Canterbury Research and Theses Environment

Canterbury Christ Church University's repository of research outputs
 http://create.canterbury.ac.uk

Please cite this publication as follows:
Karsten, B, Hopker, J., Jobson, S., Baker, J., Petrigna, L., Klose, A. and Beedie, C. (2016) Comparison of inter-trial recovery times for the determination of critical power and W' in cycling. Journal of Sports Sciences, 35 (14). pp. 1420-1425. ISSN 0264-0414.

Link to official URL (if available):
http://dx.doi.org/10.1080/02640414.2016.1215500

This version is made available in accordance with publishers' policies. All material made available by CReaTE is protected by intellectual property law, including copyright law. Any use made of the contents should comply with the relevant law.

Contact: create.library@canterbury.ac.uk

COMPARISON OF INTER-TRIAL RECOVERY TIMES FOR THE DETERMINATION OF CRITICAL POWER AND W' IN CYCLING

Journal:	Journal of Sports Sciences	
Manuscript ID	RJSP-2014-1264.R3	
Manuscript Type:	Special Issue	
Keywords:	critical intensity, power-duration relationship, exercise testing, anaerobic work capacity, validty	

SCHOLARONE ${ }^{m}$
Manuscripts

1 COMPARISON OF INTER-TRIAL RECOVERY TIMES FOR THE

2 DETERMINATION OF CRITICAL POWER AND \boldsymbol{W}^{\prime} IN CYCLING

4 Running Head: Determination of Critical Power in a single session

5
6 Key Words: critical intensity; power-duration relationship, exercise testing; anaerobic work
capacity; validity

8

9 Abstract word count: 229

12 Funding: No external funding was received and there are no conflicts of interest in this work. 30 and 30 min for the determination of CP and W^{\prime}. Methods: Nine moderately trained cyclists 31 performed an incremental test to exhaustion to establish the power output associated with the 32 maximum oxygen uptake ($\mathrm{p}^{\mathrm{V}}{ }_{2}$ max), and three protocols requiring time-to-exhaustion trials 33 at a constant work-rate performed at $80 \%, 100 \%$ and 105% of $\mathrm{p}^{\mathrm{V}}{ }_{2}{ }_{\text {max. }}$. Design: Protocol A 34 utilised 24 h inter-trial recovery $\left(\mathrm{CP}_{24} / W_{24}^{\prime}\right)$, protocol B utilised 3 h inter-trial recovery

Abstract

Critical Power (CP) and W^{\prime} are often determined using multi-day testing protocols. To investigate this cumbersome testing method, the purpose of this study was to compare the differences between the conventional use of a 24 h inter-trial recovery time with those of 3 h $\left(\mathrm{CP}_{3} / W_{3}^{\prime}\right)$, and protocol C used 30 min inter-trial recovery period $\left(\mathrm{CP}_{0.5} / W_{0.5}^{\prime}\right) . \mathrm{CP}$ and W^{\prime} were calculated using the inverse time $(1 / \mathrm{t})$ versus power (P) relation $\left(\mathrm{P}=W^{\prime}(1 / t)+\mathrm{CP}\right)$. Results: 95% Limits of Agreement between protocol A and B were -9 to $15 \mathrm{~W} ;-7.4$ to 7.8 kJ

49 INTRODUCTION

51 Critical Power (CP), the maximum power that can be sustained without a progressive loss of 52 homeostasis, demarcates the heavy and the severe exercise domains (Jones, Vanhatalo, 53 Burnley, Morton, \& Poole, 2010). CP is sensitive to changes in aerobic metabolism and is 54 therefore predictive of future performance (Jenkins \& Quigley, 1990; Stickland, Petersen, \& 55 Dressendorfer, 2000). Exceeding CP results in the utilisation of its related finite anaerobic 56 energy source, W^{\prime}, with the depletion rate of W^{\prime} being proportional to the degree to which 57 power output (PO) exceeds CP . The determination of CP and W^{\prime} has traditionally required an 58 incremental maximal exercise test to determine the power output associated with the 59 maximum oxygen uptake ($\mathrm{p} \dot{\mathrm{VO}}_{2}{ }_{\text {max }}$), followed by fixed intensity time to exhaustion (TTE) 60 trials at three or more predetermined work-rates. These trials generally require one or more 6124 h inter-trial recovery period. Critical Power testing is therefore a multi-day process.

