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ABSTRACT Interoperability among different machines, systems, and humans connected via the Internet of
Things (IoT) has blessed Industry 4.0 with numerous advantages over the years. However, these benefits have
unleashed risks of cyber attacks on internet-connected manufacturing units such as autonomous intelligent
computer-controlled cutting (ICNC) machines. These are used in different manufacturing industries to
ensure high precision and faster production. Over the Internet these machines receive product designs and
instructions of how to produce them. Intrusions through malicious code embedded in the design can hamper
precision and cause production delays, resulting in significant revenue loss. This paper presents an innovative
cyber-physical system (CPS) security mechanism, using a long short-term memory (LSTM) network and a
convolutional neural network (CNN) coordinated by a parallel orchestration (PLO) algorithm. It detects
intrusions from both image and text data with 90.85% and 91.66% accuracy, respectively. Applying the
proposed methodology in a simulated manufacturing industry shows an average yearly successful intrusion
reduction from 184 to 15, saving an average of $30,474 in revenue. Its innovative concept, the distinctive
mechanism of the PLO algorithm, and applying it in a simulated manufacturing industry make the proposed
security system superior to comparable approaches.

INDEX TERMS Cyber-physical systems, Internet of Things, Industry 4.0, LSTM, CNN, intrusion detection.

I. INTRODUCTION
The advancement of the IoT, artificial intelligence (AI),
cloud computing, robotics, and automation has fueled the
growth of Industry 4.0 [1]. Different sectors have rapidly
embraced Industry 4.0 due to its increased efficiency,
productivity, flexibility, and data-driven decision-making [2].
However, these benefits come with security concerns.
Early adopters like Epsilon, Equifax, Marriott International,
Colonial Pipeline, and T-Mobile faced business losses of
$4.3 billion, $700 million, $341 million, $4 million, and
$150 million, respectively, due to cyber attacks [3]. The
autonomous manufacturing industry is one of the most
vulnerable sectors at risk of cyber attacks [4]. The statistics
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show that 25% of all cyber attacks in 2023 were against the
manufacturing industry [5]. This paper presents an innovative
CPS security method for the manufacturing industry that
automatically detects intrusions from text and images, takes
action to maintain manufacturing procedural sequences, and
reduces production delays.

The CPS security method presented in this paper has been
developed for a simulated ready-made garment (RMG) man-
ufacturing facility that uses Industry 4.0 specifications [6].
The industry standard Arena simulation software has been
used to create the simulated production environment [7]. Its
production units are interconnected and autonomous, and
they have been developed using the real-world response from
the physical Prestige 60 machines. The administrators of the
production facility can control the units over the Internet,
access logs, and monitor status. The autonomous units cut
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clothes based on predefined images. Other forms of commu-
nication are carried out through text data. A security layer
has been developed in this paper by the parallel orchestration
of an LSTM network and CNN to secure communication
between manufacturing units and the operators. The LSTM
network detects intrusions from text data, and the CNN does
the same from image data. The security system has been
trained with CICIoT2023 [8] and Malimg [9] datasets. This
novel CPS security layer significantly reduces the production
delay caused by intrusions and saves revenue. The core
contributions of this research are listed below:

• Parallel Orchestration Algorithm (PLO): the PLO
algorithm developed in this paper maintains a perfect
harmony between the LSTM network and CNN, ensur-
ing protection against intrusion from both image and
non-image data.

• Classification Accuracy: the CPS security layer detects
intrusion from image and non-image data with 90.85%
and 91.66% accuracy, respectively. The average preci-
sion, recall, and F1-score are above 90% as well.

• Reducing Production Delay: the most significant
contribution of the proposed security system is reducing
the average production delay caused by intrusions from
116 hours to 5 hours per year. It saves 169 units of
product yearly.

• Revenue Savings: the computational analysis shows
that the proposed security system helps save $30,474
worth of revenue per year on average, when six
manufacturing units run at their full capacity.

In the evolving landscape of Industry 4.0, the integration of
intelligent systems becomes paramount. In response to these
evolving challenges, this study introduces a novel integration
of LSTM networks and CNN through our uniquely designed
PLO algorithm. This orchestration is not merely a technical
enhancement but a strategic innovation that significantly
reinforces CPS security. The PLO algorithm enables a
dynamic, real-time response mechanism, effectively enhanc-
ing detection capabilities and mitigating threats more effi-
ciently than traditional models. This integration demonstrates
a substantial advancement in the application of machine
learning technologies to secure Industry 4.0 infrastructures,
highlighting the original contribution of our work to the field.

The remaining part of the paper has been organized into six
distinct sections. The second section presents the literature
review, with discussion related to the background of this
paper in the third section. The methodology used to develop
the proposed security system is in the fourth section. The
computational results and performance evaluation have been
presented and analyzed in the fifth section. There are several
limitations of this paper, which are highlighted in the sixth
section. Finally, the paper concludes in the seventh section.

II. LITERATURE REVIEW
The literature reviews on CPSs conducted by Pivoto et al.
[10], Oks et al. [11], and Lampropoulos et al. [12] suggest

that cyber security is one of the most significant concerns of
Industry 4.0. The IoT is at the heart of autonomous manufac-
turing units, facilitating communication with the units over
the Internet. However, because of their resource-constrained
nature, IoT devices are unsuitable for embedded sophisticated
security features [13]. Research and development to integrate
additional security layers is necessary, as has been carried out
in this paper.

