free-living stage of the life cycle, the infective 42 

juvenile (IJ), seeks out an insect host, invades it and releases entomopathogenic bacteria from its 43 

gut that kill the insect within days (Kaya & Gaugler, 1993; Forst, 1997; Lewis et al., 2006). The 44 

nematodes feed on the bacteria, reproduce and, typically after a period of two to three weeks, up 45 

to several hundred thousand IJs leave the host cadaver to seek out new hosts. Since EPN have a 46 

wide potential host range (Peters, 1996), can survive and reproduce in the field (Bathon, 1996; 47 

Smits, 1996) and may disperse, including via phoresy (Eng et al., 2005; Campos-Herrera et al., 48 

2006) or within infected hosts (Downes & Griffin, 1996), they have the potential to cause 49 

environmental impacts other than the intended pest reduction.  50 

For assessing the risk of using inundative biological control organisms, van Lenteren et al. 51 

(2003) identified five commonly agreed risk categories: host range, dispersal, establishment, and 52 

direct and indirect non-target effects. To standardize risk assessment procedures, protocols for 53 

assessing the risk of invertebrate biological control organisms in each of these categories have 54 

been proposed (e.g. Babendreier et al., 2005; Clerq et al., 2011). A number of reviews 55 

summarize the results of risk assessment studies on both classical and inundative biological 56 

control organisms (e.g. Hokkanen and Lynch, 1995; Ehlers & Hokkanen, 1996; Barratt et al., 57 
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2006 & 2010; van Lenteren et al., 2006). For classical and augmentative biological control Hajek 58 

et al. (2016) have demonstrated widespread rather trivial effects of introductions and a few cases 59 

of direct and indirect impacts at the population and community level mainly for older (pre 1950) 60 

introductions. For EPN, extensive information exists relevant to the risk categories of 61 

establishment (or persistence) (e.g. Wright et al., 1993; Shields et al., 1999; Koppenhofer & 62 

Fuzy, 2006; Susurluk & Ehlers, 2008) and dispersal (e.g. Lacey et al., 1995; Jabbour & 63 

Barbercheck, 2008), as well as host range (Peters, 1996). Direct and indirect non-target impacts 64 

have received less attention (Bathon, 1996; Somasekhar et al., 2002; de Nardo et al., 2006; 65 

Hodson et al., 2012). The available evidence indicates that EPN are generally safe, with little 66 

environmental impact (Ehlers & Hokkanen, 1996), though there are very few examples of 67 

comprehensive post-application risk assessments investigating multiple risk categories. The only 68 

study that has so far investigated all five risk categories is that of van Lenteren et al. (2003) who 69 

evaluated the risk of Steinernema feltiae (Filipjev, 1934) application in an open field. The 70 

present case study summarises risk assessment research carried out on a range of EPN species 71 

used to control the large pine weevil (Hylobius abietis L., 1758; Coleoptera: Curculionidae) and 72 

evaluates the risk for strains that are both native and foreign to the target habitat using the 73 

protocol of van Lenteren et al. (2003). 74 

Large pine weevil control: Target pest, environment and control agents 75 

The large pine weevil is a major forestry pest in 15 European countries, including Ireland and the 76 

UK (Långström & Day, 2004). This insect threatens an estimated 3.4 million hectares of forests 77 

and would cause up to € 140 million in annual damages if not controlled (Långström & Day, 78 

2004). Larvae feed and develop under the bark of stumps and roots of recently dead conifers for 79 
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one or more years (Leather et al., 1999). Emerging adults feed on the bark of seedlings that are 80 

planted to restock such sites, and this can result in up to 100 % of the seedlings being killed if the 81 

pest is not controlled (Heritage et al., 1989; Leather et al., 1999; Petersson et al., 2005). Forestry 82 

practices based on coniferous monoculture with clear-felling have favoured pine weevil, by 83 

providing an optimum breeding habitat in stumps, and populations can be very high on clear-fell 84 

sites (Leather et al., 1999).   85 

EPN are currently being trialled in Ireland and the UK (including full operational application at 86 

selected sites) to evaluate their potential as inundative control agents within an integrated 87 

management strategy aimed at replacing pyrethroids (i.e. alpha-cypermethrin and cypermethrin) 88 

currently used to control pine weevil (e.g. Brixey et al., 2006; Dillon et al., 2006; Williams et al., 89 

2013). To suppress weevil populations, EPN IJs in aqueous suspension are sprayed onto the soil 90 

around the circumference of each tree stump on a site-wide level (recommended rate 3.5x106 IJs 91 

per stump) to target the immature stages (Dillon et al., 2006). Several EPN species have been 92 

tested: Steinernema carpocapsae (Weiser, 1955), Steinernema kraussei (Steiner, 1923) S. feltiae, 93 

Heterorhabditis downesi Stock, Griffin and Burnell, 2002 and Heterorhabditis megidis Poinar, 94 

Jackson and Klein, 1987 (Table 1) and all have shown potential to significantly reduce weevil 95 

populations and/or seedling damage (Brixey et al., 2006; Dillon et al., 2006; Torr et al., 2007; 96 

Williams et al., 2013). Steinernema carpocapsae is currently the main species in use due to its 97 

competitive cost and amenability to mass production, though other species (especially H. 98 

downesi) have shown better field efficacy.  99 

Natural distribution of entomopathogenic nematode species used for pine weevil control 100 
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Organisms exotic to a particular environment may pose risks that differ in quality and scale from 101 

those of indigenous organisms (Simberloff & Stiling, 1996; van Lenteren et al., 2003; Clerq et 102 

al., 2011; van Lenteren, 2012). Ehlers and Hokkanen (1996) recommended that, unlike the 103 

release of indigenous EPN, the release of exotic EPN species (but not exotic strains of 104 

indigenous species) should be regulated due to greater potential risk. Thus, a discussion of the 105 

risks posed by EPN must take into consideration the known geographical distribution and natural 106 

habitats of the applied nematodes.  107 

Surveys of EPN in Britain and Ireland have screened > 3000 soil samples collected from a 108 

variety of habitats (e.g. grassland, woodland, heathland, hedgerows) (Blackshaw, 1988; 109 