63 The time consuming and resource intensive process of CP testing would be more easily 64 incorporated into an athlete's training schedule if testing could be completed within one day. 65 A number of authors have therefore examined alternatives to multi-day methods by 66 employing inter-trial recovery periods from 30 min to 4 h (Barker, Bond, Toman, Williams, \& 67 Armstrong, 2012; Brickley et al., 2007; Carter et al., 2005; Dekerle et al., 2009; Housh \& 68 Terry, 1989). However, most of these investigations have failed to report direct comparisons 69 of their findings with the traditional 24 h recovery protocol. In running, Galbraith, Hopker, \& 70 Lelliott (2014) recently demonstrated that a recovery period of 30 min in between exhaustive 71 trials is sufficient to determine Critical Velocity (analogous of CP) but not the Anaerobic 72 Running Distance (analogue of W^{\prime}) when compared against the conventional 24 h recovery 73 testing method. In cycling only, Bishop and Jenkins (1995) also directly compared protocols

74 utilising 24 h and 3 h recovery periods in untrained participants, and reported no significant 75 differences between estimates of CP and W^{\prime} derived from each.

77 It is questionable whether a reduced recovery time allows for full W^{\prime} restoration (Ferguson et 78 al., 2010), whilst shorter intra-trial times can result in 'primed' $\dot{\mathrm{VO}}{ }_{2}$ kinetics and 79 performance enhancements (Bailey et al., 2009). Providing a 20-min intra-trial recovery, 80 Bailey et al. (2009) demonstrated a significant increase in exercise tolerance during a 81 subsequent $2^{\text {nd }}$ bout of severe exercise due to a priming of the kinetic response. However, this 82 shorter recovery between repeated bouts of heavy intensity exercise to exhaustion are 83 associated with elevated fatigue-related muscle metabolites, such as inorganic phosphate 84 molecules, hydrogen and potassium ions (Westerblad, Allen, \& Lännergren, 2002). 85 Therefore, deciding on a shortest possible inter-trial recovery period, which allows a full 86 recovery of W^{\prime} whilst avoiding either a detrimental or a performance enhancing effect, is 87 challenging.

89 Whilst previous work has made some progress in investigating brief CP testing, the variety of 90 modes of exercise, level of participant and recovery periods leave several questions 91 unanswered. Arguably therefore, further research is warranted. The purpose of the present 92 study was to directly compare estimates of CP and W^{\prime} derived using inter-trial recovery 93 periods of $24 \mathrm{~h}, 3 \mathrm{~h}$, and 30 min using trained cyclists. We hypothesised an acceptable level 94 of agreement (i.e. mean difference $\pm 1.96 \mathrm{SD}$) between CP derived from the three different 95 protocols (with 24 h serving as the criterion measurement). In relation to W^{\prime} we hypothesised 96 an acceptable level of agreement with the criterion measure in the 3 h recovery method only. 97

98 DESIGN

99 Participants were nine moderately trained recreational road cyclists [age $33 \pm 8 \mathrm{yr}$, body mass $10078 \pm 10 \mathrm{~kg}$, maximal oxygen consumption $\left(\dot{\mathrm{VO}}_{2_{\max }}\right) 3.9 \pm 0.4 \mathrm{~L} \cdot \mathrm{~min}^{-1}$, power associated with $101 \dot{\mathrm{VO}}_{2}$ max $\left.\left(\mathrm{p} \dot{\mathrm{VO}}_{2}{ }_{\text {max }}\right) 358 \pm 35 \mathrm{~W}\right]$. The study was approved by the institutional Ethics 102 Committee in accordance with the Declaration of Helsinki. Prior to providing written 103 informed consent, cyclists were fully informed of the nature and risks of the study.

105 Protocol. In visit 1 , values for $\dot{\mathrm{V}}_{2^{\text {max }}}$ and $\mathrm{p} \dot{\mathrm{VO}}_{2_{\text {max }}}$ were established. In randomised order, 106 each cyclist then completed three CP protocols. Protocol A used a traditional 24 h inter-trial 107 recovery (3 visits to laboratory), protocol B a 3 h inter-trial recovery (1 visit to laboratory), 108 and protocol C a 30 min inter-trial recovery (1 visit to laboratory). For each protocol fluid 109 intake was permitted ad libitum. During all tests, participants were blinded to power and 110 elapsed time. Participants were required to refrain from heavy exercise and from food and 111 caffeine intake for 24 h and 3 h prior to testing, respectively. To minimise training effects, all 112 visits were separated by a minimum of 24 h and were completed within a maximum period of 11314 days. Each cyclist completed each of their six visits at the same time of day.

115 A road bicycle equipped with a PowerTap Elite wheel (CycleOps, Madison, USA) and a 116 magnet for direct cadence measurement was used in this study. The road bike was attached to 117 a Computrainer system (RacerMate, Seattle, USA). The saddle and handlebar were adjusted 118 to suit each participant and settings were replicated exactly during subsequent tests. The 119 PowerTap device was zero offset prior to each test according to the manufacturer's 120 instructions.