Li et al. [14] applied federated deep learning for intrusion
detection in CPS. Their approach combines a CNN and a
gated recurrent unit (GRU), which is similar to the proposed
methodology. However, their study is limited to exploring
the classification performance, whereas the proposed system
explores the real-world effects of the security system.
O’Donovan et al. [15] proposed a fog computing-based
security system using machine learning (ML) for a CPS.
This innovative approach leaves a significant weakness,
whereby the system can be affected by network intrusion
because the security features run on the cloud. The proposed
system is a security layer just above the hardware level,
which ensures maximum security of the CPS production
units. A support vector machines (SVM)-based approach
proposed by Sharma et al. [16] detects vulnerabilities in a
CPS. However, it doesn’t provide any mechanism to resume
the production process; this has been developed in the
proposed paper.

The quantum deep learning (QDL) approach by
Rajawat et al. [17] is unique to CPS security. However,
the manufacturing industries are still not ready to adopt
quantum computing-based solutions [18]. Abdullahi et al.
[19] trained an LSTM network to detect cyber attacks on a
CPS without applying it in real-world scenarios. The hybrid
approach of Alguliyev et al. [20] combines CNN, GRU,
and LSTM to develop a cyber-attack detection system for a
CPS. However, the approach does not include developing a
practical application model. The blockchain-based approach
developed by Alabadi et al. [21] demonstrates a promising
performance. However, processing delays are a significant
barrier to adopting it as a security feature for CPS
manufacturing units. While, Wu et al. [22] explored a digital
twin (DT)-based approach, which is very computational
resource consuming, making it impractical to minimize the
production cost. Compared to these approaches, the proposed
method is a practical approach that is not confined within the
boundary of theoretical analysis. It has a significant impact
on reducing production loss due to cyber-attacks, and on
increasing revenue.

III. BACKGROUND
The previous section has provided a detailed literature review
outlining how current research, addresses the vulnerabilities
inherent to Industry 4.0 manufacturing machines. Moving
forward, we will delve into some of these vulnerabilities,
setting the stage for the introduction of our innovative solu-
tion. The results presented in this paper involve a particular
industrial manufacturing machine with an onboard computer

2 VOLUME 13, 2025



S. Saeidlou et al.: Cyber-Physical System Security for Manufacturing Industry 4.0

FIGURE 1. The intelligent computer-controlled cutting (ICNC) machine
used to study the proposed cyber-physical system security for the
manufacturing industry 4.0.

with intelligent modules. This section discusses background
knowledge about this machine and its vulnerabilities, which
are the subject of this research.

A. INTELLIGENT COMPUTER-CONTROLLED CUTTING
(ICNC) MACHINE
This experiment used the intelligent computer-controlled
cutting (ICNC) machine illustrated in Figure 1. It is called
Prestige 60, designed and developed by Kent Lasers. This
ICNC machine has been designed for both educational and
commercial production environments and has the capability
of high-precision laser cutting and engraving. It uses
linear guideways to ensure proper alignment of all optical
components. As a result, it achieves exceptional precision.
A 50W high-power density laser cartridge cutting (LCC)
unit follows the designs provided by the computer-aided
design (CAD) layout and cuts the cloth with rapid speed. The
operation is controlled by user-friendly advanced software.
High-speed AC servo motors move the LCC unit according
to the CAD layout with very high precision and accuracy.
The software interface is connected to the motor controller
through a universal serial bus (USB) port.

B. ARENA SIMULATION SOFTWARE
The Arena simulation software, developed by Rockwell
Automation, is widely used to simulate various industries,
including manufacturing, healthcare, and logistics. It enables
the creation of complex, real-life-like virtual environments
for experimenting without an actual physical environment.
Physical experimental phases involve risks of damaging
physical equipment, which can be costly. The proper applica-
tion of this software helps prevent such unwanted incidents.
It is possible to create precise digital replicas of operational
processes to identify bottlenecks, evaluate the impact of
different scenarios, and optimize resource allocation and
workflows. It can generate real-world statistical reports that
aid in decision-making, improving operational efficiency,

FIGURE 2. The simplified communication model.

and enhancing performance across an organization’s value
chain [23].

C. VULNERABILITY ANALYSIS
The ICNC machine offers remote access and monitoring
facilities. Besides, it collects the data and stores it on remote
storage. These communications are done over the Internet.
In this communication model, the ICNC machines are IoT
nodes, as illustrated in Figure 2. The onboard computers,
physical Wi-Fi routers, and devices with remote access are
the most vulnerable entities of the communication system.
Anyone with access credentials to any of these devices
can intrude on the IoT devices. The ICNC machines are
connected to the onboard computers through network ports;
this means they are locally accessible, which is another point
of vulnerability for the experimental system.

The concepts and frameworks discussed in this section
lay the foundation for the subsequent exploration of the
proposed LSTM-CNN orchestration model. Understanding
these foundational elements is essential for appreciating
the complexities and nuances of the security enhancements
detailed in the following sections. The transition from
theoretical underpinning to practical application is crucial for
grasping the full scope of the research contributions to CPS
security.