Hominick & Briscoe, 1990a & 1990b; Boag et al., 1992; Hominick et al., 1995; Gwynn & 110 

Richardson, 1996; Chandler et al., 1997; Dillon, 2003). To date, there exist only two records of 111 

S. carpocapsae in Britain (Georgis & Hague, 1979 & 1981), which have since been disputed (D. 112 

Hunt, CABI Europe UK, pers. comm.), and no record of this species in Ireland. A recent, as yet 113 

unpublished, study by Rae and colleagues has isolated S. carpocapsae from a gorse hedge and a 114 

wooded layby, both in Cornwall. Both these isolates were far away from forestry with nematode 115 

applications, but the authors are sequencing the mitochondrial DNA to be sure that they are 116 

different from the BASF-Becker Underwood strains, which are used commercially (R. Rae, 117 

LJMU UK, pers.comm.). While failure to detect a species does not confirm absence, based on 118 

the available evidence we consider S. carpocapsae to be exotic to both Britain and Ireland (Table 119 

1).  120 

There are numerous records of Steinernema feltiae in Britain and Ireland (Blackshaw, 1988; 121 

Griffin et al., 1991; Boag et al., 1992; Hominick et al., 1995; Gwynn & Richardson, 1996; 122 
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Chandler et al., 1997; Dillon, 2003), some of which are from coniferous forest soils (Hominick 123 

& Briscoe, 1990a; Dillon, 2003; Harvey & Griffin, 2016). Steinernema feltiae strain 4CFMO 124 

was isolated by Dillon (2003) from a coniferous clear-fell site in Ireland and we thus consider it 125 

indigenous to this environment (Table 1). Steinernema feltiae strain EN02 is a commercially 126 

produced strain (e-nema Gmbh, Germany) that was originally isolated in Germany (Dillon et al., 127 

2008) and, though the species is indigenous to the UK and Ireland, we treat this strain as exotic 128 

to Irish coniferous forest (Table 1). Steinernema kraussei has likewise been recorded in Britain 129 

(Hominick et al., 1995), including in coniferous forest soil (Gwynn & Richardson, 1996). There 130 

is one unpublished record of S. kraussei from a coniferous clear-fell site in Ireland, confirmed by 131 

sequencing the rDNA internal transcribed spacer region (Harvey, unpublished data; Genbank 132 

Accession numbers: KU847415, KU847416). Harvey collected S. kraussei from a Sitka Spruce 133 

(Picea sitchensis [Bong.] Carr.) clear-fell from a soil sample around a stump after it had been 134 

treated with H. downesi in Glendalough (53°03’N 006°28’W, elevation 300 m), which had been 135 

felled in 2004. Samples were identified from two separate extractions from bulk samples of 136 

several hundred to several thousand nematodes. There was some polymorphism detected, but this 137 

is not unusual for the ITS region and has been observed before for S. feltiae. The Genbank blast 138 

search confirmed the identity to be S. kraussei with 98-99% identity. Heterorhabditis downesi is 139 

indigenous to Britain and Ireland, but has so far been isolated only from sandy coastal soils 140 

(Griffin et al., 1994 & 1999). Heterorhabditis megidis has been isolated in Britain (Hominick et 141 

al., 1995; Hominick, 2002), but has likewise not been reported in forest soils (Hominick & 142 

Briscoe, 1990a; Gwynn & Richardson, 1996; Dillon, 2003). We therefore consider H. downesi 143 

and H. megidis indigenous to Britain (and, in the case of H. downesi, also Ireland), but exotic to 144 

coniferous forest plantations in the context of this case study (Table 1).  145 
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Risk categories for inundative control agents 146 

Several methods to standardise risk assessment procedures for inundative control agents have 147 

been proposed (van Lenteren et al., 2003; Babendreier et al., 2005; Mills et al., 2006). To meet 148 

the criteria for risk assessment of introduced biological control agents recommended by the 149 

Organisation for Economic Co-operation and Development (OECD, 2003), van Lenteren et al. 150 

(2003) proposed a method of calculating a numerical index based on five risk categories. This 151 

method allows for a categorical and quantifiable evaluation of risk. The index value is obtained 152 

by estimating risk in each of the five categories based on specific criteria. The likelihood (very 153 

unlikely to very likely) and magnitude (minimal to massive) of risk are each assigned a value of 154 

1-5; the likelihood and magnitude values within each category are then multiplied and the 155 

products are added to arrive at the final index value which can range from 5 to 125, where a 156 

higher number indicates a greater environmental risk (van Lenteren et al., 2003). In the present 157 

paper, we follow this approach, using results from the pine weevil system complemented by 158 

literature from other contexts, to derive risk indices for EPN species S. carpocapsae (exotic to 159 

Ireland), S. feltiae (one strain indigenous and one strain exotic to Ireland) and H. downesi 160 

(indigenous to Ireland) when used against pine weevil in forestry. We have not included exact 161 

risk values for H. megidis and S. kraussei, the other two species that have been tested against 162 

pine weevil and for which fewer data are available, we estimate H. megidis to be similar to its 163 

close relative H. downesi, both being exotic to the habitat, and S. kraussei to be similar to S. 164 

feltiae, both species being present in the target habitat.          165 

 166 

 167 
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Risk of EPN application in forest ecosystem 168 

a) Establishment 169 

In inundative biological control, long-term persistence and establishment of the applied control 170 

agent in the target environment is not a desired outcome (Bathon, 1996; van Lenteren et al., 171 

2003). Control agents are applied in large numbers to cause an immediate, but usually transient, 172 

reduction in the pest population. EPN have the potential to persist in the soil after application 173 

since the applied IJs are the non-feeding, stress-tolerant ‘dauer’ stage; in addition, they may 174 

recycle and multiply in the field by infecting insects (Kaya & Gaugler, 1993; Grewal et al., 175 

2002). The extent and duration of post-application persistence of EPN is expected to vary with 176 

the applied species, field conditions and the abundance and suitability of hosts (target and non-177 

target) (Smits, 1996; Barratt et al., 2010; Griffin, 2015). Though EPN numbers may be high in 178 

the short term (weeks to months), in most studies numbers decrease rapidly over time and EPN 179 

are usually no longer detectable within a year of application (Klein & Georgis, 1992; Wright et 180 

al., 1993; Smits, 1996; Kurtz et al., 2007). In a minority of cases however, EPN have been 181 

recorded more than a year after application (Shields et al., 1999; Susurluk & Ehlers, 2008; 182 

