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Abstract 

Microbial degradation of lignocellulosic biomass is primarily affected by the composition and structure of 

biomass, as well as enzyme activities that are influenced by the presence of in-process degradation products. 

This study focuses on the latter, and demonstrates that cellulase activity of Neurospora discreta is 

stimulated in the presence of in-process soluble lignin degradation products. Two types of biomass, 

cocopeat and sugarcane bagasse, with contrasting lignin content and cellulose structure were tested at two 

biomass loadings each. At the higher biomass loading, cocopeat showed the highest amount of hydrolyzed 

cellulose and cellulase activity, despite its low cellulose content and recalcitrant cellulose structure. A 

strong positive correlation was revealed between the amount of in-process degraded lignin and cellulase 

activity, indicating a stimulatory effect on cellulase, which contradicts most previous literature. 

Furthermore, the causal relationship between the amount of degraded lignin and cellulase activity was 

established in a model system of commercial cellulase and standard soluble lignin. This work could pave 

the way for using biomass loading as a process lever to enhance cellulose hydrolysis in microbial conversion 

of lignocellulosic biomass. 

Keywords: Cellulase stimulation; cellulose hydrolysis; cocopeat; lignin degradation products; Neurospora 

discreta, sugarcane bagasse. 
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1.0 Introduction 

Production of bioethanol from lignocellulosic biomass residues is a sustainable solution to the 

growing energy crisis, as well as for utilization of abundantly available agricultural residues 

(Kim and Dale 2004; Sukumaran et al. 2010; Sarkar et al. 2012). The process involves pre-

treatment of biomass to remove lignin, hydrolysis of cellulose and hemicellulose, and 

subsequent fermentation of the resulting sugars to produce ethanol (Limayem and Ricke 2012).  

Existing pre-treatment strategies include chemical and thermochemical methods that require 

the use of strong chemicals or high energy inputs. Microbial delignification is a promising, 

environment-friendly alternative as it operates at much milder conditions compared to other 

techniques (Arora et al. 2016; Pamidipati and Ahmed 2017). 

Ethanol yields depend not only on the amount of cellulose present in the biomass, but also on 

the structure of cellulose which determines its ‘degradability’ (Yoshida et al. 2008; Poletto, 

Ornaghi Júnior, and Zattera 2014; Jeoh et al. 2007) . Increased cellulose crystallinity is 

associated with recalcitrance as crystalline cellulose structures are more difficult to break down 

compared to amorphous structures (Pérez et al. 2002). Apart from the biomass used, the 

activity of cellulolytic enzymes (cellulases) also has a direct bearing on ethanol yields as it 

affects the amount of glucose produced from cellulose. Efforts have been directed towards 

increasing cellulase activity using techniques such as mutagenesis, co-culture techniques 

(Paramjeet, Manasa, and Korrapati 2018; Fang et al. 2013), addition of cofactors (Obeng, 

Budiman, and Ongkudon 2017; Saito et al. 2003) as well as ultrasound (Luzzi et al. 2017) and 

microwave based pre-treatment technologies (Mondal, Roy, and Gupta 2004). 

Cellulase activity is also affected by the presence of lignin degradation products generated 

during the pre-treatment step. Several studies have reported inhibition of cellulases by lignin 
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degradation products generated during thermal or chemical pre-treatment of biomass (Tejirian 

and Xu 2011; Qin et al. 2016; Sineiro et al. 1997). A few reports also exist on the stimulatory 

effect of model lignin monomers on purified cellulase at specific concentrations (Zhao and 

Chen 2014; Tsujiyama, Sumida, and Ueno 2001). However, to our knowledge, no reports exist 

on the effects of in-process degradation products produced during microbial degradation of 

lignocellulosic biomass on cellulase activity.  

In our previous publication, we reported the use of a locally isolated fungus, Neurospora 

discreta, which resulted in greater de-lignification of biomass compared to traditionally used 

white rot fungi (Pamidipati and Ahmed 2017). Neurospora also has the enzymatic machinery 

to hydrolyse cellulose (Lynd et al. 2002) and to produce ethanol (Cardona and Sánchez 2007), 

which makes it a promising candidate for complete bioprocessing of lignocellulosic residues. 