IV. ADVANCED INTRUSION DETECTION METHODOLOGY
An overview of the proposed methodology is illustrated in
Figure 3. The process starts with selecting the appropriate
deep neural network (DNN). After that, the CNN and LSTM
architectures were developed. Finally, the PLO algorithm
was designed to coordinate between these two networks. The
methodological details have been presented in this section.

A. FEATURE-BASED NETWORK SELECTION
The experimental manufacturing machine uses both image
and textual data to operate. There are numerous deep
learning (DL) networks for these two data types [24].
This section presents a comprehensive feature analysis with
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FIGURE 3. Overview of the proposed methodology.

respect to network capability, to choose the most appropriate
networks to develop the proposed security mechanism for the
cyber-physical system (CPS).

1) IMAGE FEATURES
According to Burri et al. [25], convolutional neural networks
(CNNs), defined in equation 1, are most appropriate for
classifying images based on their features. The experimental
cyber-physical system commands the LCC according to the
design presented as an image. Malicious code embedded in
the image as hidden image features is a security threat to the
system. As CNNs efficiently learn from image features and
classify them accurately [26], it is an appropriate DL network
for the proposed security system.

Ẑmn = (Ŵ ∗ K̂ )mn =
∑
x̂

∑
ŷ

Ŵ(m+x̂)(n+ŷ)K̂x̂ŷ (1)

In Equation 1, Ŵ denotes the hidden layers that extract
image features, followed by a pooling layer. K̂ represents
the kernel with dimensions x̂ × ŷ, and Ẑmn is the output at
coordinates (m, n).

2) TEXT FEATURES
The experimental CPS accepts commands from remote
devices through the Internet. It also has a local access point.
The commands and control signals from both access points
come in as packets representing textual features [27]. These
packets form sequential data at the execution end. According
to Halbouni et al. [28], recurrent neural networks (RNN) and
long short-term memory networks (LSTM) are appropriate
for sequential data. The RNN is defined by equation 2, and
it produces output by following the principle of equation 3
where 2 defines how the hidden state z̄t is updated, while
Equation 3 defines the calculation of the output.

z̄t = ω̄(Q̄zzz̄t−1 + Q̄xzx̄ ′t + c̄z) (2)

ȳ′t = Q̄zyz̄t + c̄y (3)

However, RNN suffers from vanishing and exploding
gradients [29], long-term dependency issues [30], and
hierarchical representation problems [31]. According to
Sherstinsky et al., [32], LSTM is a type of RNN that
overcomes the limitations. it operates using input, forget,
and output gates, represented by Equations 5, 4, and 6,
respectively.

Ft = ψ(Mf ⟨Ht−1,Xt ⟩ + Bf ) (4)

It = ψ(Mi⟨Ht−1,Xt ⟩ + Bi) (5)

Ot = ψ(Mo⟨Ht−1,Xt ⟩ + Bo) (6)

Based on the characteristics of the DL networks discussed
in this section, CNN and LSTM are the most appropriate
models to develop a CPS security system that involves both
image and textual data; thus, these two networks have been
used in this paper.

B. DATASET ANALYSIS & PREPROCESSING
The CICIoT2023 dataset has been used to develop the
proposed CPS security system. The Canadian Institute for
Cybersecurity curates it and serves as a comprehensive
resource for research in IoT security. It includes distributed
denial of service (DDoS), denial of service (DoS), brute
force (BF), Mirai botnet (MB), spoofing, and many other
intrusions. The dataset expands up to 80 different traffic
features. A sample of the dataset is listed in Table 1.

1) CLEANING AND SPLITTING DATASET
The maximum number of features on the dataset is 80.
However, numerous rows have fewer features because of
missing values. The dataset was cleaned before further
processing, which started with addressing the missing,
duplicate, and outlier values. In the beginning, the dataset was
denoted as D, which is defined by equation 7.

D = {d1, d2, . . . , dN } (7)
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TABLE 1. A simplified sample of the CICIoT2023 dataset where four features have been mentioned.

The attributes or features of the dataset are denoted by
Aj, among which some of the data are missing. The missing
features are Mj, which have been replaced by a substitute
calculated using equation 8 where µj is the replaced value.
After calculating the missing values, it was injected back
into the dataset by following the mathematical principle of
equation 9.

µj =
1

N − |Mj|

∑
dn∈D\Mj

dn,j (8)

Subsequently, the missing values were replaced with µj
according to Equation (9).

dn,j =

{
µj, if dn ∈Mj

dn,j, otherwise
(9)

It has been observed that there are numerous instances of
duplicate values. Having too many duplicate values in the
dataset increases the probability of overfitting [33]. These
duplicate values have been removed using equation 10 where
D∗ represents the refined dataset containing unique entries.
After that, it was discovered that there were many outliers in
the dataset, which have been removed. Figure 4 shows the
data distribution before and after removing the outliers.

D∗ = {d ∈ D | ∄d ′ ∈ D \ {d}, d = d ′} (10)

After cleaning, 61,922 instances remained in the dataset.
It is suggested in the state-of-the-art approaches that splitting
the dataset into training, testing, and validation sets with
a ratio of 70:15:15 generates optimal results [34]. After
splitting the dataset, 43,345 instances for training were found.
Both of the testing and validation sets had 9288 instances
each.

