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Abstract 
 
Background: Coronary artery disease is the leading global cause of mortality and morbidity 
and stress echocardiography remains one of the most commonly used diagnostic imaging 
tests.  
Objectives: To establish whether an artificially intelligent system can be developed to 
automate stress echocardiography analysis and support clinician interpretation. 
Methods: An automated image processing pipeline was developed to extract novel geometric 
and kinematic features from stress echocardiograms collected as part of a large, UK-based 
prospective, multi-centre, multi-vendor study. An ensemble machine learning classifier was 
trained, using the extracted features, to identify patients with severe coronary artery disease 
on invasive coronary angiography. The model was tested in an independent US study. How 
availability of an AI classification might impact clinical interpretation of stress 
echocardiograms was evaluated in a randomised cross-over reader study. 
Results: Acceptable classification accuracy for identification of patients with severe coronary 
artery disease in the training dataset was achieved on cross fold validation based on 31 
unique geometric and kinematic features, with a specificity of 92.7% and a sensitivity of 
84.4%. This accuracy was maintained in the independent validation dataset. The use of the AI 
classification tool by clinicians increased inter-reader agreement and confidence as well as 
sensitivity for detection of disease by 10% to achieve an AUROC of 0.93. 
Conclusion: Automated analysis of stress echocardiograms is possible using artificial 
intelligence and provision of automated classifications to clinicians when reading stress 
echocardiograms could improve accuracy, inter-reader agreement and reader confidence. 
 
Key words: Stress echocardiography; artificial intelligence; coronary artery disease; 
 
Abbreviations: 
A2C: Apical 2 Chamber view 
A3C: Apical 3 Chamber view 
A4C: Apical 4 Chamber view 
CAD: Coronary Artery Disease 
CNN: Convolutional Neural Network 
EVAREST: Echocardiography Value and Accuracy at REst and Stress  
ICA: Invasive Coronary Angiography 
MRMC: Multiple Reader Multiple Case 
SAX: Parasternal Short-Axis Mid-Ventricular view 
SE: Stress Echocardiography 
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Introduction 

Coronary artery disease is a major cause of morbidity and mortality worldwide1,2 and 

effective management relies on cardiac imaging to risk-stratify those who may require further 

treatment3,4. Stress echocardiography (SE) is one of the most widely used modalities for non-

invasive assessment of coronary artery disease due to its low cost, absence of ionising 

radiation and high patient tolerability3–5. The test requires a clinician to compare images of 

left ventricular wall motion acquired before and after exercise or pharmacological stress. 

Myocardial contractility increases as heart rate rises with stress but in areas affected by flow-

limiting coronary artery disease, the myocardium becomes ischaemic and contractility 

reduces6. This resultant regional wall motion abnormality needs to be identified ‘by eye’ and 

without adequate training and experience, inter- and intra-observer variability can be high.  

 

Automation of image assessment could overcome this limitation, increase confidence and 

broaden use. Recent application of artificial intelligence (AI) to image analysis, including of 

echocardiograms has demonstrated automation of tasks previously reliant on expert opinion 

is possible7,8. However, translation into clinical practice has been slow because of 

requirements for robust, generalizable systems and concerns about how AI-derived 

information might impact clinician performance. We developed a bespoke sequence of AI 

algorithms that could automatically process and extract novel imaging features from stress 

echocardiograms. We then incorporated the novel features into a machine learning model 

trained to identify patients with significant coronary artery disease. The performance of this 

model was tested in an independent dataset and we then performed a randomised, blinded 

trial to assess how the provision of an AI classifier impacts clinician interpretation of stress 

echocardiograms. 