121

122 Maximal oxygen uptake test protocol. Following a standardised warm-up, cyclists 123 completed a progressive, incremental exercise test to exhaustion. The maximal test 124 commenced at a work rate of 150 W . Thereafter, intensity increased at a step rate of 20 $125 \mathrm{~W} \cdot \mathrm{~min}^{-1}$. Cyclists were allowed to self-select cadence and were instructed to maintain this 126 cadence throughout all tests. The test was terminated when cadence dropped by more than 10 $127 \mathrm{rev} \cdot \mathrm{min}^{-1}$ for more than 10 seconds. Expired gases were collected breath-by-breath 128 throughout the test using a Cortex MetaLyzer 3B gas analyser (Cortex Biophysik, Leipzig, 129 Germany). Fingertip blood lactate was analysed using the Biosen C_line analyser (EFK 130 Diagnostics, Barleben, Germany), and heart rate (HR) was continuously observed using the 131 monitor built in the Cortex gas analyser. $\mathrm{p}^{\mathrm{V}}{ }_{2}{ }_{\text {max }}$ was calculated as the highest 30 -s mean 132 PO value (W). $\dot{\mathrm{VO}}_{2_{\text {max }}}$ was calculated as the highest mean oxygen consumption over the 133 same period.

134
135 Critical Power tests. Each protocol required cyclists to complete three TTE trials at work136 rates equivalent to $80 \%, 100 \%$ and $105 \% \mathrm{p}^{\dot{\mathrm{VO}}}{ }_{2}$ max . Protocol A used a randomised TTE trial 137 order, with protocol B and C requiring participants to perform trials in the order lowest work 138 rate (i.e., $80 \% \mathrm{p}^{\mathrm{VO}_{2}}{ }_{\text {max }}$) to highest work rate (i.e., $105 \% \mathrm{p}^{\mathrm{V}} \mathrm{O}_{\text {max }}$). After a $5-\mathrm{min}$ 139 standardised warm-up, the test resistance was set and participants were instructed to maintain 140 their preferred cadence for as long as possible. At TTE termination participants continued 141 with a 5 minute unloaded cycling phase before dismounting the bike. HR (b:min${ }^{-1}$), PO (W) 142 and cadence (rev $\cdot \mathrm{min}^{-1}$) were recorded continuously via the PowerTap, and expired gases 143 were continuously sampled. Tests were terminated when cadence dropped by $10 \mathrm{rev} \cdot \mathrm{min}^{-1}$ 144 below preferred cadence for more than 10 seconds. Fingertip capillary blood samples were 145 collected prior to and post TTE trials. All cyclists reached their individual $\dot{\mathrm{VO}}_{2 \text { max }}$ value (\pm
$1460.08 \mathrm{Lmin}^{-1}$), a post-test blood [lactate] of $\geq 8 \mathrm{mM}$ and a HR within ± 5 beats of their 147 maximal HR values established during the $\dot{\mathrm{V}}_{2}{ }_{2 \text { max test. }}$

149 Calculation of Critical Power and \boldsymbol{W}^{\prime}. Linear regression was used to calculate CP and W^{\prime} 150 using the power-1/time $\left(\mathrm{P}=W^{\prime}(1 / t)+\mathrm{CP}\right)$ model. Results using protocol A were termed $151 \mathrm{CP}_{24} / W^{\prime}{ }_{24}$ and for protocol B and protocol C they were termed $\mathrm{CP}_{3} / W_{3}^{\prime}$ and $\mathrm{CP}_{0.5} / W_{0.5}^{\prime}$ 152 respectively.

153
154 Statistical Methods. Data were examined using the Shapiro-Wilk normality test. Pearson 155 product moment correlation analysis was used to provide an indication of the strength of 156 relationship between the different inter-trial protocols for CP or W^{\prime}. Agreement between 157 different testing protocols for $\mathrm{CP}_{24} / W_{24}^{\prime}, \mathrm{CP}_{3} / W_{3}^{\prime}$ and $\mathrm{CP}_{0.5} / W_{0.5}^{\prime}$ was assessed using a 158 repeated measures ANOVA and Limits of Agreement (LOA; Atkinson \& Nevill, 1998; Bland 159 \& Altman, 1986). A repeated measures ANOVA was also used to assess differences between 160 the protocol specific durations of TTE trials and resting and in-exercise blood [lactate] 161 between and within different protocols. Linear regression was used to calculate the Standard 162 Error of Estimates (SEE) to determine the error associated with predicting experimental CP 163 and W^{\prime} values. Partial eta squared $\left(\eta_{p}^{2}\right)$ values are reported to provide an estimate of 164 standardised effect size (small $\eta_{\mathcal{P}}^{2}=0.01$; moderate $\eta_{\mathcal{P}}^{2}=0.06$; and large $\eta_{\mathcal{P}}^{2}=0.14$). Greenhouse165 Geisser correction was used to correct the violation of sphericity. Statistical significance was 166 accepted at $P<0.05$. Results are reported as mean and standard deviation (SD) unless 167 otherwise stated.