2) FEATURE EXTRACTION FROM TEXT DATA
The LSTM network of the proposed CPS security layer is
responsible for detecting intrusions from the network packets
containing text data. The clean CICIoT2023 dataset is a
labeled dataset that needs to be converted into sequences
to train the LSTM network. Besides, the data needs to be
normalized based on having different ranges of numerical
values. Selecting appropriate features to train the LSTM
network is another step involved with the feature extraction
process. All of these steps have been presented in this section.

a: DATA NORMALIZATION
The numeric ranges of the instances of the dataset widely
vary. As a result, it is essential to normalize them to fit

within the same scale to avoid training the LSTM network
improperly. In this paper, the Z-score normalization has been
used to normalize the data; it is defined by equation 11 where
xnj is the feature value to be normalized.

znj =
xnj − µj
σj

(11)

The Z = {z1, z2, . . . , zN } is the normalized dataset that
has been used to train the LSTM network. Here zn =
(zn1, zn2, . . . , znm) represents the feature vector of the nth

sample. At the beginning of the process, the cleaned dataset is
expressed D = {d1, d2, . . . , dN } where N is the index of the
last instance of the dataset. The feature vectors of nth sample
are dn = (xn1, xn2, . . . , xnm). The Z-score calculation requires
the mean µj and standard deviation σj, which are calculated
using equations 12 and 13.

µj =
1
N

N∑
n=1

xnj (12)

σj =

√√√√ 1
N

N∑
n=1

(xnj − µj)2 (13)

b: FEATURE VECTOR REDUCTION
Feature vector reduction is an essential step in DL-based
approaches for better performance [35]. The dataset used
to develop the proposed CPS security layer is a massive
dataset with multiple features weakly associated with the
target variable. A mutual information (MI) method [36]
was employed to reduce the feature vector by using the
most relevant features only. The mathematical principle that
governs this process is expressed in equation 14.

MI (F,T ) =
∑
f ∈F

∑
t ∈ Tp(f , t) log

p(f , t)
p(f )p(t)

(14)

In equation 14, the relevant features are expressed by F ,
and the target variable is T . The method depends on join
and marginal probability, which have been denoted by p(f , t),
p(f ), and p(t), respectively. TheMI method ranks the features
based on their relevancy.

c: SEQUENCE GENERATION
The last step of the feature extraction is sequence generation
for the LSTM network. The input layer of an LSTM network
requires sequential data [37]. Dong et al. [38] used the
sliding window method to generate a sequence for the LSTM
network from the normalized dataset. A similar method was
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FIGURE 4. A random sample of 3000 features before and after removing outliers.

TABLE 2. The dataset description of the malimg dataset.

followed in this paper, which is defined by equation 15.

(Xt−w+1,Xt−w+2, . . . ,Xt ) 7→ Yt+1 (15)

In equation 15, w is the window size. It slides over each
dataset row and generates a sequence maintaining a specific
timestep. The input to the process is Xt at t timestep, and the
output is Yt+1.

3) IMAGE DATASET ANALYSIS AND PREPROCESSING
Multiple effective methodologies suggest that the Malimg
dataset is a widely used dataset to study intrusion through
image [39]. It was developed and first studied byNataraj et al.
[40]. The original dataset has 9339 images embedded with
malicious code at the pixel level. The dataset description is
presented in Table 2

a: MALIMG DATASET SPLITTING
The original Malimg dataset is divided into seven directories,
each representing a target class. Each target class directory

FIGURE 5. The dataset structure for training.

has been further divided into training, testing, and validation
directories, as depicted in Figure 5. The image data available
in each target class directory has been divided into training,
testing, and validation datasets with a ratio of 70:15:15,
respectively, and allocated in the designated directories.

b: MALICIOUS IMAGE PROCESSING
The images of the Malimg dataset come in different sizes.
As a result, they are not ready to be used to train a CNN. It is
essential to resize them into a uniform resolution. However,
the malicious codes are embedded into the image pixels,
and resizing the images alters the code patterns. The nearest
neighbor interpolation (NNI) was used in this experiment to
resize the image into a 64 × 64 pixel size while keeping the
malicious code features intact. The size of the original image
in the Malimg dataset is defined as M × N , and the task is
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to resize it to a target size of H × W , where H = 64 and
W = 64. The original image is expressed as I (x, y), where
x ∈ [0,M−1] and y ∈ [0,N−1]. The original images will be
resized as I ′(x ′, y′), where x ′ ∈ [0,H−1] and y′ ∈ [0,W−1].
The relationship between the coordinates of the original and
resized images is defined by equations 16 and 17.

x =
⌊
x ′ × (M − 1)

H − 1

⌋
(16)

y =
⌊
y′ × (N − 1)
W − 1

⌋
(17)

Using equations (16) and (17), the pixel value of the resized
image at coordinates (x ′, y′) is obtained from the nearest pixel
in the original image by following the mathematical structure
explained in equation 18. This is how the original malicious
pixel values are retained in the resized image with exact
feature representation.