Parkman et al., 1996). 183 

Dillon et al. (2008a) investigated the persistence of EPN in soil around pine stumps treated to 184 

suppress the large pine weevil in Irish trials. Four species were trialled: H. megidis, H. downesi, 185 

S. carpocapsae and two strains of S. feltiae, a commercial strain (EN02) and an indigenous Irish 186 

strain isolated from soil in a clear-felled coniferous forest (4CFMO) (Dillon, 2003; Dillon et al., 187 

2008a). EPN corresponding to the genus applied to a stump (i.e. Steinernema or Heterorhabditis) 188 

were recovered up to three years after application (Dillon et al., 2008a), though recovery rates 189 
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decreased significantly over time: approximately 30 % of soil cores scored positive for EPN one 190 

month after application, but only approximately 9 % did so after three years. Four and five years 191 

after application, only S. feltiae was found, and it was recovered even around stumps treated with 192 

other EPN species. When these S. feltiae isolates were compared to the applied strains 193 

(indigenous 4CFMO and commercial EN02) using genome-wide molecular analysis (Amplified 194 

Fragment Length Polymorphism, AFLP), they were found to be more closely related to the 195 

indigenous strain 4CFMO than the exotic strain EN02 (Dillon et al., 2008a). Mesocosm 196 

experiments with more controlled conditions by Dillon et al. (2008a) also showed greater 197 

persistence of S. feltiae 4CFMO compared to S. feltiae EN02. Similarly, in a study conducted on 198 

UK coniferous forest sites, Torr et al. (2007) compared the persistence of exotic S. carpocapsae 199 

to that of indigenous S. kraussei (Table 1). One year after application, soil was sampled around 200 

tree stumps treated with 3.5 x 106 IJs of either of the two species. There was a significant 201 

decrease in levels of both species over time, though less rapidly for S. kraussei (Torr et al., 202 

2007). In addition, densities of S. kraussei were consistently higher than those of S. carpocapsae 203 

from six months after application. Thus, both Torr et al. (2007) and Dillon et al. (2008a) found 204 

that EPN species and strains exotic to the habitat persisted on clear-fell sites for shorter periods 205 

than indigenous species or strains, possibly due to the latter being better adapted to the target 206 

environment (Dillon et al., 2008a). We must, however, stress that detailed studies have been 207 

undertaken only on a small sub-set of species and care must be taken when extending these 208 

conclusions to other species given the variability in persistence reported among applied species. 209 

 210 

Dillon et al.’s (2008a) study compared various species in a uniform setting (pine stumps on deep 211 

peat soil), while Harvey and Griffin (2015) monitored persistence of a single species (S. 212 



11 

 

carpocapsae) under varied conditions: Llodgepole pine (Pinus contorta Douglas) and Sitka 213 

spruce stumps on peat (nearly pure organic matter) or mineral soil. Similar to the results obtained 214 

by Dillon et al. (2008a), the percentage of soil cores with S. carpocapsae decreased significantly 215 

within the first two years after EPN application, from up to 12 % of cores after five months to 3 216 

% after two years (Harvey & Griffin, 2016). Five years after application, only indigenous 217 

Steinernema spp. were found around stumps (Harvey & Griffin, 2016). Similar results were 218 

obtained for stump bark: S. carpocapsae was found under the bark of up to 67 % of stumps one 219 

and two years after application, but was not detected there four or five years post application 220 

(Harvey & Griffin, 2016). The incidence of S. carpocapsae was positively correlated with the 221 

size of weevil populations in the stumps, suggesting that persistence of the EPN population was 222 

dependent on the population of pine weevils, in which they can reproduce (Pye & Burman, 1978; 223 

Dillon, 2003). Since stumps are suitable for pine weevil for only three to four years after felling 224 

(Leather et al., 1999), and EPN are usually applied 12 to 18 months after felling (Dillon et al., 225 

2008a), this link between the target pest population and nematode persistence imposes a natural 226 

limit on EPN recycling and, therefore, reduces the risk of long-term persistence and 227 

establishment. A natural next step would be to extend these experiments to other EPN species, 228 

which are potential inundative biological control agents for pine weevil. 229 

 We conclude that exotic S. carpocapsae and H. downesi as well as exotic strain S. feltiae EN02 230 

used against the large pine weevil on clear-fell sites can persist by recycling in the target host in 231 

the short term, but that establishment four years or more post-infection is ‘unlikely’ (likelihood = 232 

2; Hickson et al., 2000; van Lenteren et al., 2003) (Table 2). Moreover, we consider the potential 233 

non-target habitat on coniferous clear-fell sites where these exotic EPN may establish to be 234 

‘transient in time and space’ (van Lenteren et al., 2003), due to the apparent dependence of EPN 235 
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on pine weevils for recycling (magnitude = 1; van Lenteren et al., 2003; Table 2) though this has 236 

only been experimentally determined for S. carpocapsae. This agrees with similar studies on 237 

persistence in other, often very different settings (Smits, 1996; Susurluk & Ehlers, 2008). The 238 

indigenous strain S. feltiae 4CFMO, however, was originally isolated from a coniferous clear-fell 239 

site and so is likely to be adapted to this habitat and to hosts there, other than pine weevil. 240 

Therefore, if it were applied to sites where it is not already present, it may persist for longer and 241 

in a greater area compared to exotic EPN. We therefore conclude that establishment of S. feltiae 242 

4CFMO on coniferous clear-fell sites is ‘likely’ (likelihood = 4; Hickson, 2000; van Lenteren et 243 

al., 2003) and, because more than 50% of the area of coniferous clear-fell sites is soil available 244 

for colonisation by EPN, the potential area of establishment is ‘massive’ (magnitude = 5; van 245 