168
169

170

171 RESULTS

172 CP and W^{\prime} were normally distributed. Repeated measures ANOVA demonstrated no
173 significant differences for $\mathrm{CP}, F(1.4,11.17)=1.22, \mathrm{p}=0.31$ and $W^{\prime}(F[1.6,12.89]=4.03, \mathrm{p}=$ 1740.07) between protocols. Where the assumption of sphericity was not met, the Greenhouse175 Geisser correction was used. There was a large effect of the protocol for CP and for $W^{\prime}\left(\eta_{p}^{2} \geq\right.$ 176 0.14). Applying the power-1/time CP model, mean r for protocol A was 0.94 ± 0.12 (SEE $17710.0 \pm 9.0 \mathrm{~W})$ for protocol B it as was $0.97 \pm 0.04(\mathrm{SEE} 8 \pm 6 \mathrm{~W})$ and for protocol C it was 1780.99 ± 0.01 (SEE $5 \pm 3 \mathrm{~W}$). Table 1 illustrates mean difference and $95 \% \mathrm{LoA}$ for all results 179 with Table 2 illustrating mean CP / W^{\prime} values and average prediction errors for the 180 experimental protocols. Figure 1 depicts a graphical presentation of the Bland-Altman 181 analysis, including SEE and r values.

182 ---Fig 1 about here---

183

184 Significant differences $(P<0.05)$ were observed for mean resting [lactate] in protocol C 185 between 80% TTE trials and both 100% and 105% TTE trials but also between protocol C 186100% and 105% TTE trials and their protocol B and C counterparts. For post [lactate], 187 significant differences were observed between protocol A 80\% TTE trials and 105\% TTE 188 trials in protocols B and C (Table 3). No significant differences in TTE durations between 189 respective protocol trials were observed (Table 4).
---Table 1 a and 1 b about here---
---Table 2 a and 2 b about here---

192
---Table 3 about here---

URL: http://mc.manuscriptcentral.com/rjsp
---Table 4 about here---

194

195 DISCUSSION

196 The present study investigated whether recovery times of 3 h or 30 min are sufficient to 197 derive values of CP and W^{\prime} equivalent to those derived using the 'standard' 24 h inter-trial 198 recovery method. Mean differences between protocol A (24 h recovery) and protocol B (3 h 199 recovery) and between protocol A and protocol C (30 min recovery) were $3 \pm 6 \mathrm{~W}$ and $-2 \pm$ 20012 W respectively. This suggests that CP can be determined using either a 3 h or a 30 min 201 inter-trial recovery period. LoA for standard and experimental CP_{3} and $\mathrm{CP}_{0.5}$ values (Table 202 1a; Fig 1) also suggest an acceptable level of agreement between the 24 h and the shorter 203 recovery duration protocols. Table 2 a demonstrates average prediction errors for all 204 experimental CP. Our levels of error are considerably lower than those reported by 205 Nimmerichter, Williams, Bachl, \& Eston (2010), who suggested that a field test with a 206 random error of 5% and levels of agreement between -0.4 W and 49 W was valid. CP 207 findings were also consistent with those of Bishop and Jenkins (1995), and of Galbraith et al. 208 (2014) which further suggests that recovery periods as short as 30 min provide good 209 estimates of CP/CV.

210 Although not reaching statistical significance, data for W^{\prime} indicated an unacceptably low level 211 of agreement (Table 1b), as well as high average prediction errors for both 3 h and 30 min 212 testing protocols (Table 2b). These data allow us to reject our hypothesis that an acceptable 213 level of agreement with the criterion measure would be observed in the 3 h recovery method. 214 Previous research suggests that prior exercise such as a TTE trial can be detrimental to 215 subsequent exercise when it is too intense (Wilkerson, Koppo, Barstow, \& Jones, 2004) or 216 when recovery periods are too short (Ferguson et al., 2007). Arguably only minimal

217 detrimental effects are evident in the current study, as indicated by shorter exhaustive trial 218 durations in Table 4. However, these might explain the lack of agreement for W^{\prime} across 219 protocols. Our results, furthermore, support findings by Galbraith et al. (2014) who also 220 identified differences in values of anaerobic running distances using a 30 min and 60 min 221 inter-trial recovery method. However our results do not explain findings for W^{\prime} under 222 protocol B, where a 3 h inter-trial recovery period should have been sufficiently long or a full 223 reconstitution of this parameter.