I ′(x ′, y′) = I
(⌊

x ′ × (M − 1)
H − 1

⌋
,

⌊
y′ × (N − 1)
W − 1

⌋)
(18)

C. LSTM-CNN PARALLEL ORCHESTRATION
The CNN and LSTM networks were developed separately.
Then, the PLO algorithm was designed to maintain harmony
between these two networks and defend against intrusion
through both image and non-image data.

1) CNN ARCHITECTURE
A CNN has been designed to learn malicious image features
effectively. The originalMalimg dataset has seven classes and
six of these classes are most appropriate for the proposed
CPS security layer. Therefore, the CNN has been designed
to classify malicious input images into seven classes, six of
which are malignant and one is benign.

a: INPUT AND CONVOLUTIONAL LAYER
Although the Malimg images are in grayscale with a single
channel, the CNN designed to develop the CPS security
layer has a three-channel input layer of the size 64 ×
64 × 3. It has been prepared to offer real-time protection
in real-world scenarios where most of the images are
three-channel images. The input layer passes the signals
to the convolutional layer, which has 32 filters with 3 ×
3 convolutional matrix dimension. The input layer doesn’t
perform any mathematical operations. It simply transmits the
input to the convolutional layer. The convolutional layer uses
the mathematical operation defined in equation 19 where Qi
represents the output feature map. The Rectified Linear Unit
(ReLU) is utilized as the activation function for the Conv2D
layer, as defined in equation 20.

Qi(u, v) =
l∑

p=−l

q∑
q=−l

J (u+ p, v+ q)Ki(p, q) (19)

ReLU(t) = max(0, t) (20)

b: PEAK AGGREGATION LAYER
The max-pooling method defined in equation 21 in the peak
aggregation layer (PAK) was applied to down-sample the
images with the most prevalent features. Here, the output
image V (u, v) is downsampled from the original image J .

V (u, v) =
l−1
max
p=0

l−1
max
q=0

J (u× l + p, v× l + q) (21)

c: ADDITIONAL EXTENSION LAYERS
In the initial phase, the proposed CNN faced some per-
formance issues. However, this was resolved by adding
an extended convolutional layer with 16 filters. After that,
another max-pooling layer was added with 2 × 2 pool
size. After this modification, the network demonstrated an
overfitting nature. It was resolved by a dropout layer that
randomly drops out 20% of the total number of hidden nodes.
The dropout layer is defined by equation 22.

R(w) =

{
w, if chosen with probability 1− q
0, if chosen with probability q

(22)

d: DENSE LAYER
The convolutional layer, in association with the max-
pooling, extracts the image features F , which include both
regular features and malicious features. These features are
transmitted to the dense layer for learning and classification.
The dense layer of the proposed CNN for the CPS security
layer has two layers. The first layer has 128 nodes, and the
second layer has 64 nodes. There is a dropout layer after the
first dense layer with a 40% dropout rate. The operations of
this layer are defined by equation 23.

zi = Activation

(
m∑
k=1

vik tk + ci

)
(23)

e: OUTPUT LAYER
The CNN’s output layer has seven nodes. Six nodes represent
six types of intrusions, and one layer represents the benign
class. The output layer maps the decision made by the dense
layer onto a probability scale ranging from 0 to 1 using the
Softmax activation function. The working principle of this
layer is defined in equation 24.

softmax(zi) =
exp(zi)∑m
k=1 exp(zk )

(24)

f: LOSS FUNCTION
The proposed CNN is a multiclass classifier with seven
classes. A categorical cross-entropy loss function is recom-
mended for such CNNs [41]. This loss function has been used
in a CNN to quantify the difference between the ground truth
and the predicted class. Equation 25 shows how it has been
used in the experimental CNN where y represents the class
label, ŷ is the prediction, and m is the number of classes.

L(y, ŷ) = −
m∑
j=1

yj log(ŷj) (25)
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2) LSTM NETWORK ARCHITECTURE
The LSTM network designed in this paper aimed to classify
four types of intrusions from textual data retrieved from
network packets. It was trained with 43,345 instances
optimized for generating accurate predictions.

a: INPUT LAYER
The input layer of the proposed LSTM network accepts
sequential data segmented at a specific timestep with a
sequence length ofM = 112. The characteristics of the input
layer are expressed in equation 26. The input layer transmits
the incoming sequences to the next LSTM layer.

Input Shape = (M , 80) (26)

b: LSTM LAYERS
The network’s LSTM layer has been designed to capture
information from long sequences and retain it as long as
necessary. The proposed LSTM network has two LSTM
layers. The first layer contains 200 LSTM nodes, and the
second layer has 100 nodes. These two layers are defined by
equations 27 and 28, respectively. In these equations, st is the
input at time t , and g(1)t and m(1)

t are the hidden state and cell
state, respectively.

g(1)t ,m
(1)
t = LSTM(1)(st , g

(1)
t−1,m

(1)
t−1) (27)

g(2)t ,m
(2)
t = LSTM(2)(g(1)t , g

(2)
t−1,m

(2)
t−1) (28)

c: FULLY CONNECTED LAYERS
The information retrieved and retained by the LSTM nodes
is transmitted to subsequent fully connected layers. There are
two layers. The first layer has 100 nodes, and the second layer
has 30 nodes. These two layers follow the working principles
defined in the equations 29 and 30, respectively, where V (1)

d
and a(1)d represent the weights and biases.

z(1)t = ReLU(V (1)
d g(2)t + a

(1)
d ) (29)

z(2)t = ReLU(V (2)
d z(1)t + a

(2)
d ) (30)

d: OUTPUT LAYER
The final output layer contains five units representing the
attack types (DDoS, DoS, brute force, and spoofing) and
one benign class. The Softmax activation function is applied
to convert the scores into class probabilities. This layer is
defined in equation 31, where Vo and ao represent the weights
and biases. The working principle of the Softmax function is
defined in equation 32.