Lenteren et al., 2003) (Table 2). However, since it appears that native EPN may colonise clear-246 

fell sites as part of a natural ecological succession, following colonisation by native grasses and 247 

the associated insect fauna (Harvey & Griffin, 2016), this ‘risk’ is essentially no different to that 248 

of a natural recolonisation event. A less conservative view would be that the risk of 249 

establishment for indigenous species necessarily represents the lowest risk possible and would 250 

therefore better fit the category of ‘very unlikely’ establishment, resulting in a numerical risk 251 

value of 1 for S. feltiae (van Lenteren et al., 20013). While establishment risk of EPN in 252 

coniferous clear-fell soils can be considered low overall based on these results, persistence for up 253 

to four years after application still provides a window of time in which they can disperse to other 254 

areas, potentially creating additional risk.  255 

b) Dispersal 256 
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EPN disperse through soil as IJs which are typically about 0.5 – 1 mm in length. Depending on 257 

soil type, moisture content etc., the rate of horizontal dispersal of IJs after inundative application 258 

is usually a few centimetres per day and limited to a scale of meters overall (Poinar & Hom, 259 

1986; Downes & Griffin, 1996; Barratt et al., 2006). IJs of both Steinernema and Heterorhabditis 260 

species can move through mineral and peat soils like those found on coniferous clear-fell sites 261 

(Kruitbos et al., 2010; Williams et al., 2013). In addition, IJs may follow lateral roots 262 

(‘routeways’) to locate and infect pine weevil larvae situated more than 50 cm from the point of 263 

application (Dillon et al., 2006; Ennis et al., 2012).  264 

Dillon et al. (2008a) investigated the dispersal of EPN in the field and in mesocosms containing 265 

peat, simulating the type of soil typical of many coniferous plantations in Ireland and Britain. In 266 

mesocosms, a very low incidence of three EPN species (S. carpocapsae, S. feltiae 4CFMO and 267 

H. downesi) was detected 20 cm from the point of application, the maximum distance that was 268 

sampled. In the field, soil samples were three to four times more likely to score positive for EPN 269 

when taken at a treated tree stump compared to a distance of 20 cm from the stump (Dillon et al., 270 

2008a). The distance from the stump at which EPN were found was not influenced by species: 271 

exotic species S. carpocapsae and H. downesi dispersed at a rate comparable to the indigenous S. 272 

feltiae 4CFMO. Harvey & Griffin (2016) likewise observed that the probability of detecting S. 273 

carpocapsae decreased significantly as distance from the stump increased from 0 cm to 60 cm. 274 

These findings are in general agreement with previous studies in different settings, where EPN 275 

presence decreases rapidly with distance from the point of application (Poinar & Hom, 1986; 276 

Smits, 1996; Barratt et al., 2006; Jabbour & Barbercheck, 2008). However, care should be taken 277 

when extrapolating these findings to other species not empirically tested.   278 
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Long-distance dispersal can occur, however, when facilitated by infected or externally 279 

contaminated host insects or other carriers. Transport in wind and water may also occur, though 280 

considered rare (Downes & Griffin, 1996; Griffin, 2015). The phoretic route is the most likely 281 

explanation for reports of rapid short-range dispersal (Jabbour & Barbercheck, 2008) or long-282 

range dispersal over several hundred meters up to kilometres (Barratt et al., 2006). Following 283 

application of Steinernema scapterisci (Nguyen and Smart, 1990) to control mole crickets in 284 

Florida, infected insects were collected as far as 23 km from the nearest site of application 285 

(Parkman et al., 1993 & 1996). Lacey et al. (1995) reported dispersal of Steinernema glaseri 286 

(Steiner, 1929) IJs on the cuticle or within the haemocoel of Popillia japonica Newman, 1841. 287 

Infected beetles in many cases contained enough nematodes to allow reproduction, and dispersal 288 

in the field within infected hosts over at least 50 m was reported. The potential for dispersal of 289 

EPN  via attachment to and infection of adult pine weevils has been demonstrated in the 290 

laboratory (Kruitbos et al., 2009).  291 

Dillon et al. (2008a) tested for wider dispersal of EPN from treated stumps but found no EPN at 292 

distances ranging from 1 to 10 m from the nearest treated stump. Harvey (2010) extended the 293 

sampling up to 100 m off-site. Steinernema carpocapsae was detected in a small proportion of 294 

samples collected 5 - 10 m from two of three sites where it had been applied 1-2 years previously 295 

(Harvey, 2010). When the areas at which each of these positive samples was detected were 296 

extensively re-sampled (40 bulk soil samples, each comprised of 5 subsamples at each previously 297 

positive spot) five years after application, only native Steinernema spp. were isolated (Harvey & 298 

Griffin, unpublished data). Failure to detect S. carpocapsae does not guarantee that no spread 299 

and/or establishment of this species off-site has occurred, but it does suggest that any S. 300 

carpocapsae populations that may have remained after five years are most likely small and 301 
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isolated. Similar tests for other EPN should be undertaken to establish their potential for off-site 302 

spread.  303 

The natural host range and the mechanisms underlying the persistence and patchy distribution of 304 

EPN populations in the wild are poorly understood (Stuart & Gaugler, 1994; Peters, 1996; Smits, 305 

1996; Griffin, 2015). However, given the results discussed here, the distance of dispersal within 306 

and off clear-fell sites is unlikely to exceed 100 m (likelihood  = 2; van Lenteren et al., 2003) for 307 

any of the EPN investigated and, given the large number of IJs applied per stump (approx. 3.5 x 308 

106), the magnitude of any such dispersal will probably be ‘minimal’ (i.e. < 1 % of the applied 309 

EPN dispersing, magnitude = 1; van Lenteren et al., 2003), which is similar to previous 310 

evaluations of EPN dispersal risk (Smits, 1996; Barratt et al., 2006) (Table 2). The caveat here is 311 

that these conclusions are based on detailed observations of a limited number of species; most 312 

notably S. carpocapsae and that this risk factor may be revised in the light of future observations 313 

on other EPN species applied inundatively in a forest ecosystem context.    314 

 315 

c) Host range 316 

In laboratory assays, EPN have a broad host range: for example, S. carpocapsae was reported to 317 

kill >200 species of insects from 10 orders in close-contact laboratory assays (Poinar, 1979); 318 

however, the realised host range in the field is expected to be much narrower, and the range of 319 

insects affected to vary between species (Peters, 1996). Due to the wide potential host range, 320 

however, van Lenteren et al. (2003) assigned maximal risk values of 5 to both likelihood and 321 

magnitude of risk to S. feltiae when applied to an open field in Finland (> 30 species host range 322 

and taxon range > Order level, respectively; van Lenteren at al., 2003). We have adopted this 323 
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evaluation of host range for all EPN species used against the large pine weevil in our risk index 324 

estimation (Table 2).   325 

 326 

d) Direct non-target effects  327 

Non-target impacts of inundatively applied EPN are of concern for three related reasons. Firstly, 328 

negative impacts on biodiversity are considered detrimental in sustainable management of 329 

natural resources, as they are likely to reduce the resilience and function of an ecosystem 330 