 



   
 

 4 

Methods 

Model development and validation 

Training and validation dataset 

Model development and validation was based on a dataset of clinical information and images 

extracted from the multicentre EVAREST study (Echocardiography Value and Accuracy at 

REst and Stress, ClinicalTrials.gov Identifier: NCT03674255). Images had been acquired 

from hospitals with a range of sizes, type of operators and ultrasound vendor equipment 

representative of “real world” stress echocardiography. Recruitment started in July 2015 and 

is ongoing with data and images stored within the core laboratory at the Cardiovascular 

Clinical Research Facility (CCRF), University of Oxford. Participants gave informed consent 

for clinical follow up via medical records for up to 10 years after recruitment. Ethical 

approval for the EVAREST study was obtained from Health Research Authority NRES 

Committee South Central – Berkshire (IRAS reference: 14/SC/1437).  For model training, a 

set of images were identified that: included apical-4-chamber (A4C), apical-2-chamber 

(A2C) and parasternal short-axis mid-ventricular (SAX) views at rest and stress; had 

endocardial visualization in at least 14 of 16 segments in available images (based on 

consensus review by three 3 BSE accredited cardiac physiologists); had end-diastolic (ED) 

and end-systolic (ES) frames with a minimum of 4 frames between ED and ES; were a 

diagnostic stress echocardiogram (target heart rate or double product reached during study or 

appropriate end point reached for diagnostic interpretation); no previous history of coronary 

artery bypass graft (CABG) or other cardiac surgery. 

Feature extraction 

To extract image features for training the model, all the image datasets were segmented and 

contoured using a bespoke, fully automated AI pipeline (full details are provided in 

Supplemental Methods and Data). In brief, views are classified based on a 2D convolutional 
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neural network (CNN)9–12 that also identifies whether they are contrast or non-contrast 

images. Depending on the identified view, images are then passed through one of three auto-

contouring CNNs (one for A2C/A4C contrast data, one for A2C/A4C non-contrast and one 

for SAX data) to first segment, and then contour, the LV endocardial border on each image 

frame. From these contours at, and between, ED and ES, multiple features were generated, 

including both (1) routine clinical measures such as ejection fraction and global longitudinal 

strain13 as well as (2) novel features engineered specifically for this stress echocardiography 

project based on prior expert knowledge of myocardial wall motion characteristics and 

previously reported methods for defining geometric (shape) and kinematic (mechanical, rate) 

changes. In total, around 7000 features were developed to describe global and regional 

contour shape and temporal deformation. Examples of features that were included in the final 

model are reported in Supplemental Table 3. 

Model training and validation 

A supervised machine learning model based on the novel image-derived features was trained 

using Python 3.6 with the scikit-learn library to identify patients with severe coronary 

disease. Presence of severe coronary disease was based on data from invasive coronary 

angiography (ICA) whether performed electively or following acute admission to hospital 

within six months of the SE. In the case of repeated ICA the first instance was used as the 

reference. The presence of severe disease was assigned if ≥50% stenosis was evident on ICA 

in the left main stem (LMS) or ≥70% in the proximal to mid left anterior descending artery 

(LAD), proximal left circumflex (LCx) or proximal to mid right coronary artery (RCA). All 

other patients i.e. those with <70% stenosis on ICA or in whom ICA was not considered 

clinically necessary were classed as not having ‘severe coronary disease’. Disease 

classification was determined by an adjudication committee, comprising of at least one 

board-certified cardiologist, blinded to the SE result.  
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Three classifiers were trained (support-vector machine, random forest and logistic regression) 

and collated to create an ensemble classifier using a soft voting strategy. Stratified and 

repeated 2-fold nested cross validation (CV) was adopted14 with hyperparameter 

optimisation. Imaging feature selection for each fold and repeat was performed in the training 

fold of the outer loop. Imaging feature selection and hyperparameter optimisation was carried 

out 20 times over 2 folds and 10 repeats. Feature selection relied on the Boruta multivariate 

approach15 and the top selected features were then included in the final classifier model. 

Model performance was assessed as an overall metric following nested CV.  

To better understand the clinical relevance of the selected features, post-hoc feature analysis 

was performed. Each of the selected features was evaluated using ROC curve analysis against 

adjudicated disease classification and each feature was evaluated using the optimum 

threshold based on the maximum Youden’s Index. In addition, regionality of derived features 

was examined to understand whether they aligned with clinical interpretation of the stress 

echocardiogram regional wall motion abnormality. 