The objective of the present study was to evaluate the effect of lignin degradation products 

generated during biodegradation of lignocellulosic residues by N. discreta on its cellulase 

activity and the resulting cellulose hydrolysis. Two lignocellulosic residues: cocopeat and 

sugarcane bagasse were selected for this study owing to the large contrast in the amount of 

lignin, as well as the amount and crystallinity of cellulose present in each. Each biomass was 

tested at two loadings in order to influence the amount of degraded lignin released due to fungal 

action.  

 

2.0 Materials and methods 

2.1. Lignocellulosic biomass substrates 
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Sugarcane bagasse and cocopeat were obtained from local vendors. The substrates were 

thoroughly washed and dried to remove the moisture content. Sugarcane bagasse was chopped 

and sieved to maintain a particle size between 0.3mm and 1mm.  

 

2.2. Microorganism 

Neurospora discreta which is a locally isolated fungal strain (Pamidipati and Ahmed 2017) 

was used for this study. The strain was stored at 2-4oC on potato dextrose agar (PDA) slant 

and was regularly sub-cultured on PDA plates by incubating them at 28oC for 2-4 days.  

 

2.3. Fermentation studies 

Submerged fermentations were  set up  in Erlenmeyer flasks, using sub-cultures of N. discreta. 

Vogel’s minimal medium with 0.5% sucrose was used in all cases. Two loadings were tested 

for each biomass:  1g of biomass in 100 ml medium (10 g/l) and 5g of biomass in 150 ml 

medium (~33 g/l). The additional medium in the 5g loading was added to ensure submerged 

conditions. It is to be noted that the additional medium does not impact the amount of 

lignocellulosic biomass available to the cells. 0.5% sucrose was added to the media to initiate 

cell growth. The flasks containing the biomass and medium were autoclaved at 121oC for 20 

minutes and then cooled to room temperature before inoculation. For inoculation, a spore 

suspension was prepared by gently scraping the fungal cells from sub-cultured  PDA plates 

and adding them to a known quantity of sterile minimal media which was then filtered through 

double layered muslin cloth (Pamidipati and Ahmed 2017). To each flask, 1 ml of the spore 

suspension with a spore count of approximately 107cells ml-1 was added aspetically. The flasks 

were mixed well and incubated at 30 oC for 30 days.  At the end of the fermentation, the 
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contents of each flask were filtered. The solid fractions were thoroughly washed, filtered and 

dried till a constant weight was achieved. Lignin and cellulose content were analyzed in the 

solid substrates. Liquid fractions were centrifuged at 84,448 (g) for 20 minutes and the clear 

supernatant samples were analyzed for lignin degradation products and cellulase activity. 

 

2.4. Lignin estimation  

The lignin content in the solid biomass samples was measured using standard Klason’s method 

(Sluiter et al. 2008) before and after fungal treatment. The amount of degraded lignin was 

calculated from the difference between initial and final values and the degree of deligification 

was calculated as follows: 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑑𝑒𝑙𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (%)

= 100 𝑋 [
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑖𝑔𝑛𝑖𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑔) − 𝐹𝑖𝑛𝑎𝑙 𝑙𝑖𝑔𝑛𝑖𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝑔)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑖𝑔𝑛𝑖𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑔)
] 

 

2.5. Cellulose estimation  

The cellulose content in the solid fraction was analyzed using the Updegraff method detailed 

in the paper (Bauer and Ibáñez 2014). However, instead of the anthrone assay, a glucose 

oxidase assay kit from Sigma-Aldrich (GAGO 20) was used to determine the glucose content, 

to avoid overestimation by the anthone reagent due to the presence of other sugars released 

from the biomass. The pH of the samples was adjusted to around 6.5 using suitable 

concentrations of NaOH solution before using the glucose oxidase assay to ensure uniform 

conditions. Glucose content in the samples was calculated using a calibration curve prepared 

using the glucose standard provided with the kit. An anhydro-correction factor of 0.9 was used 

for calculating the concentration of cellulose from corresponding monomeric (glucose) sugars 
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(Sluiter et al. 2008).  The amount of cellulose hydrolyzed was calculated from the difference 

between initial and final cellulose content. The degree of cellulose hydrolysis was calculated 

as follows: 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 ℎ𝑦𝑑𝑟𝑜𝑙𝑦𝑠𝑖𝑠 (%)

= 100 𝑋 [
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑔) − 𝐹𝑖𝑛𝑎𝑙 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝑔)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑔)
] 