225 Nielsen, de Paoli \& Overgaard (2001) suggested that acidosis caused by elevated blood 226 [lactate] actually protects the muscle from fatigue. Moreover, an optimal [lactate] of $\sim 2-3$ 227 mM has been suggested by Jones et al. (2003) as a level at which, through the preservation of 228 muscle K^{+}, performance can be enhanced. Resting blood [lactate] was significantly elevated 229 for both the 100% and 105% TTE trials in protocol C (Table 3) without indicating such 230 performance enhancement. Protocol C 105\% TTE trial durations on average were $\sim 36 \mathrm{~s}$ 231 shorter when compared with their protocol A counterparts. Ferguson et al. (2010) suggested 232 that lactate recovery kinetics are slower than those of W^{\prime}, which implies that full recovery 233 was not evident in protocol C , since W^{\prime} was considerably smaller when compared to protocol 234 A.

235

236 There appears to be a lack of consensus as to the true nature and role of W^{\prime}. W^{\prime} defined as a
237 finite amount of energy was believed to result in exhaustion when depleted (Moritani, 238 Nagata, Devries, \& Muro, 1981). More recently W^{\prime} has been suggested to represent the 239 accumulation of fatigue-related metabolites to some critical tolerable limit (Coats et al., 2003; 240 Jones, Wilkerson, DiMenna, Fulford, \& Poole, 2008). According to Coats et al. (2003), 241 depletion of W^{\prime} resulting from a prior bout of severe exercise negatively influences

URL: http://mc.manuscriptcentral.com/rjsp

242 subsequent performances around CP intensity. This was seen in the present study in that 243100% and 105% test durations under protocol C conditions were shorter than those of their 244 protocol A counterparts. Challenging a finite capacity-based explanation for tasks to failure, 245 Ferguson et al. (2010) explored the effects of an exhaustive conditioning bout on CP and W^{\prime}. 246 The study demonstrated that W^{\prime} reflects an ability to exercise under increasing levels of 247 fatigue caused by its own utilisation. Consequently, Ferguson et al. (2010) found no 248 differences in CP , but a reduction in W^{\prime} when employing different recovery durations (2 to 15 249 min) after a W^{\prime} depleting exercise bout followed by TTE trials. In agreement with Ferguson 250 et al. (2010), the results of the present study suggest the reductions in time to exhaustion after 251 prior exhaustive exercise seem to be primarily dependent on the variability of W^{\prime}. In this 252 regard, Ferguson et al (2010) demonstrated an exponential repletion of W^{\prime} and not, as is 253 assumed by the 2-parameter CP model, a linear one, and therefore this might suggest that W^{\prime} 254 is not fully reconstituted by the end of the 3 h and 30 minute recovery period used in Protocol 255 B and C.

257 Investigating the influence of moderate hypoxia on high intensity exercise tolerance, Dekerle, 258 Mucci \& Carter (2012) found that the ranges of TTE did not differ between normoxic and 259 hypoxic conditions. However CP was significantly affected (mean 13\%) under hypoxic 260 conditions with W^{\prime} not demonstrating a significant difference but exhibiting large intra261 individual responses (-36 to $+66 \%$). Dekerle et al. (2012) consequently questioned whether 262 the two parameter model allows a valid estimation of W^{\prime}. Indeed some recent research 263 attempts have been made to account for some shortcomings in the two-parameter CP model 264 (Chatagnon, Pouilly, Thomas, \& Busso, 2005; Heubert et al., 2005) with Gaesser, Carnevale, 265 Garfinkel, Walter, \& Womack (1995) highlighting an inherent difficulty in accurately and

266 reliably determining W^{\prime}. With an apparent disagreement in the literature about the true 267 constitution of this parameter, we can only suggest that an additional TTE trial would have 268 resulted in an increased accuracy of CP and W^{\prime} predictions whilst arguably adding to a time 269 consuming and cumbersome testing protocol. It is however unlikely that W^{\prime} derived through 2704 TTE trials would have provided acceptable results. The present study was limited in that 3 271 h and 30 min protocols were not repeated on more than one occasion. Therefore, it is difficult 272 to ascertain the level of reliability within these methods to determine CP. Nevertheless, using 273 a similar protocol, Karsten et al. (2015) investigated the reliability of CP in the field with 30 274 min recovery periods in a group of recreational athletes. Over three repeated trials, Karsten et 275 al. (2015) reported mean coefficient of variation values of 2.35%, with intraclass correlation 276 coefficient values of value of 0.99 (CI $0.98-0.99$). Therefore, it is not unreasonable to expect 277 that similar levels of reliability could be expected in the current study.

280 CP has traditionally been determined using 24 h inter-trial recovery periods. Results of the 281 present study suggest a high agreement and a low prediction error in CP using 3 h and 30 min 282 inter-trial recovery periods. With W^{\prime} requiring further investigations to fully understand its 283 mechanistic underpinnings, CP appears to be robust to the manipulation of TTE recovery 284 times.

285
286 PRACTICAL APPLICATIONS
287 CP can be determined in a single session of 1.5 h . A substantially reduced inter-trial recovery 288 period - as low as 30 min - increases the possibility for CP testing to be incorporated into an 289 athlete's training regimen.