Independent testing 

Once the model had been developed it was independently tested in a retrospective study of 

patients who had undergone stress echocardiography at Oregon Health Science University 

Hospital (OHSU; Portland Oregon) (RAINIER study).  Applicable stress echocardiogram 

images and related data was collected from studies performed between 2011 and 2017. All 

images were required to have been deemed appropriate for clinical diagnosis by the clinician 

performing the study. All patients had follow up to at least six months through clinical record 

review and adjudication of disease severity using the same process as for the training dataset, 

undertaken by an adjudication committee blinded to results of the SE. Datasets were collected 

in a consecutive ‘case’ (evidence of severe coronary disease) – ‘control’ manner until the 

predetermined sample size was achieved. An Institutional Review Board (IRB) waiver for 
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consent was obtained based on the anonymised retrospective nature of the study. All images 

were processed using the same automated AI pipeline and then the model was used to 

identify patients which it classed as having ‘severe coronary disease’. Accuracy of the model 

was compared against the adjudicated disease classification. 

Reader study  

The impact of provision of an AI-derived disease classifier on clinician interpretation of the 

stress echocardiogram was studied using a multiple reader multiple case (MRMC) 

randomised cross-over design16,17. Two US-based (accredited by the American Society of 

Echocardiology) and two UK-based (accredited by the British Society of Echocardiography) 

physicians/echocardiographers who were independent of any other part of the investigation 

and had at least 2 years experience of stress echocardiogram interpretation participated18,19. 

Reader experience ranged from ~350 stress echo per year to 2 years transthoracic 

echocardiography with trainee experience in stress echocardiography. Readers were 

presented with all the stress echo studies used for the RAINIER validation trial and asked to 

identify patients who, in their expert opinion, had severe coronary disease, as defined for 

training the machine learning model. The study design meant readers saw the images twice. 

The first time 50% were accompanied by a report containing information on whether the AI 

had classified the patient as having severe coronary disease (Supplemental Figure 7). Readers 

were aware the AI-based classification was not 100% accurate and were free to choose 

whether to use the classification in their clinical interpretation. Studies were presented in a 

randomised order and after a one-month washout period all readers were shown the images 

again but this time with the AI report provided for the other 50% of studies. After each study, 

the readers were also asked to provide a binary (confident or not confident) measure of their 

confidence in their clinical interpretation of the study. 

Statistical Analysis  
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Previously observed cross-validation performance metrics were used to estimate the sample 

size required for this study. The reader study was powered and performed using the FDA 

iMRMC application. Data from a pilot study informed the sample size with 100 normal and 

50 CAD patients providing 80% power to detect a 0.042 difference in AUROC, using four 

readers. Diagnostic performance was assessed by sensitivity, specificity, ROC and 

performance recall analyses and t-distribution tests (T-Tests) and standard error 

measurements were calculated using Brandon D Gallas variance components20. Standard 

approaches for ROC curve generation in a MRMC analysis16,17 were used based on 

sensitivity and specificity calculated at four thresholds determined by the diagnostic 

confidence level reported by the reader: 1- confident positive read 2 – not-confident/probably 

positive read, 3 – not confident/probably negative read and 4 – confident negative read. 

Separate ROC curves were generated for reads with and without AI assistance to determine 

differences in area under the curves. In addition, McNemar’s test was used to assess change 

in confidence with use of AI interpretation. Continuous variables were expressed as mean 

(±SD) or median (interquartile range (IQR)) according to data distribution and compared 

using the Student t test or Wilcoxon ranks sum test, as appropriate. Categorical data, 

presented as number and percentages, were compared using χ² test.  