(Bengtsson et al., 2000, Brockerhoff et al., 2008). Secondly, non-target insects that are of 331 

particular benefit to sustainable forest management (e.g. wood decomposers) may be at particular 332 

risk due to their proximity to the zone of nematode application (Harvey et al., 2012). Thirdly, 333 

non-target impacts have the potential to disrupt natural control of the pest if they affect an 334 

important natural enemy (van Lenteren, 2012; Harvey & Griffin, 2012). This last point is 335 

underlined by the fact that control by natural enemies, without intervention, may make a 336 

considerable economic contribution to pest control (Waage et al., 1988; Losey and Vaughan, 337 

2006). 338 

Direct non-target impacts arise when applied EPN infect and kill organisms other than the target 339 

pest. Considering the wide potential host range of EPN (Peters, 1996), occasional infection of 340 

non-target individuals is probably common when inundatively applying EPN IJs, but this should 341 

be distinguished from widespread or pervasive non-target infection that reduces abundance and 342 

diversity of non-target species (Bathon, 1996; van Lenteren et al., 2003). Published surveys of 343 

non-target impacts at population and community level, before and after EPN application, suggest 344 

that such impacts are rare and, if they do occur, tend to be minor (Bathon, 1996; Hodson et al., 345 
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2002; Barratt et al., 2006). Nonetheless, plantation forests and the associated clear-fell sites, 346 

though not always as diverse as mature and natural forest stands (Grove, 2002, Irwin et al., 347 

2014), may harbour a significant number of insects, particularly saproxylics, including red-listed 348 

species (Sippola et al., 2002; Jonsell, 2007; Irwin et al., 2014). To assess the impact of EPN on 349 

non-target insects in the pine weevil system we looked both for effects on community 350 

composition and on two key ecosystem service providers, a parasitoid and a common saproxylic 351 

species. 352 

Saproxylic beetles, which develop in or feed on decomposing wood for at least part of their life 353 

cycle, are considered beneficial in forest management and are, therefore, worth protecting 354 

(Speight, 1989). These beneficial non-target insects may be at risk of infection as they occupy a 355 

similar habitat to the pine weevil. The two-banded longhorn beetle Rhagium bifasciatum 356 

Fabricius 1775 (Coleoptera: Cerambycidae) is an important wood-decomposing insect on clear-357 

fell sites in Europe (Duffy, 1953; Twinn & Harding, 1999). It develops over several years in 358 

fallen deadwood and wood debris but, as tree stumps only become suitably decomposed for this 359 

species three to four years after felling (Duffy, 1953), it usually does not co-occur with pine 360 

weevils, which are present in stumps one to three years after felling (Leather et al., 1999). These 361 

longhorns may, however, be impacted by misdirected spray during nematode application or by 362 

EPN dispersing from treated stumps. Harvey et al. (2012) demonstrated that larvae, pupae and 363 

adults of R. bifasciatum could be infected by both S. carpocapsae and H. downesi within 364 

decomposing deadwood logs, though infection was significantly lower in field experiments than 365 

in the laboratory. High rates of infection (> 30 % of insects) were typically only observed in logs 366 

that had been directly drenched with a dose of 1.8 million IJs, half the number applied per stump 367 

for pine weevil suppression (Dillon et al., 2008a). Rhagium bifasciatum infected with EPN were 368 
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also found in deadwood 1-12 months after application of S. carpocapsae to stumps on an 369 

operational, site-wide scale, but fewer than 10% of logs contained infected insects, and infected 370 

insects represented less than 4% of the overall population sampled. Both S. carpocapsae and H. 371 

downesi reproduced in R. bifasciatum larvae, so it is possible that some of the infection was as a 372 

result of recycling within the logs. The number of logs with infected R. bifasciatum, and number 373 

of infected longhorns per log declined significantly with increasing distance of logs from treated 374 

stumps (Harvey et al., 2012). The targeted application of EPN around tree stumps therefore 375 

appears to limit direct non-target risks for this and probably also other saproxylic beetles in 376 

deadwood and wood debris. However, tests of other EPN species, which may be used at an 377 

operational level, would be required before we can be sure that this direct non-target effect is 378 

minimal. 379 

Bracon hylobii Ratzeburg 1848 is an important beneficial insect that provides natural control of 380 

the large pine weevil (Henry & Day, 2001). Parasitism rates of pine weevil by this gregarious 381 

ectoparasitoid are typically in the range of 15 – 30 % (Dillon et al., 2008; Harvey, unpublished 382 

data), but can be as high as 90 % (Henry, 1995). Any intraguild predation of EPN on B. hylobii 383 

could potentially be detrimental to this natural control (Rosenheim et al., 1995). Several 384 

parasitoid wasps are susceptible to EPN, especially as larvae (Battisti, 1994; Lacey et al., 2003; 385 