 

2.6. Fourier transform infrared (FT-IR) spectroscopy for cellulose crystallinity 

FT-IR spectroscopy of the two biomass substrates was carried out using pellets prepared with 

1 mg of substrate and 100 mg of KBr on FT/IR 4200 spectrophotometer (JASCO Make) in the 

absorbance mode in the range of 400 to 4000 cm-1(Pamidipati and Ahmed 2017). The baseline 

was corrected between 800 to 3500 cm-1 and the absorbance values at 897, 1430, 1372, 2900, 

3400 and 1320 cm -1 were noted to calculate crystallinity indices of cellulose.  Lateral Order 

Index (LOI) was calculated by taking the ratio of absorbance at 1430 and 897 (A1430/A897) and 

Hydrogen Bond Intensity (HBI) was calculated as ratio of A3400/A1320. (Fan et al. 2012; Poletto 

et al. 2014). 

 

2.7. Reversed phase high-performance liquid chromatography (RP-HPLC) 

The soluble products of lignin degradation were analyzed in the liquid fraction obtained at the 

end of fermentation on a C-18 column using acetonitrile- water solvent system using RP-HPLC 

as detailed in our previous paper (Pamidipati and Ahmed 2017). 

 

2.8. Cellulase activity 
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Samples collected on days 10 and 20 of the fermentation were centrifuged and the supernatants 

were sparged with CO2 to adjust the pH to between 6 and 6.5 in order to maintain uniform pH 

conditions. The cellulase activity in these samples was measured using a modified NREL 

protocol (Adney and Baker 2008). Briefly, to 50 mg of cellulose powder (insoluble α-cellulose, 

Himedia, GRM-126), 1ml of 50mM pH 4.8 citrate buffer was added and the mixture was 

equilibrated to 37oC in glass test tubes. To this mixture, 0.5 ml of the sample supernatant was 

added and incubated for 3 hrs at 37 oC. At the end of 3 hrs, the sample was centrifuged and the 

supernatant was analyzed for glucose content using the glucose oxidase enzyme assay 

described in section 2.5. Cellulase activity was calculated in terms of the amount of glucose 

produced per unit volume per unit time and reported as U/l. While the original protocol uses 

the Dinitrosalicylic assay (DNSA) for estimating the glucose produced, in a fermentation study 

this could lead to an overestimation due to the non-specific binding of the DNS reagent to other 

sugars released from the biomass. Therefore, a more specific glucose oxidase assay was used 

here which would provide a more accurate estimation of cellulase activity. 

 

2.9. Study on model system of commercial cellulase and standard soluble lignin 

Pure cellulase from Trichoderma reesei (Sigma aldrich, C2730) was used for studying the 

effect of varying concentrations of soluble standard lignin (Sigma-Aldrich, 471003) on 

cellulase activity. The concentration range of standard lignin tested was 0.5-4 g/l. Cellulase 

activity was measured using the standard NREL protocol described above. As there was no 

possibility of interference from other sugars in this experiment, glucose content was measured 

using Dinitrosalicylic assay (DNSA) method (Miller 1959) as per the original protocol. 
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3.0 Results and discussion  

3.1. Biomass composition and cellulose crystallinity 

Table 1 shows the differences in sugarcane bagasse and cocopeat in terms of the percentage of 

lignin and cellulose, measured using Klason’s and Updegraff methods respectively, as well as 

the crystallinity indices of cellulose calculated using the absorbances from the FT-IR spectra 

(figure 1) as described above. As per literature, sugarcane bagasse consists of approximately 

43-50% cellulose and 18-25% each of hemicellulose and lignin (A. Pandey et al. 2000; 

Limayem and Ricke 2012). Cocopeat consists of 21-36% cellulose and 48-54% lignin. (Israel 

et al. 2011; Shashirekha and Rajarathnam 2007). The data on biomass composition is 

consistent with the values reported and indicates that the two biomass substrates are 

significantly different in terms of the composition.  