 

Results 

Study Populations 

The demographics of the datasets are described in Table 1. In summary, 578 patient datasets 

from the EVAREST study were used for AI training, of which 58% were male with a mean 

BMI of 30 kg/m2, 40% had hypertension and 31% had a previous PCI. Severe coronary 

disease was present on ICA in 14.7%. Two thirds of images were from Philips machines and 

one third from GE. In total, 87.2% were dobutamine stress studies and 12.8% were exercise 
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stress. The independent RAINIER testing dataset comprised of 154 studies, 50% were male 

with a mean BMI of 30 kg/m2, 62.1% had hypertension and 8.4% had a previous PCI. 

Twenty one had resting wall motion abnormalities, of which, 11 patients had abnormalities in 

the anterior/anterolateral wall, 11 in the inferior/inferolateral wall, 6 in the septum and 16 had 

involvement of the apex. Severe coronary disease on ICA was present in 29.2%. 96.1% of 

images were from Philips machines and 3.9% from GE. In total, 35.7% were dobutamine 

stress studies and 64.3% were exercise stress.  

Development and Performance of Machine Learning Classifier 

The feature selection process identified 31 features out of 6,748 novel image-derived 

features, which contributed to disease classification (Supplemental Table 3). Of these 

features, 20 were derived from the A4C view, 2 from the A2C view and 9 from the SAX 

view, with apical lateral and mid anterolateral sections being chosen most frequently during 

feature selection. Out of the 31 selected features, 15 were markers of the magnitude of 

regional wall motion abnormality and 16 were markers of endocardial velocity, or 

tardokinesis5. Visual inspection of the myocardial regions from which features were used for 

classification were broadly similar to those regions identified by clinicians as having regional 

wall motion abnormalities during the clinical reading of the stress echocardiogram (Figure 1 

and Supplemental Table 2), although the model was less likely to incorporate features from 

the basal segments. Evaluation of individual features demonstrated that they were each 

moderately effective for identification of patients with severe disease (AUROC range 0.760 – 

0.867, see Supplemental Table 3 and Figure 2). There was also evidence of stratification of 

disease clusters when two features were used in bi-variate plots. When features were 

combined with hyperparameter optimisation in the ensemble machine learning classifier 

during a 10 repeat 2-fold CV, an AUROC of 0.934 (Figure 2) was present with an optimal 

specificity of 85.7% (95% CI 82.7%, 88.9%) and sensitivity of 86.7% (95% CI 80.2%, 
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94.3%).  Independent testing of this ensemble classifier in the RAINIER study testing dataset 

produced a similar AUROC of 0.927 (Figure 2) with a specificity of 92.7% (95% CI 87.8%, 

97.6%) and a sensitivity of 84.4% (95% CI 73.9%, 95.0%) at the classification threshold set 

in the training dataset. In a subgroup analysis excluding those with known coronary artery 

disease or resting wall motion abnormalities sensitivity remained at 90.5% and specificity 

88.4%. 

Clinical Performance with and without AI Assistance 

When provided with the AI-based classification to assist in their interpretation of the 

RAINIER study image datasets, all readers exhibited an increase in mean ± SD sensitivity 

(Figure 3) from 85.0 ± 4.0 % to 95.0 ± 3.0% (∆sensitivity = + 10.0, 95% CI 6.5, 13.5, 

p<0.05). Mean reader specificity remained consistent from 83.6 ± 7.9 % without to 85.0 ± 3.2 

% with the assistance of the AI-based classifier (∆specificity = + 1.4 %, 95% CI -5.7, 8.5, 

p>0.05, Supplemental Table 4). Reads with the AI classifier resulted in a 10% increase in 

number of confident reads (440 unassisted vs 483 assisted) and a corresponding 29% 

decrease in non-confident reads (152 unassisted vs 109 assisted) (p<0.001). To evaluate how 

reader accuracy and confidence changed when assisted by AI-based classification, stress echo 

interpretation and confidence ratings were compounded to construct MRMC ROC curves. 