Mbata & Shapiro-Ilan, 2012). Larvae, pupae and adults of B. hylobii were susceptible to H. 386 

downesi infection in laboratory assays (Everard et al., 2009). Adults emerging from cocoons 387 

were most susceptible (80 % mortality in close-contact trials) while pupae inside cocoons were 388 

infected only rarely (< 8 % of pupae infected inside cocoons after exposure to 10,000 IJs of H. 389 

downesi [(Everard et al., 2009])). However, such close-contact laboratory assays, with high 390 

concentrations of EPN, almost certainly over-represent infection rates in the field. Dillon et al. 391 
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(2008b) found no reduction in B. hylobii parasitism of pine weevil in stumps treated with H. 392 

downesi or S. carpocapsae 18 to 23 months earlier, but infection of B. hylobii itself with EPN 393 

was not assessed. Susceptibility of a parasitoid to EPN does not necessarily impact on parasitism 394 

of the pest: larvae of the parasitoid Habrobracon hebetor Say 1836 are susceptible to infection 395 

with Heterorhabditis indica Poinar, Karunakar & David, 1992, but when nematode and wasp 396 

were used together against Indian meal moth Plodia interpunctella Hübner 1813 in laboratory 397 

assays, no antagonistic effect was observed (Mbata & Shapiro-Ilan, 2012). Tests of other EPN 398 

species on B. hylobii would extend our confidence that there are minimal non-target effects.  399 

Tree stumps can harbour a large diversity of invertebrates, both in the decomposing wood and 400 

bark, and in the soil around them (Wallace, 1953; Abrahamsson & Lindbladh, 2006; Hedgren, 401 

2007). Since this is where EPN are applied (Dillon et al., 2008a), impacts on non-target insects 402 

are most likely to occur in this area. When debarking tree stumps to record infection of pine 403 

weevil after application of EPN, infected non-target insects (e.g. Elateridae) were occasionally 404 

found (Harvey, Dillon, pers. obs.). To monitor effects of EPN on non-target Coleoptera, Dillon et 405 

al. (2012) placed insect emergence traps over stumps treated with S. carpocapsae or H. downesi 406 

and over untreated stumps. EPN did not affect species diversity, richness, abundance or 407 

community composition, either in the year of application or one year later (Dillon et al., 2012). 408 

In particular, EPN application had no significant effect on wood-associated species including the 409 

abundant saproxylic cerambycid, Asemum striatum L. 1758 (Dillon et al., 2012). The authors 410 

concluded that the impact on non-target Coleoptera in and around tree stumps is probably 411 

negligible for the two species tested to date.  412 
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Based on the available data summarized here, direct non-target impacts of the EPN species 413 

investigated are ‘unlikely’ when applied against pine weevil (likelihood = 2; Hickson, 2000; van 414 

Lenteren et al., 2003) (Table 2). In addition, data for both wood debris-associated and stump-415 

associated non-target insects suggest mortality of these insects is < 5 % of the total available 416 

non-target population on site (magnitude = 1; van Lenteren et al., 2003). These assessments, 417 

while supported by the limited data available for some EPN species, should be considered 418 

tentative until further experimental data become available, especially for species whose non-419 

target risks have not yet been studied in detail in forest ecosystems.  420 

 421 

e) Indirect non-target effects  422 

Indirect effects of biological control are among the most difficult to study and disentangle 423 

(Simberloff, 2012), making them the least researched aspect of risk assessment. Applying large 424 

numbers of EPN may influence trophic interactions in the soil, thereby potentially changing 425 

nematode (Somasekhar et al., 2002) and/or microarthropod assemblages (Hodson et al., 2002) as 426 

well as nutrient cycles (De Nardo et al., 2006). Where persistence and dispersal of a control 427 

agent are low risk factors, it can be argued that indirect non-target effects are also unlikely 428 

(Barratt et al., 2006). Nonetheless, they should be assessed, for completeness. EPN may compete 429 

for hosts with other parasites, pathogens and parasitoids at the same trophic level. In the pine 430 

weevil system, we consider indirect effects on native EPN and on Bracon hylobii. Studies 431 

elsewhere indicate that endemic nematodes may persist in spite of inundative application of EPN 432 

(Miller and Barbercheck, 2001; Duncan et al., 2003). For example, Millar and Barbercheck 433 

(2001) tested whether indigenous S. carpocapsae and H. bacteriophora were displaced by the 434 
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exotic nematode Steinernema riobrave (Cabanillas, Poinar, and Raulston, 1994) after inundative 435 

application to corn fields in the US. Though the exotics persisted for more than two years, no 436 

evidence of long-term displacement of either of the endemic species was found (Millar & 437 

Barbercheck 2001). Steinernema feltiae was the only EPN recovered in a survey of coniferous 438 

forestry throughout  Ireland, being found in 10% of mature standing forests and 7% of replanted 439 

clear-felled sites (Dillon, 2003), though S. kraussei has also been detected (Harvey, 440 

unpublished). While S. carpocapsae was detected for at least 2 years following application, it 441 

was replaced on several sites by indigenous steinernematids (Harvey and Griffin, 2016). As the 442 

sites had not been sampled for EPN prior to treatment, it is not known whether endemic EPN 443 

were temporarily suppressed to undetectable levels, or their later detection was as a result of a 444 

new colonisation of the sites. Dillon et al. (2008a) found that the exotic species S. carpocapsae 445 

and  H. downesi and the exotic strain S. feltiae EN02 did not displace native strain S. feltiae 446 

4CFMO on Irish clear-fell sites treated for pine weevil control. When applying an exotic strain of 447 

an indigenous species, there is a risk of introgression (Roderick & Navajas, 2003; Hopper et al., 448 

2006), but there was no evidence of hybridization between indigenous and applied strains of S. 449 

feltiae (Dillon et al., 2008a). These findings suggest that indigenous EPN species are unlikely to 450 

be displaced in the long term by exotics that are not adapted to the target environment (Grewal et 451 

al., 1994), but tests on further EPN species that may be used in pine weevil suppression activities 452 

should be considered as the next step in the assessment of indirect non-target effects. 453 

As previously noted, inundatively applied EPN may have direct effects on the parasitoid B. 454 

hylobii by killing various life stages. We also consider the possibility of competition between 455 

nematodes and this parasitoid for pine weevil larvae. Bracon hylobii cannot develop to adulthood 456 

on hosts that have been infected with EPN; females oviposited on healthy host larvae, but not on 457 
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larvae killed by H. downesi or S. carpocapsae, which should reduce the negative impact on the 458 

parasitoid (Everard et al., 2009; Harvey & Griffin, 2012). Female B. hylobii, especially those 459 

with prior experience, did parasitize live hosts infected with EPN, as long as they were still 460 

moving (Everard et al., 2009; Harvey & Griffin, 2012). While this means there is a possibility of 461 

competition between EPN and B. hylobii (modulated by wasp experience), complementary 462 