 

Table 1 Biomass composition and cellulose crystallinity 

Sample 
Biomass composition Cellulose Crystallinity indices 

Lignin (%) Cellulose (%) 
A1430/A897 (LOI) A3400/A1320 (HBI) 

Sugarcane bagasse 
(n=3)  

21.00±0.14 49.00±0.05 
2.06±0.34 22.11± 2.64 

Cocopeat 
(n=3) 

46.0±1.3 35.0±0.1 
7.71±0.42 34.21± 0.22 

 

Figure 1 shows the FT-IR spectra of cocopeat and sugarcane bagasse and indicates the peaks 

that were used to calculate the crystallinity indices. Crystallinity index is a parameter that is 

commonly used to describe the degree of crystallinity of polymers and can be measured using 

FT-IR spectroscopy (Poletto, Ornaghi Júnior, and Zattera 2014; Fan, Dai, and Huang 2012; 

Sun et al. 2004). Two types of indices are used to describe the crystallinity of cellulose. The 

ratio of absorbances at 1430-1420 cm-1 (associated with crystalline cellulose) and 897cm-1 
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(corresponding to amorphous cellulose) is called Lateral Order Index (LOI) (Poletto, Ornaghi 

Júnior, and Zattera 2014; Fan, Dai, and Huang 2012). Higher the LOI, greater the crystallinity 

of cellulose. Another parameter that is used to determine the intermolecular regularity and 

crystallinity of cellulose is called Hydrogen Bond Intensity (HBI), which is determined by the 

ratio of absorbances at 3400 and 1320 cm−1 (Poletto, Ornaghi Júnior, and Zattera 2014). Both 

indices were found to be significantly higher in cocopeat (Table 1), indicating that the cellulose 

in cocopeat is more crystalline compared to that in sugarcane bagasse, making it more difficult 

to degrade (Poletto, Ornaghi Júnior, and Zattera 2014).  

 

 

Figure 1. FT-IR spectra of cocopeat (CP) and sugarcane bagasse (SB) samples. The inset shows 

a zoomed portion of the spectra containing the smaller peaks. 

3.2. Analysis of lignin degradation products 

Lignin degradation products released into the fermentation broth during biomass degradation 

were analyzed at the end of the fermentation using RP-HPLC. Figure 2 shows the RP-HPLC 
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chromatograms of the liquid supernatant samples of cocopeat and sugarcane bagasse at 

different biomass loadings. All samples show a major peak at a retention time of 2.9 ±0.5, 

which matches with the peak of the standard lignin as discussed in our previous paper 

(Pamidipati and Ahmed 2017), indicating the production of soluble degradation products from 

lignin. Control samples prepared by soaking the biomass in the medium without any cells were 

also run using the same method, and did not show any peaks. For each biomass type, the area 

under the curve, which represents the concentration of degraded lignin released into the 

medium, increased nearly four-fold with increase in biomass loading. Due to the higher initial 

lignin content in cocopeat, the amount of lignin degraded was higher in cocopeat compared to 

bagasse. The largest peak was seen in the higher biomass loading of cocopeat indicating the 

highest amount of lignin degradation products released into the medium, followed by the 

higher loading condition of sugarcane bagasse.  

 

Figure 2 RP-HPLC chromatograms of liquid supernatant samples of sugarcane bagasse (SB), 

cocopeat (CP) at both biomass loadings. 
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3.3. Effect of degraded lignin on cellulase activity and cellulose hydrolysis 

The amount of degraded lignin estimated using Klason’s lignin protocol was higher in cocopeat 

compared to sugarcane bagasse, and increased with biomass loading for both cases, which was 

also seen in the RP-HPLC chromatograms. While the degree of delignification was lower in 

cocopeat (inset of figure 3), the higher initial lignin content in cocopeat (table 1) resulted in 

higher amount of lignin being released into the medium. However, despite the lower cellulose 

content and higher crystallinity indices in cocopeat, the amount of cellulose hydrolyzed was 

nearly 40% higher in cocopeat at the 10 g/l loading and 27% higher at the 33 g/l loading 

compared to sugarcane bagasse. Similarly, the cellulase activities were also higher in cocopeat 

samples at each biomass loading. Furthermore, the cellulase activities and cellulose hydrolysis 

also increased with increase in biomass loading for each biomass type.  