Readers exhibited significant increases in the mean ± standard error AUROC from 0.877 ± 

0.019 without to 0.931 ± 0.028 with the assistance of the classifier (∆AUROC = +0.054, 95% 

CI 0.032, 0.077, p<0.05, Figure 3). Indeed, with the assistance of the AI-based classifier, the 

AUROC of 2 readers exceeded the performance of the AI classifier on its own (AUROC = 

0.927), with Reader 3 achieving 100% sensitivity (Supplemental table 4). To further evaluate 

the impact of the AI-based classification on reader performance the level of agreement 

between the four readers was then evaluated (Figure 3). This demonstrated in all reader 

comparisons, reader agreement improved from between 0.68 to 0.79 up to 0.83 to 0.97. To 
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determine whether presence of resting wall motion abnormalities had an impact on 

performance the analysis was repeated just on those with normal wall motion at rest. There 

was no difference in performance of either the AI-only model or the AI-assisted reads [see 

Supplemental Tables 5 and 6]. 

 

Discussion 

This study demonstrates that an artificially intelligent system can automatically ‘read’ stress 

echocardiograms, without the input of a clinician, and differentiate patients who may require 

revascularisation if they have angiography from those who may be better managed medically, 

as they are not likely to have severe coronary disease on angiography or are unlikely to have 

an acute cardiac event during follow up. The AI alone achieved very good diagnostic 

accuracy but to increase acceptability of AI during adoption into clinical practice it is likely 

clinicians will initially incorporate information from AI into their decision making. 

Therefore, we performed a reader study, and demonstrated that provision of an AI classifier 

result to a clinician improved both their performance and their confidence in diagnosis. These 

results demonstrate a potential for automated AI-based methodologies to augment clinical 

performance in stress echocardiography21–24. 

 

A series of AI innovations were required to achieve this automation of stress echo 

interpretation. Central to the image analysis pipeline are LV-contouring CNNs capable of 

tracking the endocardial border effectively in greater than 90% of cases. When our project 

commenced, no solutions for this had been published but, in recent years, automated 

segmentation and contouring of echocardiography has become accepted. The approach we 

developed is similar to other reported segmentation approaches for routine 

echocardiography25–28. Additionally, we trained networks to handle contrast-enhanced images 
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across the broad range of heart rates typical in stress echocardiography. To achieve this we 

used multi-vendor datasets and completed manual ground truth contouring. Use of images 

from stress echocardiogram protocols in routine use within multiple sites in the UK and US 

were selected to ensure algorithm training and testing would be applicable to “real world” 

variations in image acquisition, operators and clinical protocols. Inclusion of image datasets 

acquired with both pharmacological and exercise stress also maximised clinical 

generalisability29,30. In this study, image quality needed to be considered of diagnostic quality 

by the operator. Whether image quality limits differ with AI interpretation could be explored 

further with experimental inclusion of a broad range of images of varying quality. 

 

To achieve optimal performance we considered three supervised machine learning 

classifiers31,32. This approach was selected over a deep learning classification model for two 

reasons33. Firstly, we could use clinical expertise to engineer a range of features expected to 

capture novel echocardiographic and myocardial patterns predictive of coronary disease. 

Secondly, post-hoc analysis was used to generate insights into how individual global and 

regional features contribute to the disease classification model. This provided an internal 

‘sense check’ that regions within the echocardiogram being used by the AI for diagnosis 

made clinical sense, while identifying several novel geometric and kinematic features highly 

predictive of disease. While most features were derived from peak stress images, several 

resting features were included, raising the possibility that a proportion of patients may be 

classifiable based on resting echocardiograms alone. 

 

A key element of the study was the independent testing and clinical trialling of the trained 

model. Clinical adoption of AI within cardiology requires the clinician to take information 

derived from automated analysis and incorporate it into their clinical decision making. It is 
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possible an AI tool, if inappropriately ignored, or accepted, by a clinician, could have a 

detrimental impact on patient outcome34. We therefore undertook a randomised crossover 

design, including a month washout period between reads to ensure blinding of the reader, to 

understand how use of an AI diagnostic aid influences decision making. Readers had 

different levels of prior experience of stress echocardiography and the randomised crossover 

design minimised potential training effects of the AI on the reader. We were able to 

demonstrate in an unbiased fashion that both performance and confidence were higher in 

scans reviewed with the assistance of the AI diagnostic tool resulting in a 10% increase in 

sensitivity35. We did not, however, see variation with level of operator expertise but this 

could be explored further in a larger study. Further, prospective randomised controlled trials 

will be of value to understand the impact of AI on patient outcome. 