(additive or synergistic) control effects by the two agents may also emerge (Harvey & Griffin, 463 

2012). Dillon et al. (2008b) reported an additive effect of H. downesi and S. carpocapsae with B. 464 

hylobii on mortality of   pine weevil in stumps across three sites. Larger-scale and longer-term 465 

monitoring of B. hylobii populations is necessary to draw more definite conclusions about 466 

population-scale effects of competition between EPN and B. hylobii.   467 

We estimate that indirect non-target effects of exotic EPN species and strains used for large pine 468 

weevil control (i.e. S. carpocapsae, S. feltiae EN02 and H. downesi) are ‘unlikely’ (likelihood = 469 

2; Hickson, 2000; van Lenteren et al., 2003) (Table 2). and we expect these exotics to have only 470 

a ‘minor’ impact on non-target organisms (magnitude = 2; van Lenteren et al., 2003) (Table 2). 471 

Furthermore, we consider indirect non-target impacts to be ‘very unlikely’ for the native S. 472 

feltiae 4CFMO (likelihood = 1; Hickson, 2000; van Lenteren et al., 2003) as it is already a 473 

natural component of coniferous forest soils in Ireland and thus inundative application should not 474 

have a qualitative impact on the soil organism community. It should be stressed, however, that 475 

these assessments are based on the different aspects of indirect non-target impact investigated for 476 

each of the species and that results for one species are not necessarily representative of others. 477 

While we have not included exact risk values for H. megidis and S. kraussei, the other two 478 

species that have been tested against pine weevil and for which fewer data are available, we 479 



23 

 

estimate H. megidis to be similar to its close relative H. downesi, both being exotic to the habitat, 480 

and S. kraussei to be similar to S. feltiae, both species being present in the target habitat.          481 

 482 

Conclusions and risk evaluation 483 

Both exotic and indigenous EPN trialled against the large pine weevil persisted in the soil for up 484 

to four years after application (Dillon et al., 2008a; Harvey & Griffin, 2016), but the evidence 485 

suggests that persistence was driven by recycling through the target pest as intended. 486 

Consequently, EPN levels decreased to background levels (for an indigenous strain) or 487 

undetectable levels (for exotic species/strains) along with the natural decrease in pest population 488 

(Torr et al., 2007; Dillon et al., 2008a; Harvey & Griffin, 2016). Moreover, the exotic applied 489 

strain of S. feltiae did not displace an indigenous strain (Dillon et al., 2008a). Active horizontal 490 

dispersal appeared to be limited to a zone of less than 1 m from the point of application and, 491 

while phoresis or some other long-range mechanism of dispersal resulted in movement of EPN 492 

outside the treated areas, there is no evidence that they established there (Dillon et al., 2008a; 493 

Harvey & Griffin, 2016). Direct non-target effects are limited by the targeted application of 494 

exotic EPN (Harvey et al., 2012) and coleopteran communities around tree stumps were 495 

unaffected by exotic EPN (Dillon et al., 2012). Moreover, while the parasitoid B. hylobii is 496 

susceptible to infection by and competition with EPN, there is no indication that this negatively 497 

impacts on B. hylobii parasitism in the field (Dillon et al., 2008b; Everard et al., 2009; Harvey & 498 

Griffin, 2012). Thus, both exotic and indigenous EPN seem to be well-suited as a low-risk 499 

alternative to chemical pesticides.  500 
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Current risk considerations and regulatory restrictions on exotics have resulted in a trend to 501 

favour indigenous inundative control agents over exotic ones, reversing the past emphasis on use 502 

of exotics (van Lenteren, 2012). The results presented here do not suggest that risk, as defined by 503 

van Lenteren et al. (2003), is increased by using exotic species. In fact, using EPN that are not 504 

well-adapted to the environment where they are applied might reduce the risk of long-term 505 

establishment (Grewal at al., 1994). The indexing method devised by van Lenteren et al. (2003), 506 

when applied strictly, is only valid for the environment and setting in which the risk for the 507 

control agent has been evaluated. In the setting of large pine weevil control using EPN, we 508 

estimate the risk index of the exotic H. downesi and S. carpocapsae to be 35, as also for the 509 

exotic strain of S. feltiae, EN02 (Table 2). We arrived at a somewhat higher index value of 51 for 510 

S. feltiae 4CFMO (native) in a forestry setting in Ireland (Table 2). The main risk category 511 

contributing to the differences in indices is establishment; we assign higher scores to the native 512 

Irish species S. feltiae, particularly the native strain 4CFMO, as it has the potential to persist for 513 

longer in coniferous clear-fell soils after application (Dillon et al. 2008a). However, since this 514 

species already occurs naturally in this ecosystem, in this case a higher risk index value does not 515 

necessarily imply a greater environmental hazard due to application. If we take the establishment 516 

risk of S. feltiae to be the less conservative 1, then its index value becomes 36. By comparison, 517 

van Lenteren et al. (2003) assign an index value of 53 to S. feltiae when released in Finland 518 

(where it is indigenous) in an open field environment. The slightly different indices between the 519 

two studies for application of a native S. feltiae are accounted for by higher estimates for 520 

establishment and dispersal, and lower estimates for direct and indirect non-target effects in our 521 

system compared to that of van Lenteren et al. 522 
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Of course, no risk assessment can ever be complete and offer a guarantee of safety – risks and 523 

benefits must therefore always be weighed in sensible proportion to each other (Clerq et al., 524 

2011; Simberloff, 2012). The pine weevil has been controlled in Ireland and elsewhere mainly by 525 

applying chemical pesticide (most recently cypermethrin or α–cypermethrin) to replanted 526 

seedlings before and/or after planting (e.g. Torstensson et al., 1999; Willoughby et al., 2004). 527 

EPN, as part of an integrated pest management strategy, are intended to help replace 528 

cypermethrin and α–cypermethrin as their use is phased out in the European Union under 529 

sustainable forest management (SFM) policies. An extensive body of research investigating 530 

environmental impacts of pyrethroid pesticides in forestry shows that they can affect a much 531 

wider range of organisms than do EPN (e.g. crustaceans and vertebrates), can impact on 532 

terrestrial and – unlike EPN – also aquatic non-target organisms and can persist in both soil and 533 

freshwater (e.g. McLeesc et al., 1980; Anderson, 1982; Kreutzweiser & Kingsbury, 1987; 534 