Across all four conditions, cellulase activities and cellulose hydrolysis increased with increase 

in the amount of lignin degradation products, indicating a stimulatory effect of these products 

on cellulase, as shown in figure 3 (top). A strong positive correlation (Pearson’s correlation 

coefficient >0.99) was seen between the degraded lignin and cellulase activity.  The degree of 

cellulose hydrolysis also increased with increase in biomass loading and was the highest for 

the higher loading of cocopeat. 
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Figure 3 Degraded  lignin  and cellulase activity in sugarcane bagasse (SB) and cocopeat 

(CP) samples (top). Degraded lignin and hydrolyzed cellulose content in sugarcane bagasse 

(SB) and cocopeat (CP) samples (bottom). The insets show the degrees of delignification and 

cellulose hydrolysis. 

 

Several studies have reported that the phenolic compounds released during lignin degradation 

inhibit cellulase activity (Ximenes et al. 2010; Qin et al. 2016; Tejirian and Xu 2011). However 

these lignin-derived compounds were generated using physical or chemical pretreatment 
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methods such as steam explosion, acid or alkali treatment techniques.  Other researchers have 

reported a concentration-dependent stimulatory effect of certain lignin monomers on cellulase 

activity (Müller, Trösch, and Kulbe 1988; Paul et al. 2003; Zhao and Chen 2014; Tsujiyama, 

Sumida, and Ueno 2001).  It was hypothesized by Zhao et al.,  that lignin-derived phenolic 

compounds at a certain concentration increase the hydrophobicity of cellulase surface just 

enough to cause better enzyme-substrate connections and lead to a stimulatory effect (Zhao 

and Chen 2014). Other studies have indicated a suppression of non-productive binding of 

cellulase to lignin in the presence of certain concentrations of lignosulfonates (Wang, Lan and 

Zhu 2013) or organosolv lignin at certain pH conditions (Lai et al. 2018). The nature of these 

phenolic compounds also plays a very important role in its action on cellulases (Zhao and Chen 

2014). However, most of these studies were carried out using synthetic phenolic compounds 

and not with in-process degraded lignin generated during microbial degradation of biomass. 

The stimulation of cellulase by lignin degradation products seen in the present study indicates 

that biomass loading can be used as a process lever to influence the amounts of lignin 

degradation products released, which would in turn influence the cellulase activity and 

cellulose hydrolysis. This also implies that the influence of in-process intermediates on enzyme 

activities could help overcome the inherent recalcitrance of the biomass, such as in the case of 

cocopeat. 

 

3.4. Effect of  standard lignin on commercial cellulase activity 

While a correlation between degraded lignin and cellulase activity is seen in the fermentation 

studies, in order to use biomass loading as a process lever, it is important to establish a causal 

relationship betwen the two factors. To this end, a model system of commercial cellulase 
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and standard soluble sulfonated lignin was used. Figure 4 shows the effect of varying 

concentrations of standard soluble lignin on the activity of pure cellulase. The standard lignin 

was chosen based on its similarity to the lignin degradation products released by the action 

of N. discreta, which was shown in our previous paper using RP-HPLC (Pamidipati and 

Ahmed 2017). The concentration range of standard lignin was fixed based on the soluble 

lignin concentrations seen in the actual fermentation samples from the present study. An 

increase in cellulase activity was seen with increasing concentrations of standard lignin 

beyond 1 g/l, which further confirmed the concentration-dependent stimulation of cellulase 

seen in actual fermentation set-up with increased amounts of degraded lignin in this 

concentration range. This study not only confirmed the stimulatory effect of soluble lignin 

on cellulase, but also showed that the stimulation is not specific to the cellulase secreted by 

N. discreta  alone.  

 

Figure 4 Effect of varying concentrations of standard soluble lignin on commercial cellulase 

activity. The control sample was run in the absence of lignin. 
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4.0 Conclusion 

Despite the lower cellulose concentrations and higher crystallinity indices of cellulose in cocopeat, 

an increase in biomass loading resulted in higher cellulose hydrolysis owing to the stimulatory 

effect of degraded lignin on cellulase. Biomass loading can therefore be used as a simple and cost 

effective process lever to enhance cellulase activity and cellulose hydrolysis in lignocellulosic 

residues. Moroever, this study paves the way for utilization of relatively recalcitrant residues such 

as cocopeat with high lignin content, for production of biofuels. This work has also demonstrated 

a general principle that increase in lignin concentrations increases cellulase activity. Further 

investigation on the nature of lignin degradation products released during microbial degradation 

of lignin and their individual impact on cellulase activity could provide additional insights into the 

process. 
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