Study limitations 

This study has several limitations. Firstly, we have not compared against another diagnostic 

test i.e. stress echo against a second diagnostic test e.g. FFR. Therefore, the model cannot 

exclude the possibility of some degree of disease in those patients who did not undergo 

angiography. However, based on the follow up data, we know these patients did not have 

acute cardiac events and therefore were appropriate to manage medically. This classification 

is consistent with recent randomised trials such as (PROMISE36, SCOT-HEART37, CE-

MARC238, FORECAST39, ISCHAEMIA40) that focus on how imaging influences clinical 

practice and outcome, including highlighting that routine referral for angiography may not be 

warranted for many patients whom it would be better to manage medically after their imaging 

test. The next phase of our work is a randomised controlled trial (PROspective randomised 

controlled Trial Evaluating the Use of artificial intelligence in Stress echocardiography 

(PROTEUeS, ISRCTN registry ID ISRCTN15113915), which will formally test whether 

provision of this AI-derived guidance impacts clinical outcome and resource utilisation, such 
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as angiography, for the patient. Secondly, the training sample size was relatively small and to 

avoid biased overestimations of summary performance statistics, missing and inconclusive 

data were handled using routine approaches41,42. In this manner, all cases were included as far 

as practicable to minimize associated biases. To ensure this did not lead to overestimation of 

performance the stability of the model was tested in the independent dataset. The dataset used 

for testing also varied in frequency of clinical characteristics from the training dataset 

consistent with approaches to ensure robust, generalizable independent testing datasets43 

Thirdly, our disease classification of ‘severe coronary disease’ was based on clinician 

interpretation of invasive coronary angiography and we did not have access to quantitative 

measures of coronary stenosis to confirm severity. Although we used an adjudication 

committee blinded to the SE result to confirm diagnosis the imprecision of stenosis 

assessment might have reduced accuracy of training. Fourthly, the model was trained to 

identify severe coronary disease as a ‘yes/no’ classification. Information on angiography was 

available in all patients in the testing dataset who had adverse events after stress 

echocardiography. However, some degree of coronary disease is not excluded in those 

classified as ‘non-severe coronary disease’. In clinical application this group would require 

clinical assessment to decide on need for most appropriate management. In the future, it may 

be possible to develop and train further models to provide classification of disease severities. 

Fifthy, we did not differentiate between mode of stress and future work may be of value to 

understand whether bespoke models for each stressor could increase accuracy. Finally, we 

also did not take account of ethnicity or race in development of the model and further work 

could be considered to understand whether incorporating this information into models could 

optimise them further. 

 

Conclusions 
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In conclusion, we have demonstrated that an artificially intelligent system can be developed 

to autonomously 'read' typical stress echocardiograms currently being acquired for clinical 

diagnosis and differentiate patients likely to have severe coronary disease on angiography 

from those who will not have severe angiographic coronary disease and/or are at low risk of 

an imminent cardiac event. We have also shown that when a clinician is provided with this 

AI interpretation and asked to make a clinical decision, they are more accurate and more 

confident in their decision. Such AI technologies could have the potential to significantly 

impact clinical workflows and patient care, particularly with regard selection of patients for 

invasive testing. Further work is now needed to prospectively evaluate these tools in formal 

randomised trials to determine their impact on patient outcomes.  

 

Clinical perspectives 

Clinical competencies 

 Stress echocardiography is one of the most commonly used imaging tests to diagnose 

coronary artery disease and decide whether patients need further investigation or treatment 

with invasive coronary angiography. The interpreting clinician needs to identify regional wall 

motion abnormalities on the echocardiogram with the eye and therefore can vary depending 

on their expertise. 