ẑt = softmax(Voz
(2)
t + ao) (31)

softmax(oi) =
exp(oi)∑5
j=1 exp(oj)

(32)

3) PARALLEL ORCHESTRATION (PLO) ALGORITHM
The LSTM and CNN function in parallel, ensuring CPS
security against intrusion via textual and image data simul-
taneously. In this experiment, a novel algorithm, the PLO,

has been developed to coordinate both the LSTM and
CNN and make them function properly to defend against
ten different types of intrusions. It has been presented as
Algorithm 1. This algorithm runs in the onboard computers of
the experimental CPS. It is initiated when the ICNCmachines
are started. It works as a security layer between ICNC
software instruction and the hardware controlling signals of
the LCC tools.

Initially, the PLO algorithm classifies image and
non-image data into two categories. If the data is related
to an image, it transmits the signals to the CNN, and if
the data is non-image, the signals are passed to the LSTM
network. Sometimes, the ICNC software sends both image
and non-image data simultaneously. When that happens,
the PLO algorithm activates both the CNN and LSTM at
the same time. If any malicious code is detected in the
image data, the PLO algorithm removes the image extension
and generates an alarm at the control panel to notify the
administrator. At the same time, it preserves the current state
of the LCC tools in the log to resume progress from there.
When intrusions are detected by the LSTM network, the
PLO algorithm immediately blocks the network interface
that transmits the malicious codes and generates an alarm to
notify the administrator. The PLO algorithm also preserves
the progress log for the LSTM network so that the tasks can
be resumed exactly from where they were interrupted.

D. PHYSICAL-VIRTUAL ENVIRONMENT
The proposed methodology has been tested in a physical-
virtual environment. The Prestige-60 used in this study is
the physical device. A primary experiment was conducted
on it. However, later, the real-world environment was
simulated in Arena Simulation Software by replicating six
Prestige-60 machines with the exact physical response data.
The physical-virtual environment developed for this study has
been illustrated in Figure 6. The physical machine performs
with and without intrusions, and the performance data are
stored in two different databases. Later, these production
data are used to replicate the physical machine in a virtual
environment. Finally, the data obtained from the simulated
environment are stored in a separate database.

V. PERFORMANCE EVALUATION
The performance of the proposed CPS security method has
been evaluated from three distinct perspectives. It detects and
blocks intrusions from both image and text data. The first
two perspectives involve the classification performance of
intrusions from these two data types. The third perspective
directly relates to the production rate and the corresponding
annual revenue. This section provides a comprehensive
analysis of the proposed security system’s performance.

In this study, the focus has been primarily on the
development and validation of the LSTM-CNN parallel
orchestration algorithm aimed at enhancing CPS security.
The results presented thus far are intended to demonstrate the
algorithm’s efficiency in a controlled environment, pertinent
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Algorithm 1 Parallel Orchestration (PLO) Algorithm for
Intrusion Detection
1: Input: Din (incoming data from ICNC machines)
2: Output: Intrusion detection and system security
3: Initialization:
4: Initialize PLO() when ICNC machines start
5: Set LCC_log← 0
6: Set status {CNN ,LSTM} ← {idle, idle}
7: Main Process:
8: while ICNCrunning = True do
9: Data Classification:

10: {Dimg,Dtxt } ← Classify(Din)
11: if Dimg ̸= ∅ then
12: OutputCNN ← CNN (Dimg)
13: end if
14: if Dtxt ̸= ∅ then
15: OutputLSTM ← LSTM (Dtxt )
16: end if
17: if Dimg ̸= ∅ ∧ Dtxt ̸= ∅ then
18: {OutputCNN ,OutputLSTM } ←

{CNN (Dimg),LSTM (Dtxt )}
19: end if
20: Intrusion Detection and Response:
21: if DetectMalicious(OutputCNN ) = True then
22: RemoveExtension(Dimg)
23: Alarm(ControlPanel)
24: LCC_log← SaveState(LCC_tools)
25: end if
26: if DetectIntrusion(OutputLSTM ) = True then
27: BlockNetworkInterface(Dtxt )
28: Alarm(ControlPanel)
29: LSTM_log← SaveState(LSTM )
30: end if
31: end while
32: Conclusion:
33: ResumeState(LCC_log,LSTM_log)
=0

to its ability to enhance security protocols within Industry
4.0 frameworks. Recognizing the importance of broader
simulation results, the authors plan to explore and present
extensive operational management aspects of the model. This
follow-up study will include comprehensive discrete event
simulations that detail the information flow and system-wide
impacts, thereby providing a holistic view of the operational
efficiencies the model can deliver.