REFERENCES

Atkinson, G., \& Nevill, A. M. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Medicine (Auckland, N.Z.), 26(4), 217-238.
Bailey, S. J., Vanhatalo, A., Wilkerson, D. P., Dimenna, F. J., \& Jones, A. M. (2009). Optimizing the "priming" effect: influence of prior exercise intensity and recovery duration on O 2 uptake kinetics and severe-intensity exercise tolerance. Journal of Applied Physiology (Bethesda, Md. : 1985), 107(6), 1743-1756. doi:10.1152/japplphysiol.00810.2009
Barker, A. R., Bond, B., Toman, C., Williams, C. A, \& Armstrong, N. (2012). Critical power in adolescents: physiological bases and assessment using all-out exercise. European Journal of Applied Physiology, 112(4), 1359-1370. doi:10.1007/s00421-011-2088-8
Bishop, D., \& Jenkins, D. G. (1995). The influence of recovery duration between periods of exercise on the critical power function. European Journal of Applied Physiology and Occupational Physiology, 72(1-2), 115-120.
Bland, J. M., \& Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1(8476), 307-310.
Brickley, G., Green, S., Jenkins, D. G., McEinery, M., Wishart, C., Doust, J. D., \& Williams, C. A. (2007). Muscle metabolism during constant- and alternating-intensity exercise around critical power. International Journal of Sports Medicine, 28(4), 300-305. doi:10.1055/s-2006-924354
Carter, H., Grice, Y., Dekerle, J., Brickley, G., Hammond, A. J. P., \& Pringle, J. S. M. (2005). Effect of Prior Exercise above and below Critical Power on Exercise to Exhaustion. Medicine and Science in Sports and Exercise, 37(5), 775-781. doi:10.1249/01.MSS.0000162631.07404.7C
Chatagnon, M., Pouilly, J.-P., Thomas, V., \& Busso, T. (2005). Comparison between maximal power in the power-endurance relationship and maximal instantaneous power. European Journal of Applied Physiology, 94(5-6), 711-7. doi:10.1007/s00421-004-1287-y
Coats, E. M., Rossiter, H. B., Day, J. R., Miura, A., Fukuba, Y., \& Whipp, B. J. (2003). Intensity-dependent tolerance to exercise after attaining VO2max in humans. Journal of Applied Physiology (Bethesda, Md. : 1985), 95(2), 483-490. doi:10.1152/japplphysiol.01142.2002
Dekerle, J., Mucci, P., \& Carter, H. (2012). Influence of moderate hypoxia on tolerance to high-intensity exercise. European Journal of Applied Physiology, 112(1), 327-335. doi:10.1007/s00421-011-1979-z
Dekerle, J., Williams, C., McGawley, K., \& Carter, H. (2009). Critical power is not attained at the end of an isokinetic 90 -second all-out test in children. Journal of Sports Sciences, 27(4), 379-385. doi:10.1080/02640410802641384
Ferguson, C., Rossiter, H. B., Whipp, B. J., Cathcart, A. J., Murgatroyd, S. R., \& Ward, S. A. (2010). Effect of recovery duration from prior exhaustive exercise on the parameters of the power-duration relationship. Journal of Applied Physiology (Bethesda, Md. : 1985), 108(4), 866-874. doi:10.1152/japplphysiol.91425.2008

URL: http://mc.manuscriptcentral.com/rjsp

Ferguson, C., Whipp, B. J., Cathcart, A. J., Rossiter, H. B., Turner, A. P., \& Ward, S. A. (2007). Effects of prior very-heavy intensity exercise on indices of aerobic function and high-intensity exercise tolerance. Journal of Applied Physiology (Bethesda, Md. : 1985), 103(3), 812-822. doi:10.1152/japplphysiol.01410.2006

Gaesser, G. A., Carnevale, T. J., Garfinkel, A., Walter, D. O., \& Womack, C. J. (1995). Estimation of critical power with nonlinear and linear models. Medicine and Science in Sports and Exercise, 27(10), 1430-1438.
Galbraith, A., Hopker, J., \& Lelliott, S. (2014). A Single-Visit Field Test of Critical Speed. International Journal of Sports Physiology and Performance, 9(6), 931-935 doi:http://dx.doi.org/10.1123/ijspp.2013-0507
Heubert, R. A. P., Billat, V. L., Chassaing, P., Bocquet, V., Morton, R. H., Koralsztein, J. P., \& di Prampero, P. E. (2005). Effect of a previous sprint on the parameters of the worktime to exhaustion relationship in high intensity cycling. International Journal of Sports Medicine, 26(7), 583-592. doi:10.1055/s-2004-830335