Translational outlook  

(1) This study shows it is possible to use artificial intelligence to automatically process stress 

echocardiograms and classify whether the patient is likely to have severe coronary 

disease, which might need further investigation with an angiogram 

(2) Furthermore, if clinicians are provided with the automatic classification when they are 

looking at the images it reduces variability amongst readers and increases both their 

accuracy and confidence in diagnosis.  
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Table 1. Subject baseline characteristics for the datasets used to develop and validate 
the CNNs and predictive model. There is some overlap between the various datasets 
however there is a complete separate between any data used for training and any used for 
validation.  

Training dataset Testing dataset 
Number of Studies 578 154 
Demographics   
   Age (years)  64.5±11.5 61±10.7 
   Sex (% M) 54.3 50 
   BMI (kg/m2) 29.9±6.2 30.1±7.9 
   Hypertension (%) 40.9 62.1 
   Type I Diabetes (%) 0.34 - 
   Type II Diabetes (%) 16.7 25.6 
   Previous MI (%) 7.1 7.8 
   Previous PCI (%) 30.8 8.4 
   CAD Family History (%) 14.7 14.9 
   Resting EF (%) 61.5±11.0 58.3±9.8 
Angiography:   
   Severe Stenosis (N) 85 45 
   Single Vessel Disease (%) 47.6 51.1 
   Two Vessel Disease (%) 36.9 37.8 
   Three Vessel Disease (%) 15.5 11.1 
Protocols:   
   Exercise Stress (%) 12.8 64.3 
   Contrast Enhancement (%) 69.4 98.7 
Machine: 

  

 GE 184 6 
    Vivid 7 32 0 
    Vivid E9 150 6 
    Vivid E95 2 0 
 Phillips 394 148 
    iE33 265 147 
    EPIQ 7G 2 0 
    EPIQ 7C 127 1 
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Figure Legends 

Figure 1. Regional wall motion abnormalities identified at peak stress 
Mean peak stress regional wall motion abnormalities as scored by trained echocardiographers 
from 0-5 where 0 is normal wall motion (left hand panel) compared to a concentration of 
relevant features for each segment identified by the AI model as predictive of clinical 
outcome (right hand panel). 
 
Figure 2. Disease stratification and classification capabilities.  
Panel A presents example ROC curves of three selected features. Feature 1 = A2C at stress 
rectangularity feature 1, Feature 2 = A4C at stress velocity feature 14, Feature 3 = SAX at 
rest elliptical variance feature 1. Panels B, C & D show plots of feature values with 
individuals who had positive clinical outcome coloured orange and negative outcomes 
coloured blue to demonstrates capability of individual model features to differentiate 
outcome. Vertical and horizontal lines indicate example cut-off values for disease 
classification, optimised for balanced sensitivity and specificity. Panel E demonstrates 
performance of the AI-based classifier on training and independent validation datasets based 
on ROC curves. Disease stratification is based on an ensemble model built from 31 of the 
novel features. Feature nomenclature for panels B, C & D: Feature names begin with an 
indication of the view and stage of the SE examination (4P = A4C view at stress, SAX_R = 
parasternal short axis view at rest), followed by the measurement (e.g. rectangularity, 
tortuosity, velocity).   
 
Figure 3. Evaluation of reader study.  
Panel A is a ROC curve of stress echocardiography interpretation of four readers with (solid 
line) and without (dashed line) the assistance of the AI-based classification. Panel B shows 
the inter-reader agreement for positive (positive agreement) and negative (negative 
agreement) clinical interpretations for unassisted and AI-assisted reads. Panel C shows 
individual reader performance with (solid) and without (dashed) the assistance of the AI 
classifier. 
 
Central Illustration. Novel artificial intelligence derived features improve coronary 
disease classification  
Novel quantitative features of regional wall motion can be implemented into machine 
learning classifiers to assist and enhance clinician performance during interpretation of stress 
echocardiography in the investigation of coronary artery disease. 