A. EVALUATION METRICS
The accuracy, precision, recall (sensitivity), and F1 Score,
which are mathematically expressed as 33–36, respectively,
have been used to evaluate the performance of the LSTM
network and the CNN. These metrics depend on true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN). These values have been retrieved from
confusion matrices illustrated in Figure 8 and Figure 9. The

FIGURE 6. The experimental physical-virtual environment.

real-world performance of the proposed CPS security layer
has been evaluated based on production, delay, unit lost, and
revenue savings, which are later listed in Table 7.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(33)

Precision =
TP

TP+ FP
(34)

Recall =
TP

TP+ FN
(35)

F1 Score =
2× (Precision× Recall)

Precision+ Recall
(36)

B. OVERALL PERFORMANCE
The validation accuracies of the LSTM network and CNN
are 91.66% and 90.85%, respectively. Both networks demon-
strate stable performances that are good enough to be applied
in real-world settings. The average precision, recall, and
F1 score of the LSTM network are 92.02%, 92.04%, and
92.0%, respectively. For the CNN, these values are 90.03%,
90.17%, and 90.04%, respectively. The proposed system
saves $30,474 yearly in revenue, by reducing the delay
caused by intrusions from 116 hours to 5 hours only. This
significant improvement reduces the yearly average unit loss
from 184 to 15.

C. LSTM CONFUSION MATRIX ANALYSIS
The confusion matrix illustrated in Figure 8 demonstrates
the effectiveness of the LSTM network in detecting various
network intrusions. With an overall accuracy of 92.6%,
the system provides comprehensive CPS security against
brute force, DDoS, DoS, and spoofing attacks. The balance
between precision and recall across all classes showcases the
reliable detection capabilities of the proposed PLO algorithm.
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FIGURE 7. The overall performance of the proposed intrusion detection syste.

TABLE 3. Performance metrics for each intrusion class.

Table 4 presents the performance of the LSTM network
numerically.

D. CNN CONFUSION MATRIX ANALYSIS
The confusion matrix depicted in Figure 9 demonstrates
the effectiveness of the CNN network in detecting various
network intrusions. With an overall accuracy of 89.6%, the
system provides comprehensive CPS security against Back-
door, Benign, Password, Rogue, Trojan, Trojan Download,
and Worm attacks. The balance between precision and recall
across all classes showcases the reliable detection capabilities
of the proposed PLO algorithm. The numerical values of
different performance evaluation metrics are presented in
Table 5.

E. K-FOLD CROSS VALIDATION
The performance inspection table using k-fold cross-
validation illustrates the overall effectiveness of the proposed
CPS security system. The results indicate a consistent
performance across all folds, reflecting the robustness of the

FIGURE 8. The confusion matrix generated from the LSTM network on a
test dataset.

TABLE 4. Performance metrics for each intrusion class.

classification model. The accuracy across all folds ranges
from 89.77% to 91.55%, demonstrating stable classification
performance. The highest accuracy, 91.55%, was achieved
in fold 5; whereas the lowest, 89.77%, was observed in
fold 4. Precision values lie between 91.13% (fold 5) and
92.78% (fold 1), with fold 1 achieving the highest precision at
92.78%, highlighting its ability to correctly identify positive
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FIGURE 9. Confusion matrix analysis for CNN.

TABLE 5. Performance metrics for each intrusion class.

instances. Recall values vary from 90.82% (fold 5) to 91.35%
(fold 1), and the system consistently maintained a high recall
across all folds, indicating its capability for detecting most
positive instances. The F1-score ranges between 90.97%
(fold 5) and 92.06% (fold 1), with fold 1 having the
highest F1-score of 92.06%, balancing precision and recall
effectively. The consistency of F1-scores across all folds
demonstrates the reliability of the system. In summary, the
proposed CPS security system shows a stable and robust
performance with an average accuracy of 90.99%, precision
of 91.72%, recall of 91.09%, and F1-score of 91.4%. This
consistent performance across different folds underscores the
reliability and effectiveness of the model.

F. PRODUCTION DELAY AND REVENUE
The experiment was conducted on six ICNC machines in a
simulated industry which produces primarily tailored suits.
The cost and delay were modeled using Arena simulation
software. The performance analysis data are presented
in Table 7. The maximum capacity of each machine is
5000 units per year. However, the actual amount produced
varies, and is listed as Average Production in the table.
Without the proposed CPS security layer, the simulated
industry suffers from 58 successful intrusions on average per
year. It causes an average of 116 hours of production delay,
resulting in 184 units less of production. It causes around
$33,191 revenue loss per year. However, after applying the
proposed security system, the yearly successful intrusion rate
is lowered to around 5, with only about 9 hours of production
delay. As a result, it saves approximately $30,474 in revenue.

TABLE 6. Performance inspection using K-fold cross validation.

FIGURE 10. The variations among the precision, recall, and F1-score.