Housh, D., \& Terry, J. (1989). The accuracy of the critical power test for predicting time to exhaustion during cycle ergometry. Ergonomics, 32(8), 997-1004.
Jenkins, D. G., \& Quigley, B. M. (1990). Blood lactate in trained cyclists during cycle ergometry at critical power. European Journal of Applied Physiology, 61(3-4), 278-283.
Jones, A. M., Vanhatalo, A., Burnley, M., Morton, R. H., \& Poole, D. C. (2010). Critical power: implications for determination of VO2max and exercise tolerance. Medicine and Science in Sports and Exercise, 42(10), 1876-1890. doi:10.1249/MSS.0b013e3181d9cf7f

Jones, A. M., Wilkerson, D. P., Burnley, M., \& Koppo, K. (2003). Prior heavy exercise enhances performance during subsequent perimaximal exercise. Medicine and Science in Sports and Exercise, 35(12), 2085-2092. doi:10.1249/01.MSS.0000099108.55944.C4

Jones, A. M., Wilkerson, D. P., DiMenna, F., Fulford, J., \& Poole, D. C. (2008). Muscle metabolic responses to exercise above and below the "critical power" assessed using 31P-MRS. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 294(2), R585-593. doi:10.1152/ajpregu.00731.2007
Karsten, B., Jobson, S. A., Hopker, J., Stevens, L., \& Beedie, C. (2015). Validity and reliability of critical power field testing. European Journal of Applied Physiology, 1(115), 197-204. doi.org/10.1007/s00421-014-3001-z
Moritani, T., Nagata, A., Devries, H. A., \& Muro, M. (1981). Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics, 24(5), 339-350. doi:10.1080/00140138108924856
Nielsen, O. B., de Paoli, F., \& Overgaard, K. (2001). Protective effects of lactic acid on force production in rat skeletal muscle. The Journal of Physiology, 536(Pt 1), 161-166.

Nimmerichter, A., Williams, C., Bachl, N., \& Eston, R. (2010). Evaluation of a field test to assess performance in elite cyclists. International Journal of Sports Medicine, 31(3), 160-166. doi:10.1055/s-0029-1243222
Stickland, M. K., Petersen, S. R., \& Dressendorfer, R. H. (2000). Critical aerobic power during simulated 20 km bicycle racing. Sports Medicine, Training and Rehabilitation, 9(4), 289-301. doi:10.1080/15438620009512563

Westerblad, H., Allen, D. G., \& Lännergren, J. (2002). The Major Cause? Muscle Fatigue : Lactic Acid or Inorganic Phos phate the Major Cause? News in Physiological Sciences : 17, 17-21.
Wilkerson, D. P., Koppo, K., Barstow, T. J., \& Jones, A. M. (2004). Effect of prior multiplesprint exercise on pulmonary O2 uptake kinetics following the onset of perimaximal exercise. Journal of Applied Physiology (Bethesda, Md. : 1985), 97(4), 1227-1236. doi:10.1152/japplphysiol.01325.2003

414 Figure captions

415 Figure 1. Bland-Altman plots of the relationship (panel A and B) and the limits of agreement 416 (panel C and D) between CP_{24} and CP_{3} and between CP_{24} and $\mathrm{CP}_{0.5}$ respectively. In panel C 417 and D the horizontal line represent the mean difference between CP_{24} and CP_{3} and between $418 \mathrm{CP}_{24}$ and $\mathrm{CP}_{0.5}$, and the dashed line represents 95% LoA.

419
420
421

URL: http://mc.manuscriptcentral.com/rjsp

Figure 1. Bland-Altman plots of the relationship (panel A and B) and the limits of agreement (panel C and D) between CP24 and CP3 and between CP24 and CP0.5 respectively. In panel C and D the horizontal line represent the mean difference between CP24 and CP3 and between CP24 and CP0.5, and the dashed line represents 95\% LoA.
$254 \times 190 \mathrm{~mm}$ (96×96 DPI)

Table 1a. Mean Difference (\pm SD), $\mathbf{9 5 \%}$ Limits of Agreement between CP results

	Mean Difference (W)	$\mathbf{9 5 \%}$ LoA (W)
Prot. A vs. $\mathbf{B} / \mathbf{C P}_{24}$ vs. $\mathbf{C P}_{3}$	3 ± 6	-9 to 15
Prot. A vs. $\mathbf{C} / \mathbf{C P}_{24}$ vs. $\mathbf{C P}_{\mathbf{0 . 5}}$	-2 ± 12	-27 to 22

Table 1b. Mean Difference ($\mathbf{~} \mathrm{SD}$), $\mathbf{9 5 \%}$ Limits of Agreement between W^{\prime} results

	Mean Difference (kJ)	95\% LoA (kJ)
Prot. A vs. B/ $W^{\prime}{ }_{24}$ vs. $W^{\prime}{ }_{3}$	0.2 ± 3.9	-7.4 to 7.8
Prot. A vs. $\mathrm{C} / W^{\prime} \mathbf{2 4}^{\text {d }}$ vs. $W^{\prime}{ }_{0.5}$	3.9 ± 5.7	-7.2 to 15.1