DeLorenzo and Fulton, 2012). Moreover, by altering the composition of freshwater invertebrate 535 

communities, pyrethroids can also have indirect impact on other non-target organisms 536 

(Kingsbury & Kreutzweiser, 1987). Though the risk indexing method by van Lenteren et al. 537 

(2003) is not designed to incorporate chemical pesticides, the risk of pyrethroids in terms of host 538 

range, persistence (analogous to establishment for EPN) and direct and indirect non-target 539 

impacts in the context of pine weevil control is likely to be greater than that of the EPN 540 

discussed here. This is consistent with Laengle & Strasser (2010), who compared risk factors for 541 

biological control agents with pesticides. They report risk factors in the order of thousands for 542 

pesticides and in the order of hundreds for biological control agents. Thus, from the perspective 543 

of minimizing the risk of environmental impact, EPN appear to be a superior alternative to 544 

conventional chemical control methods when managing the large pine weevil.  545 
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 552 

Table 1: EPN species and strains for which risk assessment studies have been carried out in 553 

relation to pine weevil suppression. For each species and strain, status (exotic or indigenous) is 554 

given for Britain (Br) and Ireland (Irl) in general, and coniferous forest soils in these islands in 555 

particular. Risk categories after van Lenteren et al. (2003) are E = establishment, D = dispersal, 556 

DNT = direct non-target effects and INT = indirect non-target effects.   557 

 558 

 559 

1References : [1] Blackshaw, 1988, [2] Hominick & Briscoe, 1990a; [3] Hominick & Briscoe, 1990b; [4] 560 

Griffin et al., 1991; [5] Boag et al., 1992; [6] Griffin et al., 1994; [7] Hominick et al., 1995; [8] Gwynn & 561 

Richardson,1996; [9] Chandler et al., 1997; [10] Griffin et al., 1999; [11] Hominick, 2002; [12] Dillon, 562 

2003; [13] Harvey (unpublished data); [14] Torr et al., 1997; [15] Dillon et al., 2008a; [16] Dillon et al., 563 

EPN species Strain and origin Species/strain 

present in Br/Irl1 

Species/strai

n present in 

coniferous 

forest soils?1 

 

 

Risk categories 

Evaluated1 

Steinernema 

carpocapsae 

 

 

All strain,USA Yes2 

(1,2,3,5,7,8,11,12,22) 
No2 

(2, 8, 12, 13) 
E, D, DNT, INT 

15,16,18,19,20, 21 

Steinernema feltiae 

 

4CFMO, Ireland Yes 

(1,4,5,7,8,11,12) 
Yes 

(2, 12, 13) 
E, D, INT 

15 

Steinernema feltiae 

 

EN02, Germany  Yes3 

(1,4,5,7,8,11,12,15)  
No3 

(15) 
E, D, INT 

15 

Steinernema 

kraussei 

 

Not specified 

(Torr et al. 

2007) 

 

Yes 

(7,8,11,13) 
Yes 

(8,13) 
E 

14 

Heterorhabditis 

downesi 

 

K122, Ireland Yes 

(6,11) 
No 

(2,4,8,12) 
E, D, DNT, INT 

15,16,17,18,19, 20 

Heterorhabditis 

megidis 

 

UK211, UK; 

NL-HF85, 

Netherlands 

Yes4 

(7,11) 
No 

(2,4,8,12) 
E, D, INT 

15 
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2008b; [17] Everard et al., 2009; [18] Harvey et al., 2012; [19] Harvey & Griffin, 2012; [20] Dillon et al., 564 

2012; [21] Harvey & Griffin, 2016; [22] R. Rae, pers. comm. (2016) 565 

2 S. carpocapsae has been found in Britain, but not Ireland. 566 

3 S. feltiae is present in UK and Ireland, but strain EN02 originated in Germany (Dillon et al., 2008a).   567 

4 H. megidis has been found in Britain, but not Ireland 568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

578 
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Table 2: Risk indices for Steinernema carpocapsae, Heterorhabditis downesi and Steinernema 579 

feltiae when used against the large pine weevil. Values for likelihood of risk are determined on a 580 

scale of 1 to 5 (1 = very unlikely, 2 = unlikely, 3 = possible, 4 = likely, 5 = very likely), as are 581 

values for magnitude (1 = minimal, 2 = minor, 3 = moderate, 4 = major, 5 = massive), based on 582 

criteria outlined in van Lenteren et al. (2003). Within each risk category, the values for 583 

likelihood and magnitude of effects are multiplied, and the products are added to give the risk 584 

index (van Lenteren et al. 2003).  585 

 586 

1 The risk index for S. feltiae when applied to an open field in Finland from van Lenteren et al. 587 

(2003) is given here for comparison. 588 

 589 

 590 

 591 

 592 

 Risk category 

EPN species/strain Establish

ment 

Dispersal Host 

range 

Direct non-

target 

effects 

Indirect non-

target effects 

Risk 

index 

S. carpocapsae      Likelihood 

                               Magnitude 

                                L x M          

                

2 

1 

2 

2 

1 

2 

5 

5 

25 

2 

1 

2 

2 

2 

4 

 

 

35 

H. downesi             Likelihood 

                               Magnitude 

                                L x M           

             

2 

1 

2 

2 

1 

2 

5 

5 

25 

2 

1 

2 

2 

2 

4 

 

 

35 

S. feltiae (EN02)    Likelihood 

                               Magnitude 

                                L x M 

 

2 

2 

4 

2 

1 

2 

5 

5 

25 

2 

1 

2 

1 

2 

2 

 

 

35 

S. feltiae (4CFMO) Likelihood 

                               Magnitude 

                               L x M               

             

4 

5 

20 

2 

1 

2 

5 

5 

25 

2 

1 

2 

1 

2 

2 

 

 

51 

S. feltiae1               Likelihood 

                               Magnitude 

                               L x M                         

3 

5 

15 

1 

1 

1 

5 

5 

25 

4 

2 

8 

4 

1 

4 

 

 

53 
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