Figure 11 presents a comprehensive performance analysis
of the effect of the proposed CPS security method on
production and revenue generation from the manufacturing
industry. Figure 11(a) compares the average production and
revenue across six ICNC machines. Despite the maximum
capacity being consistent at 5000 units per year, the actual
amount of production varies, with ICNC 6 achieving the
highest production of 4792 units and generating the highest
revenue of $872,144. The ICNC 2 has the lowest production
of 4453 units and the corresponding revenue of $810,446.
Figure 11(b) illustrates the reduction in successful intrusions
before and after implementing the PLO algorithm. On aver-
age, the number of successful intrusions drops from 58 to
5 per year per machine, highlighting the effectiveness of
the proposed security system. Figure 11(c) showcases the
production delays before and after the PLO algorithm imple-
mentation. The delayed hours due to intrusions significantly
decrease, with ICNC 1 reducing from 195 to 11 hours and
ICNC 4 from 160 to 7 hours. This reduction in delayed
hours leads to a substantial increase in production efficiency.
Figure 11(d) contrasts the revenue loss before and the
revenue saved after implementing the PLO algorithm. The
PLO algorithm saves a significant portion of revenue by
preventing intrusions, with ICNC 1 saving $51,869 and ICNC
4 saving $43,042. Despite ICNC 2 incurring a relatively
high revenue loss of $34,587 before PLO implementation,
the machine managed to save $33,199 after applying
the PLO algorithm. Overall, the figure clearly demon-
strates the proposed CPS security system’s positive impact
on production, efficiency, and revenue across the ICNC
machines.
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TABLE 7. Performance of the proposed security system in a simulated manufacturing industry 4.0.

FIGURE 11. Performance analysis of ICNC machines in the CPS security system: (a) average production vs. revenue; (b) successful intrusions vs.
intrusions after PLO; (c) production delays before and after PLO; (d) revenue loss vs. revenue saved.

VI. LIMITATIONS AND FUTURE DIRECTION
According to Razaque et al. [42], every security system has
vulnerabilities. It is impractical to consider the proposed
security system as an exception. The proposed methodology
and experimental setup were critically explored to identify
potential limitations. The weaknesses discovered have been
highlighted in this section. These limitations are the scope
of conducting further research and strengthening the security
offered by it.

A. SIMULATED ENVIRONMENT
The experiment was conducted in a simulated environment.
It would be more practical to apply the methodology
in real-world industry production. However, the simulated
environment was created using real-world data obtained
from the physical ICNC machine. From this context, this

limitation is mitigated. However, a comparison between the
performances in real-world and simulated environments is
necessary, and will be addressed in the future scope of this
paper.

B. MALICIOUS INSIDER
The proposed system has no defense against malicious insid-
ers. It has been implemented on the onboard computers of the
ICNCmachines. These computers are locally accessible. As a
result, a malicious insider can turn off the protection layer.
An internal status update report systemwould be beneficial to
defend against such attacks, which would notify the operator
if the security layer is compromised. The scope of integrating
such features will be addressed in the future research of this
paper.

12 VOLUME 13, 2025



S. Saeidlou et al.: Cyber-Physical System Security for Manufacturing Industry 4.0

C. ADVERSARIAL MACHINE LEARNING (AML) ATTACK
The proposed security system is an ML-based approach. The
AML attack has become a new concern in the cyber security
industry, which has not been addressed in this paper [43]. The
proposed security system is defenseless against AML attacks.
This weakness will be overcome in the future.

D. AUTOMATIC RISK ASSESSMENT
After detecting intrusion, the PLO algorithm pauses the
manufacturing process to prevent a waste of resources caused
by malicious signals and generates an alarm to alert the
operator. However, it does not have any risk assessment
module, which would be useful for characterizing the
risk and mitigating it automatically without requiring any
human intervention. This facility will be introduced in the
subsequent upgrade of the PLO algorithm.

The CPS security layer presented in this paper is an
excellent solution for manufacturing industries that use ICNC
machines. Overcoming the limitations discussed in this
section, the scope of further strengthening the security level
opens the door to conducting more research in this field.

VII. CONCLUSION
Cyber-physical systems have made industrial production
facilities faster, more efficient, and more productive. Data-
driven decision-making, AI-assisted management, and access
to the Internet have made today’s manufacturing industry
more flexible than ever. However, this flexibility has made
it a popular playground for cybercriminals. A successful
intrusion into a manufacturing industry can cause significant
financial loss; therefore, CPS security has become one of
the top priorities in Industry 4.0 research. This paper has
introduced a practical solution to strengthen CPS security
using deep learning technology.

The LSTM network and CNN parallel orchestration
coordinated by the PLO algorithm protects the ICNC
machines against intrusions conducted from both text and
image data. Besides, if an intrusion is detected, it maintains
the production progress logs to resume manufacturing
without hampering the quality and precision. This innovative
approach reduces the production delay and saves the industry
from losing revenue. The PLO algorithm detects intrusions
from text and images with 91.66% and 90.85% accuracy,
respectively. The simulated results show that it helps save
$30,474 annually when the machines function at their
maximum capacity. It reduces the number of successful
intrusions from 184 to only 15. As a result, it reduces the
95.69% production delay caused by intrusions.

Despite its outstanding performance and a significant
positive impact on the production rate, the CPS security
layer developed in this paper suffers from several limitations.
The experiment was conducted in a real-life-like simulated
environment, which does not include all the uncertainty
of the actual environment. Besides, it does not have any
defense against the malicious insider. Moreover, it is not

capable of avoiding AML attacks. These limitations pave the
way for more experiments on this security system, further
strengthening it, and establishing it as one of the most
practical security solutions for CPS in the manufacturing
industry.
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