Table 2a. Mean $C P(\pm S D)$, Standard error of estimates (lower and upper confidence limits) and average prediction errors (\%)

	Mean (W)	SEE (W)	Lower CL	Upper CL	Average pred. error (\%)
Protocol A vs. B: $\left(\mathrm{CP}_{24}\right.$ vs. $\left.\mathrm{CP}_{3}\right)$	$\begin{gathered} 277 \pm 26 \text { vs. } \\ 274 \pm 25 \end{gathered}$	7	4.7	12.0	2.5
Protocol A vs. C: ($^{\left(P_{24}\right.}$ vs. $\mathrm{CP}_{0.5}$)	$\begin{gathered} 277 \pm 26 \text { vs. } \\ 279 \pm 33 \\ \hline \end{gathered}$	10	7.1	18.1	3.7

Table 2b. Mean $W^{\prime}(\pm \mathrm{SD})$, Standard error of estimates (lower and upper confidence limits) and average prediction errors (\%)

	Mean $(\mathbf{k J})$	SEE $(\mathbf{k J)}$	Lower $\mathbf{C L}$	Upper $\mathbf{C L}$	Average pred. error $(\%)$
Protocol A vs. B:	15.2 ± 4.7 vs.	3.9	2.7	7.0	25.6
$\left(\boldsymbol{W}_{\mathbf{2 4}}^{\prime}\right.$ vs. $\boldsymbol{W}_{\mathbf{3}}$)	15.0 ± 4.2				
Protocol A vs. $\mathbf{C}:$ $\left(\boldsymbol{W}_{\mathbf{2 4}}^{\prime}\right.$ vs. $\left.\boldsymbol{W}_{\mathbf{0 . 5}}^{\prime}\right)$	15.2 ± 4.7 vs. 11.3 ± 3.5	5.0	3.5	9.0	32.9

Applying the power-1/time CP model, mean r for protocol A was 0.94 ± 0.12 (SEE 10 ± 9 W) for protocol B it as was $0.97 \pm 0.04(\operatorname{SEE} 8 \pm 6 \mathrm{~W})$ and for protocol C it was 0.99 ± 0.01 (SEE $5 \pm 3 \mathrm{~W}$).

Table 3. Group mean ($\pm \mathrm{SD}$) resting and post-TTE trials blood [La] (mM) results

Prior TTE trial	Lactate (mM) $\mathbf{8 0 \%}$ TTE trial	Lactate (mM) $\mathbf{1 0 0 \%}$ TTE trial	Lactate (mM) $\mathbf{1 0 5 \%}$ TTE trial
Protocol A	1.5 ± 0.6	1.5 ± 0.7	1.4 ± 0.6
Protocol B	1.5 ± 0.5	1.8 ± 0.8	1.5 ± 0.5
Protocol C	1.2 ± 0.3	$3.5 \pm 0.8^{*}$	$4.1 \pm 1.3^{* *}$
Post TTE trial	Lactate $(\mathbf{m M})$	Lactate (mM)	Lactate (mM)
	$\mathbf{8 0 \% ~ T T E ~ t r i a l ~}$	$\mathbf{1 0 0 \% ~ T T E ~ t r i a l ~}$	$\mathbf{1 0 5 \% ~ T T E ~ t r i a l ~}$
Protocol A	12.5 ± 1.5	11.8 ± 3.0	10.5 ± 2.8
Protocol B	13.2 ± 2.7	11.0 ± 2.6	10.1 ± 2.3
Protocol C	11.5 ± 3.1	10.4 ± 2.2	9.2 ± 2.0
"Significantly different to protocol A and B TTE trial resting value $(p=0.000)$			
${ }^{* *}$ Significantly different to protocol A and B TTE trial resting values $(p=0.000)$			

Table 4. Mean durations (\pm SD) of set TTE trials for each protocol and p-values of pairwise protocol comparisons

Protocol	$\mathbf{8 0 \%}$ TTE (s)	$\mathbf{1 0 0 \%}$ TTE (s)	$\mathbf{1 0 5 \%}$ TTE (s)
A	650 ± 237	251 ± 81	179 ± 59
B	623 ± 213	222 ± 81	169 ± 49
C	578 ± 170	210 ± 79	143 ± 23
TTE trial	Protocol A vs. B	Protocol A vs. C	Protocol B vs. C
	p-value	p-value	p-value
$\mathbf{8 0 \%}$ TTE	0.83	0.75	0.87
$\mathbf{1 0 0 \%}$ TTE	0.18	0.10	0.37
$\mathbf{1 0 5 \%}$ TTEC	0.84	0.12	0.08

